PROCEEDINGS OF THE
AMERICAN MATHEMATICAL SOCIETY
Volume 71, Number 2, September 1978

GROWTH RATES FOR MONOTONE SUBSEQUENCES!
A. DEL JUNCO AND J. MICHAEL STEELE

ABSTRACT. The growth rate of the largest monotone subsequence of a
uniformly distributed sequence is obtained. For a, = na mod 1 with «

algebraic irrational the exponent of growth is found to be precisely the same
as for a random sequence.

L. Introduction. A well-known result of Erdds and Szekeres [1j states that
any sequence of n real numbers contains a monotone subsequence with at
least n'/? elements. More recently, Hammersley [2] proved that if L, =
L{ay ay ..., a,) is the order of the largest increasing subsequence of

a4y, - . ., 4a,, and the g; are chosen independently with the uniform distri-
bution on [0, 1], then

lim n~V3 = C, €))
H—>cQ

where C denotes a constant and the convergence is in probability. This result
was strengthened by Kesten [4] to provide almost sure convergence, and
Logan and Shepp [6] proved that C > 2. Our objective here is to provide
results like (1) for sequences which are uniformly distributed in [0, 1], but
which are not random. Of particular interest to us is the sequence a, =
na mod 1 where « is an algebraic irrational.

2. Uniformly distributed sequences. We will denote by 11, 5(x) the indicator
function of the interval [a, b) and will say a sequence (a,) is uniformly
distributed in [0, 1] provided for all0 < a < b < 1,

n
,,11,120”_1 ;1 lp(a)=5b—a

The best one can say about the growth rate of /, for a general uniformly
distributed sequence is the following:

THEOREM 1. If (a,) is uniformly distributed, then

lim 1=, =0, @)

PROOF. Let 4 and n be positive integers and for 0 < i < 4 — 1 and
e A
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18¢ A. DEL JUNCO AND J. M. STEELE
0<j<4—-1let
Sy={kil<k<nid™' <a <(i+ 14",
JrAT T <k <(j+ i)nA“l}.

By |S;| we denote the cardinality of S, and we set g(n) = max, 8l I n

i

tends to infinity along the subsequence n = y4, y = 1, 2,..., then g(n)/n
is easily seen to converge to 4 ~2 by the uniform distribution of {a,).

Next let S= {ij <i,<--- < i} be any subsequence of 1,2,...,n
such thatg, < ¢ < --- < a;. We note that S intersects at most 24 — 1 of
the S;- (One can identify ay, ay, . . ., a, with its graph in {1,2,...,n} X

[0, 1] and view the S, as “boxes.”) This gpﬁervation yields the inequality
|S| < 24g(n), and since /, < |S| we have lim,_,/,/n < 2/A provided the
limit is taken along the subsequence n = k4.

For kA < n < (k + 1)A4 we note that

l(ayay, ..., a) < l(apay..., @) + Haggsr, - - ., an)
<layay...,au) + A.
This proves
L — (hat+4) o
dm o < lim —e— <%

which completes the proof of (1), since 4 was an arbitrary positive integer.

3. Results concerning (na). To show that [, = o(n) is best possible we do
not have to go out of the class of sequences @, = na mod 1.

THEOREM 2. Let C, be a sequence of real numbers such that C,—0 as
n — co; then there is a transcendental o such that for a, = na mod 1 we have

n~U, > C, for infinitely many n. 3)

Proor. The proof depends on an elementary lower estimate for /, in terms
of the denominators g, of the convergents p,/q, of a. First we assume
n =g, and that {g.a} >0, where {x} = x — [x + 3]. For j = Sg, the

sequence ja with S =1,2,...,[gr+1/q] can be viewed as making small
positive steps, so we have the lower bound
[, > min(1/ {g.a}, 4., ,/4,)- “

By the standard theory of continued fractions (e.g., [3, p. 9]) we have
[{egi+1}] < 1/gis1, s0 (4) implies [, > g,/ ;. Since C, — 0 we can choose
g Which go to infinity as rapidly as we like such that 1/g, > C, fort = g, ,.
In particular, we may require g, to grow rapidly enough to insure that « is
transcendental. Finally, we note that if the condition {g,a} > 0 is not met by
infinitely many k, we need only replace a by 1 — «. This will then complete
the proof.

There is a more precise result which can be proved if a is algebraic. To
state it succinctly, we let /; denote the order of the largest monotone
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(increasing or decreasing) subsequence of a;, a,, . . ., G,

THEOREM 3. If a, = na mod | where o is an algebraic irrational, then
lim (log )/ (log n) = 1/2. %

ProOF. We must obtain quantitative versions of the estimates used in
Theorem 1. To begin, for0 < i< n—1land 0 < j < p — lwelet

Sy={ai/n<a <(i+ V/njn+1<k<(+ n}
and observe that

1< J 6
max 1S, o<rjn<a§-1{l + 2nD; }, ©)
where
(U+Dn
D/i= sup [n7' D lpgoia) — x|
O0<x<1 k=jn+l
Also, if S = {g,q,...,q)} is any monotone subsequence of
{ai, a3, . .., az), we know S intersects at most 2n — 1 of the S;. Thus, we
have
n<l>< 2nmaxl.§'ijl, @)
iyj

where the first inequality follows from the Erdds-Szekeres theorem
mentioned in the introduction.

Since the sets {(jn + Da, (jn + a, ..., (G + Dna},j=0,1,...,n—1,
are translates of {«, 2a, .. ., na}, we have

.= 1y,

o JE PE= 0(0r) ®
By the Thue-Siegel-Roth theorem [5, pp. 122-124] we know that D, = D] =
O(n~'*%) for all ¢ > 0. This fact, with (7) and (8), yields

Jlim (log I;2)/ (log n) = 1. ®

For the final step choose 7 so that n? < j < (n + 1)? and note I: < <y

+ 2n. By the bounds onj and the limit in (9), one completes the proof with a
brief computation.

There are two corollaries of the proof of Theorem 3.

COROLLARY. 1. If a is an irrational for which D, = O (n~'**) for all ¢ > 0,
then (5) holds. In particular, this is the case if « is of finite type 1.

COROLLARY 2. For all a except a set of measure 0, one has (5).

The proof of Corollary 2 depends only on the fact that D, = O (n~'**) for
all ¢ > 0 and almost every a. (For more precise results on D, see Niederreiter
[7D-
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