
GIRSANOV’S THEOREM : A CLASS NOTE
EXPLOITING REAL ANALYTIC CONTINUATION

J. MICHAEL STEELE

Abstract. This classroom note (not for publication) proves Girsanov’s The-
orem by a special kind of real-variable analytic continuation argument. While
this interesting plan (due to R.S. Liptser and A.N. Shiryayev) is no longer
the most efficient path Girsanov’s theorem, it is still instructive. Moreover,
the argument is likely to find many other applications. The Liptser-Shiryayev
argument was used in the first edition of Stochastic Calculus and Financial
Applications, but in the second edition edition, it was replaced by a quite
different argument of N. V. Krylov (2002).

1. Exponential Martingales and Novikov’s Condition

One of the key issues in the use of Girsanov theory is the articulation of cir-
cumstances under which an exponential local martingale is an honest martingale.
Sometimes, we can be content with a simple sufficient condition such as bounded-
ness, but at other times we need serious help. There are now several useful criteria,
but the most well-known is surely the 1972 criterion of A.A. Novikov.

Theorem 1 (The Novikov Sufficient Condition).
For every µ ∈ L2

LOC[0, T ], the process defined by

(1) Mt(µ) = exp
(∫ t

0

µ(ω, s) dBs − 1
2

∫ t

0

µ2(ω, s) ds

)

is a martingale, provided that µ satisfies the Novikov condition

(2) E

[
exp

(
1
2

∫ T

0

µ2(ω, s) ds

)]
< ∞.

2. Understanding the Condition

One of Pólya’s bits of advice in How to Solve It is to “understand the condition.”
Like many of the other pieces of Pólya’s problem-solving advice, this seems like such
basic common sense that we may not take the suggestion as seriously as perhaps
we should. Here the suggestion is particularly wise.

When we look at the condition (2) and angle for a deeper understanding, one
of the observations that may occur to us is that if µ satisfies the condition then so
does λµ for any |λ| ≤ 1. At first, there may not seem like there is much force to
this added flexibility, but it offers the seed of a good plan.
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3. A Plan Suggested by Power Series

From Itô’s formula we find that Mt(µ) is an local martingale. Since it is non-
negative, it Fatou’s lemma then implies that Mt(µ) is a supermartingale. We also
know that a supermartigale will be an honest martingale on [0, T ] if we can show
E[MT (µ)] = EM0(µ). This modest observation suggests a marvelous plan.

If we introduce the function H(λ) = E[MT (λµ)], where λ is a real parameter,
then the proof is complete if we show H(1) = 1, but, if the theorem is true (as we
strongly suspect!), we should actually have H(λ) = 1 for all |λ| ≤ 1. It is trivial
that H(0) = 1, and from the definition of Mt we might suspect that we would have
an easier time proving H(λ) = 1 for λ ∈ (−1, 0] than for positive λ > 0. At this
point, some experience with power series suggests that if we can prove H(λ) = 1 for
all λ in an interval such as (−1, 0], then we should have great prospects of proving
that H(λ) = 1 for all λ ≤ 1. Even without such experience, the plan should be
at least modestly plausible, and, in any event, we will need to make some small
modifications along the way.

4. First a Localization

As usual when working with local processes, we do well to slip in a localization
that makes our life as easy as possible. Here, we want to study Mt(λµ) for negative
λ, so we want to make sure that the exponent in M(µ) is not too small. For this
purpose, we will use the related process

Yt =
∫ t

0

µ(ω, s) dBs −
∫ t

0

µ2(ω, s) ds

and introduce the stopping time

τa = inf{ t : Yt = −a or t ≥ T }.
The next proposition gives us some concrete evidence that our plan is on track.

Proposition 1. For all λ ≤ 0, we have the identity

(3) E[Mτa(λµ)] = 1.

Proof. As we have seen several times before, Itô’s formula tells us that the process
dMt(λµ) satisfies dMt(λµ) = λµ(ω, s)Mt(λµ) dBt and as a consequence we have
the integral representation

(4) Mτa(λµ) = 1 +
∫ τa

0

λµ(ω, s)Mτa(λµ) dBs.

Now, to prove (3), we only need to show that the integrand in equation (4) is in
H2, or, in other words, we must show

(5) E

[∫ τa

0

µ2(ω, s)M2
τa

(λµ) ds

]
< ∞.

Here we first note that for s ≤ τa we have

Ms(λµ) = exp
(

λ

∫ s

0

µ(ω, s) dBs − λ2

2

∫ s

0

µ2(ω, s) ds

)
(6)

= exp(λYs) exp
(

(λ− λ2/2)
∫ s

0

µ2(ω, s) ds

)

≤ exp(a|λ|),
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where in the last step we use the definition of τa and the fact that λ − λ2/2 ≤ 0
for λ ≤ 0. Next, we note that the simple bound x2 ≤ 2 exp(x2/2) and Novikov’s
condition combine to tell us that

(7) E

(∫ T

0

µ2(ω, s) ds

)
≤ 2E

[
exp

(
1
2

∫ T

0

µ2(ω, s) ds

)]
< ∞.

Finally, in view of the bounds (6) and (7), we see that equation (5) holds, so the
proof of the proposition is complete. ¤

5. Power Series and Positive Coefficients

At this point, one might be tempted to expand E(Mτa
(λµ)) as a power series

in λ in order to exploit the identity (3), but this frontal assault runs into technical
problems. Fortunately, these problems can be avoided if we can manage to work
with power series with nonnegative coefficients. The next lemma reminds us how
pleasantly such series behave. To help anticipate how the lemma will be applied,
we should note that the inequality (8) points toward the supermartingale property
of Mτa(λµ) whereas the equality (9) connects with the identity that we just proved
in Proposition 1.

Lemma 1. If {ck(ω)} is a sequence of nonnegative random variables and {ak} is
a sequence of reals such that the two power series

f(x, ω) =
∞∑

k=0

ck(ω) xk and g(x) =
∞∑

k=0

akxk

satisfy

(8) E[f(x, ω)] ≤ g(x) < ∞ for x ∈ (−1, 1]

and

(9) E[f(x, ω)] = g(x) for x ∈ (−1, 0],

then

(10) E[f(1, ω)] = g(1).

Proof. Since ck(ω) ≥ 0, we can apply Fubini’s theorem and the bound (8) to get

(11) E[f(x, ω)] =
∞∑

k=0

E(ck)xk ≤ g(x) < ∞ for x ∈ (−1, 1],

so by the bound (8) we have

(12)
∞∑

k=0

E(ck)xk =
∞∑

k=0

akxk for all x ∈ (−1, 0].

By the uniqueness of power series, the last identity tells us E(ck) = ak for all k ≥ 0,
so we also have the identity (12) for all x ∈ (−1, 1). By the monotonicity of f(x, ω)
on [0, 1), we can take the limit x ↑ 1 in the identity g(x) = E(f(x, ω)) on [0, 1) to
conclude that g(1) = E(f(1, ω)). ¤
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6. Extending the Identity

By Proposition 1, we know that E[Mτa
(λµ)] = 1 for all λ ≤ 0, and we simply

need to extend this identity to λ ≤ 1. When we write Mt(λµ) in terms of Yt, we
find

Mt(λµ) = exp
(

λYt + (λ− λ2/2)
∫ t

0

µ2(ω, s) ds

)
,

and the relationship of Yt to the level a can be made more explicit if we consider

(13) eλaMt(λµ) = exp
(

λ(Yt + a) + (λ− λ2/2)
∫ t

0

µ2(ω, s) ds

)
.

Now, if we reparameterize the preceding expression just a bit, we will be able to
obtain a power series representation for eλaMτa

(λµ) with nonnegative coefficients.
Specifically, we first choose z so that λ − λ2/2 = z/2, and we then solve the

quadratic equation to find two candidates for λ. Only the root λ = 1−√1− z will
satisfy λ ≤ 1 when |z| ≤ 1, so we will use the substitutions

λ− λ2/2 = z/2 and λ = 1−√1− z

to replace the λ’s by the z in the identity (13).
In these new variables, the power series for eλaMτa(λµ) is given by

f(ω, z) = exp
(

(1−√1− z)(Yτa + a) +
z

2

∫ τa

0

µ2(ω, s) ds

)
(14)

=
∞∑

k=0

ck(ω)zk,

and, because the power series for ez and 1−√1− z have only positive coefficients,
we see that ck(ω) ≥ 0 for all k ≥ 0.

Now, because e(1−√1−z)aMt((1−
√

1− z)µ) is a supermartingale for any z ≤ 1,
we can also take the expectation in equation (14) to find

(15) E[f(ω, z)] ≤ exp(a(1−√1− z) def= g(z) def=
∞∑

k=0

akzk.

The identity of Proposition 1 tells us that for all z ∈ (−1, 0] we have

(16) E[f(ω, z)] = exp(a(1−√1− z) def= g(z),

so all of the conditions of Lemma 1 are in place, and we can apply the lemma to
conclude that

E[f(ω, 1)] = ea,

so when we unwrap the definition of f , we find

E[Mτa(µ)] = 1.

All that remains to complete the proof of Theorem 1 is to show that τa can be
replaced by T in the previous identity.
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7. Final Step: Delocalization

The natural plan is to let a → ∞ in E[Mτa
(µ)] = 1 so that we may conclude

E[MT (µ)] = 1. This plan is easily followed. The first step is to note that the
identity E[Mτa

(µ)] = 1 gives us

1 = E[Mτa(µ)I(τa < T )] + E[Mτa(µ)I(τa = T )]

= E[Mτa
(µ)I(τa < T )] + E[MT (µ)I(τa = T )],

and trivially we have

E[MT (µ)] = E[MT (µ)I(τa = T )] + E[MT (µ)I(τa < T )],

so we have

(17) E[MT (µ)] = 1− E[Mτa
(µ)I(τa < T )] + E[MT (µ)I(τa < T )].

Now, Yτa
= −a and

Mτa
(µ)I(τa < T ) = I(τa < T ) exp

(
Yτa

+
1
2

∫ τa

0

µ2(ω, s) ds

)

≤ e−a exp

(
1
2

∫ T

0

µ2(ω, s) ds

)
,

and the Novikov condition tells us the exponential has a finite expectation so as
a →∞ we find

(18) E[Mτa(µ)I(τa < T )] ≤ e−aE

[
exp

(
1
2

∫ T

0

µ2(ω, s) ds

)]
→ 0.

The continuity of Yt implies that I(τa < T ) → 0 for all ω, and the super-
martingale property gave us E[MT (µ)] ≤ 1, so now by the dominated convergence
theorem, we find

(19) E[MT (µ)I(τa < T )] → 0 as a →∞.

Finally, if we apply the limit results (18) and (19) in the identity (17), then we see
at last that E[MT (µ)] = 1 and we have confirmed that {Mt : 0 ≤ t ≤ T} is an
honest martingale.

8. Looking Back: The Nature of the Pattern

In our development of the martingale representation theorem we found an anal-
ogy between mathematical induction and the way we worked our way along a
sequence of special case to the general theorem. The proof of Novikov’s theorem
followed a different pattern, but it also provides an analogy with induction.

We began with the trivial observation that H(0) = 1 which is analogous to
the proposition P (1) in mathematical induction. This observation motivated us
to study the more general case H(λ) = 1 for λ ≤ 0, and this is at least partially
analogous to showing P (n) ⇒ P (n + 1). Finally, function theoretic facts were used
to show that H(λ) = 1 for λ ≤ 1. For this step the parallel is quite loose, but
metaphorically at least one can view it as analogous to invoking the principle of
mathematical induction.
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