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GIBBS’ MEASURES ON
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A model for random trees is given which provides an embedding of the uni-
form model into an exponential family whose natural parameter is the expected
number of leaves. The model is proved to be analytically and computationally
tractable. In particular, a central limit theorem (CLT) for the number of leaves
of a random tree is given which extends and sharpens Rényi’s CLT for the uni-
form model. The method used is general and is shown to provide tractable
exponential families for a variety of combinatorial objects.

1. INTRODUCTION

The theory of random combinatorial objects has shown a considerable devo-
tion to the uniform distribution. This is a natural development, and a great
number of interesting and useful results have been produced. Still, for the pur-
pose of modeling and for technical applications, it seems valuable to be able
to go beyond uniformity and the elementary extensions amounting to condi-
tional uniformity.
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A simple technique given here will show how one can sometimes construct
a combinatorially rich family of nonuniform probability distributions on a class
of combinatorial objects. More pointedly, one can still retain many of the at-
tractive features of the uniform distribution. Those features include (1) a suffi-
cient analytical tractability to permit limit results like the central limit theorem,
(2) the possibility of economical computer simulation to obtain realizations
from the distribution, (3) the presence of one or more parameters to permit tun-
ing of the family distributions to the circumstances of modeling applications,
and (4) an intuitive meaning of the underlying parameters of the distributions.

To illustrate the technique as concretely as possible, attention will be
focused here on the construction of a family of random trees. It will be seen
that the constructed family is in fact an exponential family in the usual sense
of parametric families of distributions. Moreover, the sufficient statistics for
the natural parameters have basic combinatorial interpretations. This exponen-
tial family of trees has the benefit of permitting an easy asymptotic analysis,
and it also permits two general techniques for simulations of random samples.

The study of random trees was initiated in Rényi [20], where a model of
random trees was built on the classical result of enumerative combinatorics that
there are exactly n"~2 labeled trees with n vertices, (Cayley [3]).!

The basic object Rényi chose to study was the number of leaves (i.e., ver-
tices of degree one) of a tree chosen at random from the set of all n”~? labeled
trees. If we let L, denote the number of leaves of such a random tree, then
Rényi’s main results can be stated as follows:

E(L,)~n/e as n— o 1.1
var(L,) ~ (e — 2)n/e> as n— oo 1.2)

and, principally, the normalized number of leaves

L,—n/e

——— 1.3
e "n(e—2) 1-3)

is asymptotically normal.

In the second section we establish some structural prerequisites to the study
of random trees; and, in particular, we introduce the coding structure needed
to construct random trees under the uniform model. The third section
introduces an exponential family of random trees where the number of leaves
is the sufficient statistic for the family’s natural parameter. The measure-
producing process given there starts with the notion of a general Gibbs distri-
bution. It then quickly specializes to the construction of a Gibbs distribution
on the set of labeled trees where there associated energy function for the Gibbs
distribution is the number of leaves of the tree.

Sections four, five, and six pursue the probabilistic analysis of this new
family of measures on labeled trees. The main analytic technique depends on
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establishing a representation of a random variable as a sum of Bernoulli ran-
dom variables by showing that the probability generating function has ali real
roots. This powerful idea was introduced in the work of Harper [9] on the nor-
mal law for Stirling numbers of the second kind. One benefit of Harper’s
method is that Rényi’s central limit theorem can be sharpened to give a
Berry-Essen type result on the rate of convergence to normality. The Bernoulli
representation also lets one easily deduce some subtle qualitative features of
random trees like the unimodularity of the probability mass function of L,.

Conceptually, the best thing about Harper’s method is that the number of
leaves of a tree chosen from the Gibbs’ family is shown to be representable as
a sum of independent Bernoulli random variables. The issue of random leaves
is brought down to the problem of number of heads of (properly chosen) biased
coins. The bias turns out to depend on the roots of certain simple polynomials.
Curiously, there is still no combinatorial interpretation of the Bernoulli sum-
mands.

In section seven we see how to generate a random tree from our exponen-
tial family. Two methods are given and contrasted. One of these is based on
the algorithms of Metropolis et al., [14] for generating an observation from a
Gibbs distribution. This method has come recently into wide circulation because
of the so-called method of simulated annealing in combinatorial optimization,
(see e.g., Kilpatrick et al., [11]). A second method is given for generating ran-
dom trees from the Gibbs measure which is based on more special features of
our particular family of trees.

The final section discusses other combinatorial problems to which the pro-
gram of Gibbs’ measures and Harper’s method can be applied. In particular,
results are given for the choice of a random set from a set of size n, and to the
choice of a random matching from the set of all matchings of a graph.

2. STRUCTURAL PREREQUISITES

Rényi’s theory of random trees is based on a method of creating a one-to-one
correspondence between a labeled tree on n vertices Py, P,,...,P, and an
(n = 2)-tuple with elements from {1, 2,...,n}. This correspondence is due to
Priifer [19] and is obtained as follows:

First we find the leaf P; with the highest value of the index i. We then delete
P; from the tree and record the index j of the unique vertex P; to which P; was
adjacent. This process is repeated on the pruned tree until n — 2 vertices have
been deleted (and two vertices are left remaining).

The sequence of recorded adjacency indices becomes the Priifer code for
the tree. One consequence of this coding is that Cayley’s formula for the num-
ber of trees on n vertices is now rendered obvious; our code has length n —2
and each place can be held by 7 values, so n"~? is the cardinality of the set of
labeled trees. For more detail on the Priifer code as well as various generaliza-
tions and applications, one can consult Moon [15], Knuth [12], or Lovdsz [13].
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With the Priifer code in hand, it is easy to obtain a formula for the num-
ber of trees with k leaves. From the construction of the code, one has the fact
that P, is a leaf if and only if / does not appear in the Priifer code. The num-
ber of ways to choose the k leaves which are not to appear in the code is (),
and the number of functions from an (n —2) set onto an (n—k) set is
(n—k)!s(n—2, n— k) where s(n, k) is the Stirling number of the second kind
(i.e., the number of ways to partition an n set into k subsets); so, if we let
T(n,k) denote the number of labeled trees with n vertices and exactly & leaves,
we then obtain, after Rényi, that

sin—2,n—k)
T(n, k) =n!~———7€—!—~—~— .

2.1

By using the well-known recurrence relation s(n,k) =s(n—1, Kk +
s(n—1, k—1) together with Eq. (2.1), Rényi [20] obtained the basic identity
on which he based his asymptotic analysis:

X
. T(””‘)<n _k)
) D LA 2.2)
k=2

(")

One can easily obtain the asymptotic formula for the means, EL, ~ n/e,
just by letting x = n — 1 in Eq. (2.2). Similarly, the variance relation var L, ~
n(e —2)/e? is obtained by substituting x =n — 2.

It is worth noting that there is some subtlety in the formula for var L,.
The naive notion that L, behaves like the sum of n (or n —2) independent
Bernoulli random variables with mean p = 1/e is supported by EL, ~ n/e, but
it would suggest an asymptotic variance of n(1 — 1/e)(1/e). The true asymp-
totic variance shows that the variance suggested by such a naive Bernoulli
approximation is too big. The surprising fact which will be established shortly
is that L, does nevertheless have the same distribution as the sum of n —2
independent Bernoulli variables. This fact is consistent with the asymptotics of
EL, and var L, only because these Bernoulli variables are not identically dis-
tributed.

The central limit theorem for L, was obtained by Rényi by substituting
x=1—it/J7 into his key identity Eq. (2.2). The asymptotic analysis which
then led to Eq. (1.3) was considerably more subtle than that which will be
required here to obtain a stronger and more general result.

3. GIBBS’ MEASURE ON THE SET OF TREES

Before beginning a re-analysis of L, under the uniform model, it will be use-
ful to obtain two general perspectives on the distributions which can be placed
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on the set of all labeled trees. First, we will consider a point of view common
in statistical mechanics.

If Sis any finite set and f: S— R is any real function on S, then we can
define a parametric family of measures on S by

o /IE

Y e /08 ’

=N

pa(s) = 3.1

If S is thought of as the set of possible states of a physical system and if f(s)
is considered to be the energy of the state s, then pg(s) is called the Gibbs
measure associated with f. The statistical mechanical interpretation of ug(s) is
the probability of the state s. The expression 1/ is interpretable as a measure
of remperature: so, in the first place, states of higher energy are less likely than
states of lower energy. In the second place, as temperature tends to infinity,
the Gibbs measure becomes maximally disordered, i.e., uniform on all states.

When temperature tends to zero, ug becomes concentrated on the states s
of lowest energy f(s); and, partly for that reason, the Gibbs measure has
recently emerged as a tool in combinatorial optimization. The Gibbs measure
is of basic importance in statistical mechanics, and for many models it has been
studied in remarkable depth.

The formalism of Gibbs’ measure has a convenient specialization to the set
S of labeled trees on n vertices. In particular, if we let f(s) denote the num-
ber of leaves of the tree s € S and let Z(3) denote the denominator of Eq. (3.1),
then we can express Z(8) in terms of T(n, k),

ZB)= ¥ e T(nk) . (3.2)

2=k=n-1

In general, the denominator of the Gibbs’ measure of Eq. (3.1) is called the

partition function in the classical terminology, and Z(8) is the traditional
notation.

One should note from Eq. (3.2) that Z(0) = n""%; and, if P; denotes the
probability distribution on random trees given by the Gibbs’ measure pug, then
e P T(n, k)

Z(B)

If we let ¢, denote the probability generating function for L, under the uni-
form model (8 = 0) we have

Ps(L, = k) = 3.3

b (x)= Y, xFPy(L,=k) (3.9

2=sk=n—1

and there is also a simple relation between Z and ¢,

Z(B) = da(e*)Z(0) . @3.5)
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4. REAL ROOCTS OF THE LEAF POLYNOMIAL

We can now obtain an approximaie representation for L, under both the uni-
form and Gibbs models. A key point is that whenever Harper’s method is suc-
cessful there is an attendant extension to an appropriate Gibbs model which
comes almost for free.

Harper [9] showed that if Y, is the number of subsets in a partition of {1,

2,...,n} which is chosen at random from the set of all B, = ¥, s(n,k) such
k
partitions, then Y, has the same distribution as the sum of n independent Ber-

noulli random variables. To recall Harper’s method, and to establish some facts
which we will use later, we let ¥, (x) denote the probability generating func-
tion of ¥, so

V,(x) =Ex¥=B;' ¥ s(n,k)x* . 4.1)

I=k=n

Using a variant of Rolle’s theorem, Harper was able to give a rather easy
proof that ¥,(x) has all real roots. Since these roots must be nonpositive by
the positivity of the coefficients of ¥,(x), we see there are real numbers r; = 0
such that

f[ (x+r)

¥,(x) = =———— =] (pix+4q) @.2)
Ma+ry
i=1

where p;= (1 +r;) ' and g, = r;/(1 +r;).

This factorization is equivalent to saying that Y, has the same distribution
as the sum of n independent Bernoulli random variables. This was Harper’s key
probabilistic observation. It leads naturally to a central limit theorem for Y,
and to a sharper understanding of the qualitative behavior of the Stirling num-
bers. As an example of the latter, we note that the Bernoulli factorization of
Eq. (4.2) implies that the Stirling numbers are unimodal. This is a fact which,
though apparent in computed examples, is otherwise taxing to establish.

Because of the explicit formula in Eq. (2.1) for T(n, k) in terms of Stirling
numbers, it is natural to begin an analysis of the probability generating func-
tion for L, by using what is known about ¥,. This requires only a little index
shifting. We first note that by the defining relation of Eq. (4.1), we have

n—2

By ¥, o(x) =Y, s(n—2, j)x’/

J=1

and, by obvious substitution and multiplication,

Jj=1

n-2 X 1
¥ stn—2, kyy" =y"Bn—2“’"-2<}) '
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By the fact that ¥,_, has only real roots, we see that

Y s(n—2, j)x" =0 4.3)
j=1
must also have all real roots.
A remarkable fact about polynomials with real coefficients (c.f. Polya and
Szegd [18], p. 45) is that when an equation o+ @, X + ax* 4 . ax"=0
has only real roots, then the equation

2 n

a0+a, +a2—2~'+ +a,7;l—'—=0

also has only real roots. Applying the result of Polya and Szeg6 to Eqg. (4.3),
we see that

n—2 n J k
Y s(n—2, j) —— = Z stn—2, n—k)— 4.4)
= (n k!
must have only real zeros.
This last expression is just a positive multiple of the probability generat-

ing function of L, which, using Eq. (2.1), can be written more explicitly than
Eq. (3.4) as

ba(x)= ) x*

2kzn—1 N 2k’

stn—-2,n—k) . 4.5)

By comparison with Eq. (4.4) we see the probability generating function ¢,(x)
has only real roots. This proves that L, is equal to the sum of N independent
Bernoulli random variables. One intriguing aspect of this representation is that
there is (so far) no way to establish this representation except by the analyti-

cal method of analysis of roots. There is no graph theoretic interpretation of
the Bernoulli summands.

5. MOMENT BOUNDS UNDER GIBBS' MODEL

The factorization of ¢ not only provides a representation of L, under the uni-
form model, but it also yields a Bernoulli representation for L, under all of
the distributions in the Gibbs family. To make good use of the representation,
we need to obtain some rudimentary bounds on the mean EgL, and variance
vargL,.

Under the Gibbs measure ug(s), where f(s) is the number of leaves of
the labeled tree s, the expression Pg(L, =k) = e PXT(n,k)/Z(B) lets us write
the probability generating function ¢,(x,8) = Egx*n in terms of the function
én(x) = ¢,(x,0) via Egs. (3.4) and (3.5) as

oa(x,B)= Y x*e MT(k,n)/Z(B)
2=k=n-—1 (51)
= ¢ (xe™®)/da(e™?) .
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The fact that Eq. (4.5) has only real roots implies the same for ¢,(x,3).
If L, ; denotes a random variable with probability generating function
¢,{x,8), then again we can represent L, g as the sum of » independent Ber-
noulli random variables X, 1 <i=<n. If the nonpositive numbers (—r;),
1 <i<n, are the roots of ¢,{x,0), the relation ¢,(x,8) = ¢.(xe 5,0)/d,(e ")
shows that the roots of ¢,(x,8) are just {(—e®r;), 1 <i<n. This gives us an
easy way to relate moments and other properties of L, 5 to the results
obtained in the uniform case of L,,.

Factoring ¢,(x,8) as we did ¥,(x) in Eq. (4.2), we see that L, g is a sum
of independent Bernoulli’s X;, 1 <i<n, where P(X;=1)= (1 +efr)7!,
1=<i=n, and (—r;)L, are the n nonpositive real roots of ¢,(x). We have
therefore that

EL,g=)(1+er)™! - (5.12)
i=1

and

7
varL, g= Y, ePr(1 +efr) % . (5.1b)
i=1
We can now show var gL, diverges at a linear rate since for all —oe <
B < o, we have the crude bound

n n
vargL, =Y efr(l+efr)2ze WY r(l +r)"2 . (5.2)
i=1 i=1
This inequality is enough to permit us to prove a linear rate of divergence of
var gL, because of the relation

n
Yori(l+r) 2 =varoL, ~ n(e—2)e2
i=1
which comes from Eq. (1.2).
It is natural to expect that as » tends to infinity we have

EglL, ~c(B)n and var gL, ~ v(B)n (5.3)

for some constants ¢(f) and v(8). These are natural conjectures and progress
toward them would seem to begin with generalizing Rényi’s Eq. (2.2). For the
present we content ourselves with just having shown the linear divergence of
var gL, since that is the essential result required for a central limit theorem.

6. CONSEQUENCES OF THE BERNOULLI APPROXIMATION

For a sum S, of Bernoulli random variables, the Lindeberg condition becomes
simply the condition that var S, — o. From the linear divergence of var gL,
we can then conclude that (L, — EgL,)(var gL,)""? is asymptotically normal.

To do a bit better, we first note that if X; is a Bernoulli random variable
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then |X; — EX|| < 1, so E|X, — EX/’ <var X;. By the Berry-Essen theorem,
we then have for all n = 1,

L,—E,L, 1ol ‘
Rg(L—T;;,*%—) = z> — = e = dxt = Ael?1Zpm!12 (6.1
N r i, VET o —co

where A4 is a universal constant (see e.g., Petrov [17], p. 111 or Feller 3],
p. 544)..

The Bernoulli representation of L, can be applied to give numerous addi-
tional inequalities of the central limit and large deviation type. In particular,
one can apply the results of Bender [2] or Canfield {4]. We are content to stop
with the basic bound of Eq. (6.1) because it is the most likely to be used and
because it completes the program of providing an effortless refinement of the
original central limit theorem of Rényi [20].

7. GENERATING RANDOM SAMPLES
To generate a tree which satisfies the law
Py(L,=k) =e " T(n,k)/Z(B), 2=<k=n-1 a.1

for the number of leaves, we can adapt a general technique of Metropolis et
al., [14] for generating an observation from a Gibbs distribution.

If 8 =0, then the task of generating a tree satisfying Eq. (7.1) is easy; one
can just choose the n — 2 coordinate of the Priifer code by making uniform ran-
dom selections from {1, 2,...,n}. To expand this beyond =0, we let S
denote the set of Priifer codes; and, for s € S, we define f(s) as the number
of leaves of the tree associated with s. In terms of the Priifer code, we can
equivalently express the defining property of f(s) by noting that n — f(s) — 2
is the number of distinct integers in the code s.

We make S into a graph by considering an edge to exist between a pair of
Priifer codes s and s’ if the codes are equal except in one coordinate. The
degree of any vertex of the resulting graph is thus (n — 1)(n — 2) since there
are n — 2 coordinates which can be changed to n — 1 other values.

We now let a(s,s’) = min {1,e P4}, where A = f(s’) — f(s). Further, let
N(s) denote the set of neighbors of s in the graph S, and define a Markov tran-
sition matrix on S by

als,s’)/(n—1){(n—-2) if s € N(s)

ps,s) =14 1= X plss) ifs=s 1.2)
S'EN(s)
Y otherwise

It is easy to verify that the Markov chain on S determined by {p(s,s’)} has

stationary distribution pg(s) = e ) /Z(B); one just checks the reversibility
condition

pe(s)p(s,s’) = pg(s")p(s’,s) .
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The suggestion of Metropolis et al., [14] is that one generates an s € S in
accordance with the probability law pg by proceeding as follows:

Begin with an arbitrary s, and make N random transitions under {p(s,s')}.
If N is sufficiently large, then the ergodic property of Markov chains would
say that the terminal state s is reached with probability which is close to ps(s).

The charm of this method is that one never has to calculate Z(f); and, in
our case, one does not even have to make a random choice from a set larger
than (n — 1)(n — 2). The main theoretical drawback to the method is that it
is hard to be confident of the proper choice of N. A minimal value should at
least be a substantial multiple of the diameter of the graph S. For the current
problem, we suggest an NN at least as large as » log #, but one might more prop-
erly choose N = n%. A better understanding of the principles which might more
authoritatively guide the choice of N can be found in Aldous [1].

A fortunate property of our problem of generating random trees from the
Gibbs distribution is that there is an alternative method which is fast and exact.
A benefit of this method is that it may provide a tool for pursuing a better
empirical understanding of the Metropolis method.

Although pg(s) = e ¥ /Z(B) was developed in the general framework of
Gibbs’ measures, the Gibbs family of trees is really much simpler than the gen-
eral case where Z{3) is typically intractable. The fact that T(n,k) = s(n — 2,
n—k)n!/k! and the classical recursion s(n, k) =ks(n —~ 1, k) +s(n -1, k— 1)
for Stirling numbers of the second kind gives us an easy recursion for T(n, k),
namely,

kT(nky/n=kT(n—-1, k) +(n—-k)T(n—1, k—1) 1.3)

and this relation makes the calculation of Z(3) easy.

To generate a Priifer code satisfying the probability law ug, we first
choose a random element & of {2, 3,...,n — 1} according to discrete distribu-
tion {e~P*T(n,k)/Z(B)};z}. We then choose a random k-subset A4 C {I,
2,...,n} from the uniform distribution on k-sets (see e.g., Nijenhuis and Wilf
[16]). Finally, for each of the n — 2 coordinates of the Priifer code s, we choose
an element at random from the uniform distribution on {2, 3,...,n— 1} — A.

8. OTHER GIBBS MODELS AND CONCLUDING REMARKS

The Gibbs model method of using a potential function to produce an exponen-
tial family of probability measures is a rich and powerful tool. It brings phys-
ical intuition and statistical technique into focus on problems which might
otherwise seen amenable only to methods of enumeration. The Gibbs approach
is one which we can expect to be applied in many combinatorial contexts. It
seems particularly important in the construction of discrete models where an
underlying combinatorial structure requires a probability law which cannot be
easily constructed using independent random variables.
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The most ready targets for the full program which was applied here for
random trees are those combinatorial problems for which it is already known
that an associated generating function has only real roots.

The best known candidate, much better known than Harper’s Stirling num-
bers, is the problem of choosing an element at random from the power set of
a finite set. There, of course, the Gibbs procedure just boils down to the exten-
sion of the binomial distribution with p =} to the case of general p.

Let us consider in more detail the first nontrivial case, the Stirling num-
bers of the second kind. We recall that s(n, k) is the number of ways of par-
titioning an # set into k non-empty subsets. We define a potential function f
on the set S of all partitions of {1, 2,...,n} by letting f(s) be the number of
elements of the partition s. We note that the Gibbs measure pa(s) then yields
a probability law for 7,, the number of classes in a partition s chosen in
accordance with pz. The probability generating function for T, is

6n 5(x) = ExT = 3" e Pk S(n, k)/Z(8)
k=1

where the partition function Z(8) is determined by the relation ¢, 5(1) = 1.
Since Harper [9] showed ¢, ,(x) has only real roots, the whole program which
was applied to L,, the number of leaves of a random tree, can be applied to
T,. As a result, we have an exponential family of combinatorial objects which
have a central limit theory and which are amenable to practical simulation.
The most far-reaching class of combinatorial objects to which the Gibbs
program is immediately applicable is probably that of matching in a graph.
Briefly, a matching of G is a set of edges, no pair of which share a vertex. A
k-matching is a matching with k edges, and the number of k-matchings of G
is denoted by p(G, k) with p(G,0) =1 by convention. The cardinality of the
largest matching in G is denoted by »(G), and the matching polynomial of G is

v(G)
w(G,x) = Y (=1*p(G,k)x"* @.1)
k=0

An amazing number of classical numbers and polynomials are related to
p(G, k) and u(G,x) for special choices of G. For example, there is a G such
that p(G, k) becomes the Stirling number s(n, n — k). The Hermite polynomial
of degree n is the matching polynomial of the complete graph K, and even
the Laguerre and Chebyshev polynomials are matching polynomials (see Godsil
and Gutman [8], Godsil [6], and Godsil [7]).

Heilmann and Lieb [10] established the remarkable result that for any G
the polynomial u(G,x) has only real roots, and hence the matching generat-
ing function of G

»(G)
B(G,x) = kZ_:Op(G, k)x* 8.2
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must also have only real roots. Godsil [6] built on the result of Heilmann and
Lieb and established that if Z, is the cardinality of a matching chosen uni-
formly from the set of all matchings of G,, then Z, is asymptotically normal,
provided only that {G,}2., is a sequence of graphs, each regular with degree
d, and the number of vertices of G, increases with n.

The Gibbs family which was developed here for labeled trees can be devel-
oped just as easily for the number of matchings in a graph. Since this construc-
tion brings tools of statistical mechanics, the exponential family, and the Monte
Carlo method into focus on problems as a priori remote as the coefficient of
the Hermite polynomial and the number of leaves of a random tree, the Gibbs
method would seem to merit much further study in combinatorics.
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Note

1. Here, of course, a tree is a connected graph without cycles and a labeled tree is one with
labeled vertices. Also, to avoid trivial exceptions we will always assume n = 3.
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