NOTE

LONG UNIMODAL SUBSEQUENCES: A PROBLEM OF F.R.K. CHUNG

J. Michael STEELE

Department of Statistics, Stanford University, Stanford, CA 94305, USA

Received 3 December 1979 Revised 3 January 1980

Let l(n) be the expected length of the longest unimodal subsequence of a random permutation. It is proved here that $l(n)/\sqrt{n}$ converges to $2\sqrt{2}$. This settles a conjecture of F.R.K. Chung.

1. Introduction

Let p denote a permutation of $\{1, 2, ..., n\}$ and call $\{a_1 < a_2 < \cdots < a_t\}$ a unimodal subsequence provided there is a j such that

$$p(a_1) < p(a_2) < \cdots < p(a_i) > p(a_{i+1}) > \cdots > p(a_t)$$

or

$$p(a_1) > p(a_2) > \cdots > p(a_j) < p(a_{j+1}) < \cdots < p(a_t).$$

Let l(n) denote the expected length of the longest unimodal subsequence of a randomly permuted subsequence i.e. $l(n) = \sum_{p} \rho(p)/n!$, where $\rho(p)$ denotes the length of the longest unimodal subsequence of the permutation p.

F.R.K. Chung [1] conjectured that

$$\lim_{n \to \infty} l(n)/\sqrt{n} = C \quad \text{exists.}$$

The point of this note is to prove Chung's conjecture and show $C = 2\sqrt{2}$. Actually, Chung's conjecture is slightly more general than this introductory version, and this more general conjecture is obtained by the same proof.

2. Proof of F.R.K. Chung's conjecture

Suppose (X_i, Y_i) , $1 \le i < \infty$ are independent and uniformly distributed in $[0, 1]^2$. For any $A \subseteq [0, 1]$ let

$$I_n(A) = \max\{k \colon Y_{i_1} < Y_{i_2} < \dots < Y_{i_k} \text{ with }$$

$$X_{i_1} < X_{i_2} < \dots < X_{i_k}, X_{i_j} \in A \text{ and }$$

$$i_j \in [1, \dots, n]\}$$

and

$$D_n(A) = \max\{k \colon Y_{i_1} > Y_{i_1} > \dots > Y_{i_k} \text{ with }$$

$$X_{i_1} < X_{i_2} < \dots < X_{i_k}, \ X_{i_j} \in A \text{ and }$$

$$i_j \in [1, 2, \dots, n]\}.$$

Next set

$$U_n = \max_{0 \leq t \leq 1} \, \{ \max(I_n([0,\,t]) + D_n([t,\,1]), \, D_n([0,\,t]) + I_n([t,\,1])) \}.$$

The desired proof will be obtained by applying known results to the random variable U_n . To begin it is easy to check that

$$EU_n = l(n)$$
.

Next we note that by the work of Hammersley [2] and Kesten [3] that almost surely and in L^1 we have the limits

$$\lim_{n\to\infty} I_n(A)/\sqrt{n} = C'\sqrt{\lambda(A)} \quad \text{and} \quad \lim_{n\to\infty} D_n(A)/\sqrt{n} = C'\sqrt{\lambda(A)}$$

where $\lambda(A)$ is the Lebesgue measure of $A \subset [0, 1]$, and C' is a universal constant. The work of Logan and Shepp [9] and Vershik and Kerov [5] established that C' = 2.

For any N and $1 \le k \le N$ we define

$$U_n^N(k) = \max[I_n(0, k/n) + D_n((k-1)/N, 1), D_n(0, k/N) + I_n((k-1)/N, 1)]$$

and

$$U_n^N = \max_{1 \le k \le N} U_n^N(k).$$

Clearly, for all $N, U_n \leq U_n^N$ and by the above mentioned limit results we have

$$\lim_{n\to\infty} U_n^N / \sqrt{n} = 2 \max_{1\le k\le N} (\sqrt{k/N} + \sqrt{(N-k+1)/N}),$$

where the limit is almost sure and in L^1 . The arbitrariness of N then shows

$$\limsup_{n\to\infty} U_n/\sqrt{n} \leq 2 \max_{0\leq t\leq 1} (\sqrt{t} + \sqrt{1-t}) = 2\sqrt{2} \quad \text{a.s.},$$

so by Fatou's lemma we get

$$\limsup_{n\to\infty} l(n)/\sqrt{n} \le 2\sqrt{2}.$$

For the opposite direction note the trivial bound

$$U_n \ge I_n([0, \frac{1}{2}]) + D_n[\frac{1}{2}, 1]$$

SO

$$\lim_{n\to\infty}\inf l(n)/\sqrt{n} \ge \lim_{n\to\infty}\inf E(I_n[0,\frac{1}{2}]+D_n[\frac{1}{2},1]) = 2\sqrt{2}$$

which completes the proof.

3. The generalization

Instead of allowing the subsequence to make "one turn" as in the unimodal case, one can consider subsquences which make k turns. Explicitly, let $l_k(n)$ be the expected length of the longest subsequence S of a random permutation with the following property:

S can be decomposed into k+1 segments which are monotone and which alternate between increasing and decreasing.

The method of the preceeding section can be used easily to show

$$\lim_{n\to\infty} l_k(n)/\sqrt{n} = 2\sqrt{k+1};$$

all one has to do is define the proper analogue $U_n(k)$ of U_n and argue as before. One should also note that the preceding bounds also prove the almost sure and L^1 convergence of $U_n(k)/\sqrt{n}$ to $2\sqrt{k+1}$.

References

- [1] F.R.K. Chung, On unimodal subsequences, Bell Laboratories Technical Report (1979).
- [2] J.M. Hammersley, A few seedlings of research, Proc. Sixth Berk. Symp. Math. Stat. and Prob. 1 (1972) 345–394.
- [3] H. Kesten, Comments on J.F.C. Kingman's subadditive ergodic theory, Ann. Prob. 1 (1973) 883–889.
- [4] B.F. Logan and L.A. Shepp, A variational problem for Young tableau, Adv. in Math. 26 (1977) 206–222.
- [5] A.M. Vershik and C.V. Kerov, Asymptotics of the Plancherel measure of the symmetric group and a limiting form for Young tableau, Dokl. Akad. Nauk U.S.S.R. 233 (1977) 1024–1027.