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The tour given by the spacefilling curve heuristic applied to a random sample of
points from the unit square differs in subtle ways from the shortest tour through
those points. In particular, the expected length of the heuristic tour is found to be
asymptotic to V7 times a periodic function of log n for a broad class of spacefilling
curves. The theory is developed further by detailing the self-similarity properties
of the spacefilling curve that are useful for obtaining the asymptotics of the ex-
pected length of the heuristic path. Finally, the theory of martingales is applied to
obtain tail bounds that yield rigorous almost sure asymptotics for the length of the
heuristic tours. © 1992 Academic Press, Inc.

1: INTRODUCTION TO THE SPACEFILLING CURVE HEeurisTIC

The basic ingredient of the spacefilling curve heuristic is a surjective
mapping ¥: [0, 1] — [0, 1]% such that for each x € [0, 1] one can quickly
compute a t € [0, 1] such that :(r) = x. The set of such ¥ is large, and any
of these ¢ can be used to build heuristic methods for many problems of
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geometric combinatorial optimization. The main purpose of this article is
to explore how these heuristics behave. For specificity we focus on the
traveling salesman problem (TSP). and mainly we consider geometric
features of the tours that one obtains on applying the heuristic to a ran-
dom samples of points from [0, 1]%. Still, there is a general theme that is
illustrated by these investigations, and it lives in the assertion that many
methods of continuous analysis can be of use in problems of discrete
optimization. This theme goes at least a little way to suggest that the
classical theory of combinatorial computational complexity may not be as
distant from the theory of numerical computational complexity as is com-
monly supposed.

The essential idea of the spacefilling curve heuristic applied to the TSP
is the suggestion that we can find a short tour through a set of n points {x,,
X1, . . ., X, C[0, 12 by visiting the points in the order of their preimages
in [0, 1]. More formally, we have a three-step process where we (1)
compute a set of points {t;, 12, . . ., t,} C [0, 1] such that y(z) = x; for
each 1 =i = n, (2) order the #;so that t) = f»y = * * * = l(»n, and, finally,
(3) define a permutation o: [1, n] — [1, n] by requiring x, = ¥(f»). The
path that visits {x;, x3, . . ., x,fin the order of X1, Xo), - - - s Xow will
be called the spacefilling curve path, and the tour that closes this path by
adding the step from x,, back to x, will be called the spacefilling curve
tour.

For the TSP heuristic built on a spacefilling curve i to be effective, one
wants ¢ to be as smooth as possible. Many of the classical spacefilling
curves are Lipschitz of order one-half, which is to say there exists a
constant ¢, so that for any 0 < s, t = 1 one has [$(s) — WD) = cyls — ¢,
Furthermore, one can easily check that no spacefilling curve can be Lips-
chitz of order greater than one-half. To see this, just note that the union of
the images of [i/k, (i + 1)/k] for 0 = i < k must cover [0, 1P, so at least one
of these images must have diameter at least 27~ 12k~ 12,

Many of the classic spacefilling curves have a further property that
makes them particularly compatible with probabilistic investigations; they
are measure preserving in the sense that for any Borel set A C [0, 1]%,
MWTHA)) = \(A), where A, denotes the Lebesgue measure on Ré. Ina
later section, we will illustrate how this property helps one to translate
many questions about random samples in [0, 1]* to simpler questions
about a random sample in [0, 1]. This stochastic dimension reduction
comes unbidden here, but in other contexts it can make light work of
problems that otherwise would be perplexing.

As noted in the discussion by Adler (1986), the spacefilling curve heu-
ristic for the TSP dates back at least to unpublished work of S. Kakutani
in 1966. Still, the idea has become much better known and better under-
stood since the work of Bartholdi and Platzman (1982, 1988). A particular
distinction of these works is that they show that the required preimage
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calculation can be done effectively and quickly. The works also iilustrate
that problems other than just the TSP can be addressed by use of the
spacefilling curve heuristic, though on this point one should also note the
independent developments of the spacefilling curve heuristic in communi-
cation theory by Bailey (1969}, in matching theory by Imai (1986), and in
real analysis by Kahane (1976) and Milne (1980).

Motivation for the present investigation comes in good part from a
probabilistic result of Platzman and Bartholdi (1989). Suppose X;, 1 =i =
n, are independent random variables that are uniformly distributed in [0,
12, and let L3FC = LSFC(X,, X», . . ., X,) denote the length of a spacefill-
ing heuristic path through {X;, X5, . . ., X,,}. Platzman and Bartholdi
(1989) showed that for a specific ¢, which had been designed to make the

heuristic as effective as possible, there are two constants 87 and 87! such
that

B* = limsup ELSF¢/n  and B~ = lim sup EL3*/Vn,

n—s® n—

where g* — g~ > 0.

Perhaps the most striking aspect of this result is that it offers a sharp
contrast to the behavior of the length LT = LX), X5, . . ., X,) of
the shortest path through the random sample {X;, X5, . . . , X,}, for
which the famous theorem of Beardwood et al. (1959) tells us that there is
a constant 8 > 0 such that for n — % we have

Lo/ — B,

where the convergence takes place in expectation as well as with proba-
bility one.

One goal of this article is to develop the limit result of Platzman and
Bartholdi a bit further with the twin aims of laying out the explicit proper-
ties of ¢ that are needed to provide an asymptotic understanding of the
expectation of L3 and of rendering as precisely as possible the nature of
the oscillatory behavior of L3F¢/Vn. A second goal of this article is to
complement the understanding of EL5F¢ with information on the behavior
of the tail probabilities P(|LSFC — EL3F¢| = 1).

Bartholdi and Platzman (1989) give few details in their discussion of the
almost sure behavior of L3FC, but part of the plan that they sketch offers
to base the almost sure convergence theory of L3¢ on the methods of
subadditive Euclidean functionals given in Steele (1981). Since there are
substantial differences between the geometry of the spacefilling curve
heuristic and that of subadditive Euclidean functionals, this approach
does not seem to be an easy one. In contrast, there are major benefits to
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be found in basing the almost sure analysis of L3’ on martingale differ-
ence methods. By applying martingale methods developed for the analy-
sis of optimal TSP tours, one needs little work to produce strong bounds
on the tail probabilities P(|L3FC — ELSFC| = ¢). In turn, these make quick
and complete work of the almost sure behavior of L3¢ while contributing
additional understanding of the whole process.

2. STRUCTURAL ASSUMPTIONS AND MAIN RESULTS

For all of the results considered here we assume our spacefilling curves
are measure preserving and Lipschitz of order one-half; but, to obtain a
serious asymptotic understanding of EL T one seems to need to bring out
further properties of ¢s. The properties described below are found in many
of the classical spacefilling curves, and they reflect the important fact that
most of the classical spacefilling curves (such as those of Hilbert (1891) or
Peano (1890)) have aspects of self-similarity.

Al. Dilation Property. There is an integer p = 2 such that forall 0 <
s, t=1,

o = vl = Vo () - ().
A2. Translation Property. For 1 <i=<p,if (i — 1)/p = s,t < i/p, then

() = w@f = lfp(s + 1/p) — (¢t + 1/p)|.

A3. Bimeasure Preserving Property. Given any Borel set A in [0, 1],
one has

M(A) = M(P(A)),

where A, is the Lebesgue measure on R4.
The main results of this article are the following two theorems.

THEOREM 1. If a heuristic tour is built using a spacefilling curve s that
satisfies the Dilation Property (A1), the Translation Property (A2), and
the Bimeasure Preserving Property (A3), then there exists a continuous
function ¢ of period of 1 such that

EL SFC
e \/Zqo(logp n)

where p is the integer appearing in assumptions Al and A2.
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THEOREM 2. If a spacefilling curve ¢ has the Bimeasure Preserving
Property (A3), then there are constants A and B such that for all t = 0,

P(ELSFC — ELSFC = 1) = B exp(—Ar*/log 1).

3. Proor oF THEOREM 1

We first record a simple lemma that makes explicit the correspondence
created by i between uniform random variables in [0, 1}? and [0, 1].

LeEMMA 1. Suppose X is a random variable that is uniformly distrib-
uted in [0, 112. Let y* be a function that for every x € [0, 1) selects a
preimage of x, that is, ¥* satisfies y(P*(x)) = x. For t defined by t =
Y*(X), we have that, if the spacefilling curve satisfies the bimeasure
preserving assumption A3, then t is uniformly distributed in {0, 1].

The proof of the lemma can be safely omitted, but one should note that
there are measure preserving mappings ¥ that satisfy Al and A2 while
failing to have A3 and failing to have the correspondence property.

By the lemma, an independent uniform random sample {X;, X5, . . .,
X,} C [0, 117 corresponds under * to a uniform random sample {t;, t,

., 1.} C [0, 1]. Thus, the length L3FC of the path provided by spacefill-
ing heuristic is given by

n—1
m”=gMMWr—mwmm

where t() = fg) = - - * =< {(, are the order statisticsof t;,, &, . . ., #,. On
taking the expectation we find

n—1 "
LY = 3, [] [ 1w — wolics, 0 ds

where fi{(s, t) is the joint density of (¢;, #;+1) given by

n! . :
ﬁ(s’ t) = (i —_ 1)!(” — i — 1)! Sl.—l(l - t)"—l~11[055‘<t$1]'

Here we should remark that this last density formula, as well as those we
use subsequently, can be obtained in many ways, through the most gen-
eral of these seems to be direct integration of the full joint density of (¢t =
toy =+ * * = tp). If we write the basic simplex as S, = {(x;, x2, . . ., Xa):
0<x <--:<ux,< 1}, then the fundamental fact is that (¢g) = 1) =
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- = t,) has the density n! [ (x;, x2, . . ., X, and specialized distribu-
tional information about individual variables (or pairs of variables) thus
can be obtained by direct integration. For illustrations of the use of the
uniform distribution on the simplex to obtain the derivation of expres-
sions like that given for f(s, t), one can consult Devroye (1986).

The following elementary lemma points out a somewhat surprising for-
mula for the sum of the joint densities of successive order statistics. We
will use it to write EL3F in a simpler form.

LEmMMA 2. For0=s <t =<1, we have

n—1
Zﬁ(sp t) = l’l(il - 1)(1 — t + S)n<2-
i=1

Prodf.

n-1 az
z PYEY P(t(,) =5, i) = t)

i

n—1
Z fi(s, t)

H

-1 - n—i—1
asat,ljfo(l_nv(n,l, D1 (1-v) du dv

az n—1

o n' n-i . . n—i
‘—asat;z‘(n— i ST =9) (=0

i

m[l—(l—-s)"-—(l—t+s)”+(1—t)”]

=pnn-—-D1—-t+s5H"2 »

By substituting (1) into the integral representation for EL;" and letting
x =1t — s, we have

ELYC = [ [ 7 s +x) — pnn = D = 02 ds dx.

This is a charming exact formula for the expected length of the heuristic
tour, but there is an approximate formula that is a bit simpler and more
natural for asymptotic analysis.

LEMMA 3.

SFC
EL. - = p3? f j (s + x) — d(s)|e ™™ ds dx + o(l).
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Proof. We have to estimate the absolute value A, of the difference
between the principal terms

% fo' 7 s + 0 = w@llnt = D = 05 ds de
and
2 [ s + 0 — wisle ds d.
From the completely crude bound [(s + x) — W(s)]| = V2, we see
BAn= V[ 0~ D1~ 972 = p¥emmd,

and since (1 — x)""2 — e ={1-x)"—(1=x)"%+{em —(1 - x)"}
easy integrations show A, = O(n~'2), leaving room to spare.

If we define the function k(x) by

koo = [T G + 0~ wilds,

then by the usual considerations of Laplace’s asymptotic method, the
behavior of EL3"/V/n is determined by the behavior of k(x) in the neigh-
borhood of 0, so we may just as well write

SFC
Ef/"'.l_ = p3 j: k(x)e ™ dx + o(1),

where g = 1/p.

We can now generalize an observation from Platzman and Bartholdi
(1989) to show there is a function r(x) that captures the scaling properties
of Yy, and, at the same time, offers an approximation for the function k(x).

LEMMA 4. For q = 1/p, one can define a continuous function r on [0,
®) with the following properties:
(@ rx) = c¢\/;, 0=x< o,
®) k() ~ r(@)| = c,x™, 0<x =g,
(©) r(x) = Vpr(x/p), 0 = x < o,

Proof. For any 0 = x < g, we see from the definition of k(x) that

ko= [ 1) = s + olds. M
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Next, by assumption A2, changing variables, and using assumption Al,
we obtain

> ) = s + ollds = p [ ws) = s + Dlds
=1 JU~Dg 0

oy - o (55

P p

pg—px i

ds

0 i

1 1-px
=2 Ly " ) = ws + polas

=L ko, @)

S

By combining (1) and (2), we find the basic fact

k(x) = L k(px). 3)
14

If we replace x by x/p, in inequality (3), we then have k(x) < \/Ek(x/p) for
0 = x = 1. Thus, if we define a sequence of functions {f,(x)}.=¢ by

ful®) = pnk (;)’i) 0=x=prl,

then these functions are pointwise monotonic on ever increasing inter-
vals:

fo(X) = fori(x) 0=x=prl 4)

By the Lipschitz property of ¢y, we have k(u) = c,u'?for 0 < u < 1, so for
0 = x = p"! we have

fulx) = p(n+1)/2cd‘\ /x/pn-H = C*l'\/;' (5)

The last two inequalities show that for all x = 0 that { f,(x)} is a bounded,
monotone sequence. We will denote the limit by »(x) and show that this
r(x) satisfies the requirements of the lemma. To begin, we see that letting
n — = in (5) already yields requirement (a).

To obtain the other required properties of r(x), we introduce a sequence
of functions g, that we can show will decrease to r(x). We let

go(x) = cyx¥? + k(x),
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and we note by (2) that for 0 = x = g we have

2 ig—x pd iq .
) = {57 1) = s+ s = S [ o) = s + o}

4 Cy x}/‘l

- k0 + 3, [l wts + olds

+ {eyp®? = cy(p — DX

1 w5 { “ 3/7}
= : ,px3? — Yls + — ¢y,
v k(px) + cypx3? + ; L_X [w(s) — w(s + X)lds — cyx
6)
By the Lipschitz property of iy, we have

j,:_x ls(s) — (s + x)llds — cyx** = 0,

so after replacing x by x/p, we have for 0 = x = 1 that go(x) = \/Ego(x/ p).
We rescale g, to define g,(x) = p™2g,(x/p™) and note that our inequality for
go vields the monotonicity relation:

gn(x) = gpei(x), O0=x=prl
The definition of g, tells us
gn(x) = ful) = cyx¥pn,  0=x=prl, (7

s0 g.(x) also converges to r(x) as n — . This implies that for 0 = x =
n~1
2

Fulx) = r(x) = ga(x). (8)
To show the part (b) we just need n = 0 to see that for 0 = x = g
k(x) = fo(x) = r(x) = go(x),
and, consequently,

k(x) — r(0)|=|go®) — fil®)]= cyx 0=x=gq.
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All that is left to finish the proof is to establish (¢), but this is almost
immediate by the definition of r. We have

;s

(9 -t (5

/ i

| X
= lim —= { (n+1i2p ( ‘ )}
e \/E p pnrl

completing the proof of the lemma.

To bring r(x) into action, we note that by the first two parts of the
lemma, we have

ELSFC

= p3? fq r(x)e™™ dx + o(l),
n 0

= 3 f: r(x)e-" dx + o(1). ©)

Still, the power of this representation is evident only when we use the
third part of the lemma to connect r(x) to a periodic function of log, n.

LEMMA 5. There is a continuous function ¢: [0, ©) — [0, ) with
period 1 such that

e(log, n) = n3? f: r(x)e ™ dx.

Proof. We let I(n) denote the right hand side, divide the interval [0, o)
into subintervals [ p¥/n, p**1/n], —« < k < =, and the make the change of
variables x = p**“/n on the subinterval [ p*/n, p¥*1/n] to get

e k+ly
I(n) = n?? 2 f:k/n r(x)e " dx

k=

]

Vn D, fol r(p*4/n) p** exp(—p* %) In p du.

k= —on

By Lemma 4, part (c), we have
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In) = n'2 Z J'Ol r(ptln)p*2 i exp(—p* ) In p du

k=—

I

1 = . ‘
In p fo i‘(p“'logl’”)/\/p“"lOg"” 2 pu/,xkﬂ:) eXp(-—p"‘“’“) du.

k=%

We then define the function ¢ by
¢) =Inp | r(p=o=m)/Vp “hu) du,

where £ is defined by

h(u) = E p¥2ktw exp(—pkti) du.

k= —

We note that both % and ¢ are continuous, and by the integral representa-
tion for I(n) we have

I(n) = ¢(log, n).

Next, to check that ¢ is periodic function with period 1, we just note that
r(x) = Vpr(x/p) tells us

plx + ) =Inp [ r(p=et1=0)/\/p & T Dh(w) du

=lnp f(: Vpr(p=*=9p)/Np~"Oh(u) du
= o(x). (10

Finally, we check that ¢ is bounded from below by a positive constant. To
begin we note that by continuity and periodicity there would otherwise be
an x, such that ¢(xy) = 0. But by the integral definition of ¢ this would
imply that r vanishes on the interval [p~, p~™*!], and this in turn would
imply that r is identically zero by the recursive property of r in Lemma 4.
Hence we conclude that ¢ never vanishes and consequently is bounded
below by a positive constant.

Dividing both sides of (9) by ¢(log, n) and applying Lemma 5, we have
proved that

IZLSFC
lim —————— =
== \/ne(log, n)
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4. Proor oF THEOREM 2

To set up the application of martingale differences, we first let &, be the
o-field generated by {X,, X», . . ., X}. and then define

d; = E(Ly™ %) — E(L T, (D

Once can easily check that {d;, 1 = i = n}, is a2 martingale difference
sequence and that we have the basic representation

LYFC — ELSFC = Z d;.
i=1

This type of representation for the optimal tour length L, was introduced
in Rhee and Talagrand (1987), and its application was subsequently re-
fined in Rhee and Talagrand (1989b). One can consult these articles for
additional information on the role of martingales in problems such as the
TSP; and, for general background on the applications of martingales in
combinatorics, one does very well by consulting Chap. 7 of Alon et al.
(1992).

For the path taken here, we recall two results from Steele (1989). The
first is a rather special L? inequality that requires some machinery from
martingale theory for its proof, but the second is just an exercise in
applying Markov’s inequality.

LEMMA 6. Letd;, 1 =i = n, be a martingale difference sequence. If
there are two constants ¢y and ¢; such that forp > land 1 =i = nwe have

nd,”oc =cin—1i+ 1)_1/2,

and

ldidl, = cp/m)'?,

then there is a constant ¢; such that

» = c3p'2(log p)2.

>, di
=1

LEMMA 7. For any random variable Z, there are constants a and b so
that

P(Z| = t) = aexp(—bt*llogt), =0,
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if and only if, there is a constant ¢ such that for all p = 1 that
12, = cp'(log p)'».

The proof of Theorem 2 thus reduces to showing that the martingale
differences defined in (11) satisfy the conditions of Lemma 6. To reex-
press those conditional expectations in a more convenient form, we intro-
duce independent random variables {X;: 1 = i = n} with the uniform
distribution on [0, 1]* that are also independent of {X;: 1 =i = n}, and we
define L3™()) = LSC (X,, X», . . ., Xy, X, Xieys . . ., X). The
purpose of introducing these variables is that we find the new representa-
tion

d; = E(LyFC — LYFC30)| ).

Now we need to find bounds on d;. In sympathy with our earlier nota-
tion, we put f; = $*(X)), and, for our first crude bound, we use the
definition of the heuristic and the Lipschitz property of ¥ to find

IL3C = L3F()| = 2¢, min |f; — 42 + 2¢, min |1, — 4|2,
i<j=n i<j=n

The reason for the restriction on the j’s is brought out when we take
expectations and use independence to get the bound

ldi| = |E(L3FC — L) F)| = E(LSFC — L3F0)|| %)

= 2C,4,E(min ‘l:l - tj!llz) + ch,E(min It,' - tjll/zl 9:,) (12)

i<j=n i<j=sn
To complete the computation of these expectations, we note the easy
bounds on the tail probabilities
P(min |t; — ;]2 = 1) = P(min |;; — ;] =2 ) = (1 — ),
i<j=n i<j=n
and
P(mm lti - tjll& = tl@i) = (1 - tZ)n*i.
i<j=n
Since there is a constant «; such that for all m,

jo’ (A~ )mdr = -;-nmr(m + DITOm + 3/2) < ay(m + 1)712,
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we see there is a constant o, such that

W= dt = on—i+ D "?

Eminli, - 4 = || P(min |f, - ¢

i<j=n i<<j=n

and

Etmin |t — 4/ %) = astn — i + D12

i<j=n

By applying these two bounds in (12) we see that we have established the
first condition of the lemma.
Now, we show that there is constant ¢, such that

ldill, = ca(p/n)'2.
By the definition of d; and Jensen’s inequality, we have
E|d|? = E|E(LSF¢ — L) %)|? = E|L3FC — LG

Forp = land x = 0, y = 0 we have |x + y|? = 2°(x? + y*), so
E|d,|P < 2Pc, E(min |t; — ]7?%) + 2Pcy E(min |t; — ;]7?).
izj=n i

To bound the last two expectations, we note

- 1 -
Eminlt; — |?? = L g tPRP(min |f; — 1] = 1) dt

i=j=n izj=n
=2 e = ordr = Enenrip)
= c(p/n)?,

and by a completely parallel argument we also find

E (min |5; — 1;|7?) = c(p/n)P?;
Jo=i
so the second inequality in the hypothesis of Lemma 6 is proved. By
applying Lemma 7, we conclude the proof of Theorem 2.
Application to Almost Sure Convergence

By Theorem 1 and Theorem 2 together with the traditional Borel-
Cantelli argument, we find the desired strong law:
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SFC
Ly

lim —=—t—— =
==V ne(log, n)

One should note that Theorem 2 goes much further than is required for
this law; and, in most cases, one does better to use Theorem 2 directly,
rather than to call on this corollary. Still, because of the natural connec-
tion to the Beardwood—Halton—-Hammersley theorem and the results of
Platzman and Bartholdi (1989), the application deserves to be singled out.

5. CONCLUSION

There are two open problems that seem particularly compelling.

1. Is there a spacefilling curve s for which the corresponding periodic
function ¢ is actually a constant? One may have to give up some of the
efficacy of the heuristic tours provided by the ¥, but one would regain the
fundamental behavior of the optimal tours as reflected in the Beardwood—
Halton—-Hammersley theorem. We know from direct computations done
in Platzman and Bartholdi (1989) that there are ¢ for which ¢ is noncons-
tant, but it would be surprising if there were no s for which ¢ is constant.
After all, as the works of Salem and Zygmund (1945) and many others
show, there are methods for constructing bimeasure preserving, Lipschitz
one-half, spacefilling curves that apparently have little to do with the self-
similarity properties Al and A2.

2. Can the tail bound of Theorem 2 be improved to provide a bound of
the Gaussian form, where no log ¢ factor is required? That is, can one
show that for any Lipschitz one-half, bimeasure preserving, spacefilling
curve that one has constants A and B such that for all r = 0 one has

P(LSFC — ELSF = 1) = B exp(—At?).

We know from the developments of Rhee and Talagrand (1987, 1989a, and
particularly 1989b) that the corresponding Gaussian tail bound does hold
for the length of the shortest path. Such an inequality for the spacefilling
heuristic paths would seem to be easier than that for the optimal paths,
but the problem still does not seem to be easy. Apparently, one cannot
easily adapt the method of Rhee and Talagrand (1989b) to obtain a Gaus-
sian tail bound for the length of the spacefilling curve heuristic paths.
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