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1 INTRODUCTION

One of the mysteries surrounding the TSP is the remarkably effective
performance of simple heuristic solution methods. The properties of such
heuristic methods are usually established empirically, simply by trying the
methods and observing the quality of the results. The present chapter
explores a complementary theoretical approach, in which it is assumed that
problem instances are drawn from certain simple probability distributions,
and it is then proven mathematically that particular solution methods are
highly likely to yield near-optimal solutions when the number of cities is
large. This analysis also reveals that the cost of an optimal solution to a
random TSP is sharply predictable from the parameters of the underlying
probabilistic model.

Two principal probabilistic models are discussed: a Euclidean model, in
which the cities are points in d-dimensional Euclidean space and their
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182 6 Probabilistic analysis of heuristics

locations are drawn independently from the uniform distribution over the
d-dimensional unit cube, and an asymmetric model, in which the elements of
the distance matrix (c;) are drawn independently from the uniform distribu-
tion over [0, 1] and neither symmetry nor the triangle inequality is assumed.
Section 2, which treats the Euclidean model, and Section 3, which treats the
asymmetric model, can be read independently. The reader should also refer
to Chapter 11, where a random graph model is considered, in which the
input is a random graph and the object is to determine whether a Hamilto-
nian cycle exists.

Within each of our two models certain predictions will hold true with very
high probability when the number of cities is very large. In the d-
dimensional Euclidean case it is predictable that the cost of an optimal
solution will be close to a certain constant times n‘“~"4 where n is the
number of cities, and that simple, efficient algorithms based on a ‘divide-
and-conquer’ principle will yield near-optimal solutions. In the asymmetric
case it is predictable that a near-optimal solution to the TSP can be obtained
by patching together the cycles of an optimal solution to the assignment
problem.

The study of random Euclidean TSPs was initiated in the pioneering
paper by Beardwood, Halton & Hammersley [1959], where the following is
proved:

Let {X;}, 1<i <o, be independent random variables uniformly distributed
over the d-dimensional unit cube, and let L,, denote the Euclidean length of
a shortest closed path which connects all the elements of {X;, X,,..., X }.
Then there is a constant ¢; such that, with probability 1,
lim,, ., L,n @ "4=c, We will give a new and brief proof of this classic
result in Section 2.

The study of cellular dissection algorithms for the approximate solution of
random TSPs in the plane was initiated by Karp [1976, 1977]. The locations
of the n cities are assumed to be drawn independently from the uniform
distribution over the unit square. The algorithms dissect the unit square into
rectangular cells, each containing a small number of cities, construct an
optimal tour through the set of cities in each cell, and then patch these
subtours together into a tour through all the cities. Karp proposed a fixed
dissection method in which all the cells are congruent squares, and an
adaptive dissection method in which the locations of the cities determine the
dissection. Refinements of the analysis of the fixed dissection method are due
to Weide [1978] and Steele [1981]. The method is extended to higher dimen-
sions by Halton & Terada [1982].

Section 2 presents the principal dissection methods, discusses their execu-
tion times and derives theoretical bounds on the quality of the solutions they
produce. In each of the methods there occurs a parameter s(n) giving the
number of cells into which the unit d-dimensional cube is dissected. A
typical, but simple, consequence of the results proved there is the following:

Assume that s(n)=o(n), so that the average number of cities per cell
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grows without bound as n — . Let LE(X, X5, ..., X,) be the length of the
tour produced by the fixed dissection method; then, with probability 1,
lim, . LEn~@V4=¢, where ¢, is the same constant that appears in the
statement of the Beardwood-Halton-Hammersley theorem. Thus we see
that the length of the tour produced by the fixed dissection method has the
same asymptotic behavior as the length of the optimal tour.

Section 3 is concerned with probabilistic properties of the asymmetric
TSP. It is assumed that the distances ¢; are drawn independently from the
uniform distribution over [0, 1]. Then the minimum cost of a tour is given by
min_{}; ¢;»)}>, Where 7 ranges over the cyclic permutations of {1,2,..., n}.
A closely related problem which can be solved in time O(n®) is the
assignment problem: min,{}; ¢;o;)}, where o ranges over the permutations of
{1,2, ..., n}. An approximation algorithm for the TSP is presented which
first solves the assignment problem to obtain a permutation o, and then
constructs a tour by patching together the cycles of o. Let T™* be the cost of
an optimal tour, and let T be the cost of the tour produced by the
approximation algorithm. It is proven that E[(T— T*)/T*]= O(n~"?). Thus
the approximation algorithm tends to give a near-optimal tour when n is
very large.

2 PROBABILISTIC ANALYSIS OF THE EUCLIDEAN TSP

The Euclidean TSP is the problem of finding a closed path (tour) of
minimum length through a given set of points in d-dimensional Euclidean
space. We conduct a probabilistic analysis of this problem on the assumption
that the points are drawn independently from the uniform distribution over
the d-dimensional unit cube. The probabilistic analysis will be concerned
both with the length of the optimal tour and with the lengths of the tours
produced by certain dissection algorithms. Each of these algorithms dissects
the unit cube into regions, constructs an optimal tour through the points in
each region, and then patches these tours together to obtain a single tour
through all the given points.

2.1 Some elementary facts about the TSP

It is clear that the shortest closed path through n given points is always a
simple polygon (unless all the points are collinear) but it will be convenient
in describing certain approximation algorithms to allow closed paths which
make repeated visits to some of the given points. Such a closed path can
easily be converted to a simple polygon of smaller length.

The following lemma, illustrated in Figure 6.1, will often be useful.

Lemma 1 Let V be a set of points and E a multiset (i.e., a set which may
contain repeated elements) of line segments joining pairs of points in V.
Suppose that any two points in 'V can be joined by a path consisting of line
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Figure 6.1 A multiset of line seg-
ments which determines a closed walk

segments from E. Then the following are equivalent:
(i) Every point in V is the endpoint of an even number of line segments in E.
(ii) E can be decomposed into a union of edge-disjoint cycles.
(ili) The line segments in E determine a closed walk through all the points in
V.

The following bound will be used repeatedly.

Lemma 2 Let I, be a set of n points in the d-dimensional unit cube, d=2.
Then there is a closed walk through I, of length <dn‘@ Y4+ §nd=2/@d=D,
where 8, depends only on d.

Proof The proof is by induction on d, with d =2 as the basis.

Basis. Let A=1/[n"?]. Let the unit square be dissected into horizontal
Strips S4, Sy, ..., Sty of width A. Adjoin to I, new points at the right-
hand ends of the boundaries between S; and S,, S; and S,, ..., and at the
left-hand ends of the boundaries between S, and S5, S, and Ss, . . ., and call
the resulting set of points I;. Construct a closed walk which visits the points
in S;N I, in left-to-right order, then visits the points in S, NI} in right-to-
left order, etc., finally returning to the initial point from the last point of the
final strip. The length of this tour is

<[n'?+An+[n"?)+v2
<2V/n+2+v2.

Induction step. Assuming the result for d, we prove it for d+1. Let
A=1/[n"“*D], Let the unit cube in R*** be dissected into parallelopipeds
Si, S2, ..., Stpany by hyperplanes parallel to one of the coordinate axes
and a distance A apart. Adjoin to I, an arbitrary new point on each of thesc
hyperplanes, and call the resulting set of points I,. Let n;=|S;NI)|. For
each i, construct a closed walk through the points in S; NI, as follows:

(i) Project each of the points in S; NI, onto the hyperplane which forms
the base of S..
(i) Find a closed walk of length<dn{4~ "4+ §,n4~2/@=D through the sct of
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projected points (this entails iterative use of the construction being
described here).

(iii) Visit the points of S;NI, in the same order as the corresponding
projected points are visited.

By Lemma 1, the union of the set of closed walks constructed in this way
determines a closed walk through all the points in I}, and hence through ail
the points in the subset I,.

The length of this walk is

[nlE@rn]
=< Z (dn{ Va4 § @ 2/ DY 4 (n+ [nV D)) AL
i=1
A concavity argument shows that this bound is maximized subject to
Y n,<n+1/A when each n; is equal to n A+1, in which case the bound
becomes '

% (d(n A+ 1)@ M4 5, (n A+ 1)@ 2IED) 4 (4 [pU4D]) A

=(d+1)n¥@ V4 O(n414)
This completes the induction step. [

Lemma 2 is sufficient for our purposes, but stronger results are possible.
Few [1955] has shown that there is a closed walk of length=<2'?*n?+1.75
through any set of n points in the unit square. For higher dimensions, tight
upper bounds on the length of the shortest closed walk through n points in
the unit hypercube are given by Moran [1982].

2.2 The fixed dissection algorithm

Any method for the exact solution of the TSP can be used in conjunction
with various divide-and-conquer strategies to produce interesting approxi-
mation algorithms for the Euclidean TSP. An example is the following fixed
dissection algorithm [Karp, 1977; Halton & Terada, 1982]. Let the dimen-
sion d be fixed. Let m(n) be an integer-valued nondecreasing function such
that m(n)® is o(n). Let s(n) denote m(n)<.

Fixed dissection algorithm

Input: A set I, consisting of n points in the unit d-dimensional cube Q.
Partition Q into s(n) congruent subcubes Q,. Construct an optimal tour
through each nonempty set I, N Q,. Select an arbitrary element X; from each
nonempty set I, N Q,;, and obtain a tour through {X;} using the construction
i the proof of Lemma 2.

I'he tours within the subcubes, together with the tour through {X},
determine a closed walk through I,
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2.3 Two asymptotic probabilistic results

The Euclidean TSP will be analyzed on the assumption that the cities are
drawn independently from the uniform distribution over the d-dimensional
unit cube. Let X, 1=<i< o, be independent identically distributed (i.i.d.)
random variables with the uniform distribution on [0,1]¢ Let I, =
{X1, X5, ..., X,,}. For any finite set S <[0, 1]%, let L(S) denote the length of
an optimal tour through S, and let LF(S) denote the length of the tour
produced by the fixed dissection algorithm.

Theorem 1 [Beardwood, Halton & Hammersley, 1959] With probability

1
’ lim L(I)n @ Y=,

n—o0

(Here, cg is a constant depending on the dimension d.)
Theorem 1 will be referred to as the BHH theorem.
Theorem 2 With probability 1,

lim LF(I)n @ Vd=c,

n—>0

Roughly stated, these theorems assert that the length of an optimal tour
through n random points is sharply predictable when n is large, and that the
fixed dissection method tends to give near-optimal solutions when n is large.

2.4 Probabilistic background

In this subsection we collect the principal definitions and tools from proba-
bility theory that will be used in our analysis of the Euclidean TSP. We do
expect that the reader be familiar with some basic facts from elementary
probability theory, such as E[Y X;]1=Y E[X;] and var{cX]=c?*var[X]. A
detailed introduction to probability theory is given by Feller [1968].

Markov’s inequality

Let X be a nonnegative random variable with mean w. Then, for a=1,
Pi[X>aun]<1/a.

Chebyshev’s inequality

Let X be a random variable with mean p and variance o2 Then
Pri{|X - p|=ac]=<1/a>

Efron-Stein inequality [Efron & Stein, 1981]

Let X,, X,,..., X, beii.d. random variables. Let S =S(y1, V2, ..., Yn_1)
be any symmetric function of n—1 random variables. Let S;=
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SXy, X5, ..., Xiz1, Xis1,- - - » X)), and let Y be any random variable. Then

varlS(6,, X, X, 1< & (- 7).
i=1
McDiarmid’s inequality

Let X, X5, ..., X, be nonnegative integer random variables which sum to
n and have the multinomial joint distribution; i.e.,

n

nl's”
PriX,=n,X,=n,,...,X.=n]= .
In,!
Let fi,...,f; be nonnegative nondecreasing functions. Then

var[¥3y fi(X)]< T, varl fi(X0)].

Poisson process

The Poisson process on R? with unit intensity formalizes the idea of
scattering points at random in R? so that the average number of points per
unit volume is 1. The process is defined as a random function Il which
associates with every measurable set A <R? a random set of points in A
such that:

(i) AcB=>T11(A)cII(B);
(ii) the integer |II(A)| is a Poisson random variable with parameter A =
w(A), where w is Lebesgue measure;
(iii) II(A) and II(B) are independent if w(A NB)=0;
(iv) conditioned on the event |II(A)|=k, the k elements of II(A) are
independently and uniformly distributed in A.

A Tauberian theorem [Schmidt, 1925; Bingham, 1981].

If f(k) is monotone increasing, and if, as A —> o, Y7 _, f(k)e A k!~ e\,
«a >0, then as n — o, f(n)~ cn®.

Stochastic convergence

Let {Y,}, 1=<n< o, be a sequence of random variables and let Y be a
random variable. We say Y,, — Y in probability if, for every £ >0, we have

lim Prf|Y, - Y|>¢]=0.
A stronger notion than convergence in probability is that of almost sure

convergence (also called convergence with probability 1). We say Y, — Y
almost surely (a.s.) provided

Pr[lim sup Y, =Y =lim inf Yn] =1.

n—soc n-—>o0
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SX, X5, ..., X 1, Xioy, ..., X,), and let Y be any random variable. Then

i1 i

Var[S(Xh X2> L] anl)]SE[ Z (Sz - Y)2:| .
i=1
McDiarmid’s inequality

Let X, X,, ..., X, be nonnegative integer random variables which sum to
n and have the multinomial joint distribution; i.e.,

n

nls-
Pr{X,=n, X,=n,,.... X, =n/]= .
1In,!
Let f,,...,f, be nonnegative nondecreasing functions. Then

var[$3_ fi(X)] =5, varl f,(X)].

Poisson process

The Poisson process on RY with unit intensity formalizes the idea of
scattering points at random in R so that the average number of points per
unit volume is 1. The process is defined as a random function Il which
associates with every measurable set A <R? a random set of points in A
such that:

(i) AcB=>11(A)<II(B);
(i) the integer |I1(A)| is a Poisson random variable with parameter A =
w(A), where p is Lebesgue measure;
(iii) T1I(A) and II(B) are independent if w(A NB)=0;
(iv) conditioned on the event [[1(A)|=k, the k elements of II(A) are
independently and uniformly distributed in A.

A Tauberian theorem [Schmidt, 1925; Bingham, 1981].

If f(k) is monotone increasing, and if, as A — %, Y7, f(k)e Akt~ ch®,
a >0, then as n — o, f(n)~ cn®.

Stochastic convergence

Let {Y,}, 1=n <o, be a sequence of random variables and let Y be a
random variable. We say Y, — Y in probability if, for every € >0, we have

n

lim Pr{]Y, - Y|>e]=0.
A stronger notion than convergence in probability is that of almost sure
convergence (also called convergence with probability 1). We say Y, — Y
almost surely (a.s.) provided

Pr[lim sup Y, = Y =Ilim inf Yn] =1.

n—soc n—>c
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To reinforce understanding of the notion of almost sure convergence, the
reader might focus on the fact that lim sup,,_,.. Y,,, liminf,_,. Y, and Y are
all random variables. To say Y, — Y almost surely just means that with
probability 1, all three of these random variables are equal.

The difference between convergence in probability and convergence al-
most surely is an important one both in theory and in practice. Particularly
in the area of probabilistic analysis of algorithms it is valuable to preserve
the distinction. An exercise is given later to show that convergence a.s.
implies convergence in probability, but not the converse.

A key tool in the proof of almost sure convergence is the following.

Borel-Cantelli lemma

If, for every € >0, Yr_ Pr[|Y,,— Y|>e]<o, then Y,, — Y almost surely.

Complete convergence

The Borel-Cantelli lemma gives a sufficient condition for the almost sure
convergence of Y, to Y, but the condition is not necessary. When the
condition -

Y Pr|Y,- Y|>e]<w,Ve>0,

n=1

holds we say Y, converges completely to Y.

In the section which follows we give a simple proof of the BHH theorem
which rests on a subadditivity argument and the Efron-Stein inequality.
These same tools were pushed a bit harder by Steele [1981] to prove
complete convergence in place of almost sure convergence.

2.5 A simple proof of the BHH theorem

The notions of the preceding section will now be applied to give a simple
proof of the BHH theorem.

Theorem 3 Suppose X, 1 <i<<oo, are i.i.d. with the uniform distribution on
[0,1]4 Let I, ={X,X,,...,X,}. Then L(I,)/n“ Y%= ¢, almost surely,
where c, is a constant depending on the dimension d.

Proof To prove this theorem we first get the asymptotics of the expected
values, i.e., we show E[L(I,)]~csn®""'% as n — . For this purpose it is
handy to first consider a related situation in which the points are distributed
according to a Poisson process.

Let IT denote the Poisson process on R? with unit intensity; in particular,
I1([0, t]*) denotes the set of points that fall in the cube [0, t]%. Let F(t)=
E[L(T1([0, t]*))]. Then

F()= % P00, (1] = nIELLAI00, 1) |10, 11| = n].
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Recalling that |[1([0, t]*)| has a Poisson distribution with parameter t%, and
noting that, by an obvious scaling argument, an optimal tour through n
points drawn independently from the uniform distribution over [0, t]* has
expected length tE[L(I,)], we obtain

dn

o ot
F(= X e —E[L(,)), (1)
n=0 .
so information about F(t) should give us information about E[L(L,)].
By decomposing [0, t]* into congruent subcubes Q; of side t/m and
applying the fixed dissection algorithm, we obtain

LTI([O0, t]1?) < mzd LI(Q))+ t(dm?~ + §;ma@-2/d-1)

i=1

The first terms come from the optimal tours within the subcubes. The
second term is from the bound of Lemma 2 applied to a set of arbitrarily
chosen points, one from each Q; with I1(Q;) # J. Taking expectations,

t
F()=< mdF(—) +t(dm?™ + §;m @72y
m
Setting t = ms, we obtain

F(ms) F(s) d m V@b
(ms)ds Sd +sd~1+8d SdAl 5 m:1,2,....

This inequality, together with the fact that F(t) is monotone and F(t)/t? is
bounded, implies that F(t)/t* approaches a limit c,; as t — <o,
Returning to (1) and letting u = t%, we see

Y E[L(I)]e 5~ cu@ V",
n=0 n'!
Since E[L(I,)] is monotone, the Tauberian theorem of Section 2.4 tells us
at once that
E[L(L)]~ cn‘@ V74,
To bound the variances of the variables L(I,) we apply the Efron—Stein

inequality with S(X;, X5, ..., X, 1) =L(I,_;) and Y =L(I,). This gives

varl L )1<E| & (LUX0, X, Xy Koo Xn})—L(In))z]

i=1

= nE[L(L,-,)— L(L,) .

Since |L(I,_,)—L(I,)|<2min,-;-.{|X; —X,|}, an easy calculation shows
E[L(I,_,)—L(I,)]*=O(n %), and hence

var[L(I,)]= O(n‘@=2/4),
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This implies var[L(I,)n"“""4]= O(n™"), and taking n, = k? we get

5 v L0

(d—1)/d
k=1 Ry

By Chebyshev’s inequality, we have for any £ >0

Pr{|L(I,)— E[L(L,)]|= en@ V] < g2 Var[ L(I,) ] ’

n (d—1)/d

s0, by the asymptotics of E[L(I,)], we have
Y Pr|L(L,)—cn@ V= en@ V)= ¥ Pr|L(L)/(nE %) —c|=e]<e.
k=1 k=1

The Borel-Cantelli lemma then says,
L(IL, )~ cn{?~ " with probability 1 as k — . 2)

Since ny.y/m — 1 and L(I, )<L(I,)<L(I, ) for n, <n<ny,,, (2) implies
the desired result that L(I,)~ cn‘® "¢ with probability 1 as n —. [

2.6 Analysis of the fixed dissection algorithm

First we will recall our model and the procedure we have called the fixed
dissection algorithm. By X;, 1<i<N, we denote independent random
variables with the uniform distribution on the unit cube Q in R¢ and
L,=L.(X,X,,...,X,) is just the length of the minimal tour through
X, X5, ..., X}

The fixed dissection algorithm consists of dividing the cube Q into s
congruent subcubes Q, solving the TSP within each subcube for the data
Q. N{X,, X, ..., X,}=D, crudely touring a set R consisting of representa-
tives of all of the non-empty D,, and crudely deleting excess edges to convert
the resulting closed walk to a simple polygon.

The main objective of this section is to prove two results which re-
spectively assert the effectiveness and the efficiency of the fixed dissection
algorithm. First we consider the effectiveness and give an elementary proof
(not using BHH) that the ratio L}/L, converges completely to 1. Specific-
ally, we prove the following.

Theorem 4 If o is an unbounded increasing function of n and s = n/o, then

oo LF
Y Pr[—ﬂ>1+e]<oo, Ve >0.
n=1 L

n

The proof will be obtained by two reasonably easy lemmas, the first of which
asserts that L, is unlikely to be small compared to n®~"¢. The proof of the
first lemma is one of our listed exercises.

Lemma 3 There exist constants A >0 and 0<p <1 such that foralln=1,

Pr[L, < An“~Dd]<pn.
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The second lemma shows that LY is bounded above by L, plus a quantity
which is deterministically small compared to n‘ "/,

Lemma 4 There is a remainder r, such that
L,<Lf<L +r,

and r, = O(n Vg V=) " ywhere the O depends only on d (not on n or
o).

Proof Let T denote the optimal tour through {X;, X,, ..., X,.}. For each
face F;, 1=j=<2d, of Q; we consider the set of ‘marks’ where an edge of T
which connects a point of Q,N{X,,X,,...,X,} to a point of Q. N
(X1, X, ..., X}, k# i, intersects F. We let M, 1<i<s, 1<j<2d, denote
the sets of marks in F;;. Trivially, the cardinality of M, (denoted by |M;}) is
even and is bounded by 2n;, =2|Q, N{X,, X, ..., X, }|, the total number of
points in Q..

We will now get an upper bound on L. Recalling the definition of LY and
the bound of Lemma 2, we get

Lf$ Z Ln(Qi)+{ds(d71)/d+O(S(dfl)/d)}.
i=1

Our main task is to bound the sum above using parts of the optimal path
and extra lengths of lower order. Let Q,NT denote the segments of T
contained in Q.. From each nonempty M;, 1<j=<2d, choose an arbitrary
element as its representative. To obtain a tour through Q;N
{X1, X5, ..., X,.}, add segments to Q; N T as follows: for each nonempty M;,
a tour through M;;; a tour through the representatives of the nonempty sets
M;;; for each nonempty M;; of even cardinality, a perfect matching of the
elements of M;;; for each M;; of odd cardinality, a perfect matching of the
elements of M, other than the representative; a perfect matching of the
representatives of the M, of odd cardinality (there will be an even number
of such representatives). Note that a perfect matching can be constructed by
taking alternate edges of a tour through an even number of points. This
procedure yields a walk through Q, N{X;, X,,..., X,,} and the cost of this
walk is bounded by

2d
length(Tﬂ Qi)+ Z ((d— 1) ‘Mjl(d72)/(d~l)+8d71 1Mjl(d‘3)/(1172))sflld
i=1
+{d (2d)(d—1)/d+ 0((2d)(d71)/d)}sfl/d
2d
+ Z ((d—1) |M|“4=2/@=D 5 M, |@-D/Ed=2)g=1d
1] - 1]
i=1

+ {d (2d)(d.71)/d+ 0((2d)(d—1)/d)}s_1/d'
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Summing over all the cells of the dissection,

s d
Z L.(Q)<L,+ 2( Z z (d-1) ‘Mjl(d—Z)/(d—l)+ 841 lMi‘(d—3)/(d—2)>s—1/d

i=1 j=1

+2{d(2d) 4 V44 o((2d)@ D) s @D/,

Since Y{_; Y 1|M;|<2n and the functions x@ 2@~ apnd x@ /@2 are
concave, the above expression is bounded above by the value it assumes
when each M;; is 2n/(sd). This gives

Z L, (Q) <L, +O(n@ 2/@d-bgldd-1)) 4 0s@d-1/d)
The substitution n/o =s completes the proof of the lemma. [

Proof of Theorem 4 This is now easily given:

LF
Pr[L—"> 1+ s] <Pr[L, < An“ Y4+ Pr[|L, — LE| = eAn“@ 1],
The first summand is summable since it is dominated by a term going to 0
geometrically, and the second term is summable since it is 0 for all
sufficiently large n. [

The execution time of the fixed dissection method clearly has the same
order as the time to solve all of the TSPs within the subcubes. We assume
that dynamic programming [Bellman, 1962; Held & Karp, 1962] is used to
solve the TSPs within the subcubes. Since dynamic programming solves an
x-city TSP in time bounded by f(x) = Ax?2%, the order of the execution time
of the fixed dissection procedure is bounded by order of

T.= . f(n)
i=1
where n; denotes the number of elements of the set Q, N{X,;, X,, ..., X,.}.

We shall derive upper bounds on the mean and variance of T,,. As a first
step we bound the mean and variance of f(n;) for a fixed i. The random
variable n; has a binomial distribution:

et ()0 52

E[f(n,-)]=kz:‘o Akzzk(le)k(l_ 1)

Hence

S N

sironi- £ aee()E) (-2

k s

and

Using the identity

zn: k(k—1).. .(k—i+1)(n)x"=n(n—1). =i+ DX+ x)"
k=0 k
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one obtains, after some algebraic manipulation, that, as n — o and s — @ in
such a way that o=n/s—>»%, E[f(n,)]~4Ao0%° and var[f(n)]~
256 A%0%e*. Since expectations add, E[T, |~ 4Anoe” and, by McDiarmid’s
inequality, var[ T, ]~ 256 A*no>e?*. Thus, for the specific choice o = [log n],
the expected execution time of the fixed dissection method is O(n?log n)
and the variance is O(n*(log n)?).

2.7 The Euclidean directed TSP

Karp [1977] posed the problem of formulating a probabilistic model of the
directed TSP for which one can find an algorithm that runs in polynomial
time with high probability. One such formulation was given by Steele
[1985]; although, as we will see, the available results are far less complete
than for the undirected case.

To specify the model let X;, 1=<i<co, be independent random variables
with the uniform distribution on [0, 1]. As the vertex set of a random graph
G, we take V, ={X,, X,,..., X,}. To define a set of directed arcs for G,
we first suppose that for 1=<i<j=<n there are independent Bernoulli
random variables Y; which are also independent of V, and for which
Pr[Y,; =1]=Pr[ Y, =0]=1/2. Now the directed arc set A, for G, =(V,, A,
is defined by taking (i, j)€ A, if Y;; =1 and taking (j, /)€ A, if Y; =0. This
procedure yields a complete digraph G,.

It is not necessarily apparent that there always exists a directed path
through G, ; but, in fact, it is a classic result due to Rédei [1934] that any
complete digraph has a path through all its vertices.

By a solution to the directed Euclidean TSP we mean here a path through
V.. which has minimum Euclidean length. We denote this length by D,

The results established by Steele [1985] are the following.

Theorem 5 There is a constant 0 <3 <o such that as n — =,
E[D, ]~ B<n.

Theorem 6 There is a polynomial algorithm which provides a directed path
through V, which has length D* satisfying

E[D}]<(1+¢)E[D,]
for all e >0 and n=N(g).

These results easily generalize to [0, 1]%, but the extension to almost sure (or
complete) convergence results seems to be considerably more difficult than
in the undirected case. These extensions remain as open problems.

Exercises

1. Prove that the shortest closed walk through a set of n points in R<, not all
of which are collinear, is a simple polygon.

2. Prove Lemma 3.
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3. Give your own proof, independent of Lemma 2, of the following fact: Let
S be a set of n points in the unit d-dimensional cube. Then L(S)<
azn“""4 where a, depends only on the dimension d.

4. Prove that for each dimension d there exist constants A; >0 and B; <1
such that Pr{L(I) < A n~“ V4] <(B,)"

5. Derive the best lower and upper bounds you can on the constant c,
occurring in the statement of the BHH theorem.

6. The strips method for constructing a tour through n random points in the
unit square dissects the square into 1/A horizontal strips of width A, and
then follows a zig-zag path, visiting the points in the first strip in left-to-right
order, then the points in the second strip in right-to-left order, etc., finally
returning to the initial point from the final point of the last strip. Prove that,
when A is suitably chosen, the expected length of the tour produced by the
strips method is <0-93vn=0OWn).

7. Let S be a set of points in the unit square Q, and let Q be dissected into
rectangles Q,. Prove: Y, L(SN Q,)<L(S)+3 Y per(Q,), where per(Q,) is the
perimeter of Q,.

8. Generalize the preceding result to d dimensions.

9. Prove the following scaling principle: Let S be a set of n points drawn
independently from the uniform distribution over [0, t]%. Then E[L(S)]=
tE[L(L,)].

10. Complete the proof that F(t)/t? approaches a limit.

11. Prove: L(I,)—L(I,_))<2min;_;, . 1{|X,.—Xi|}. Here |X,—X;| de-
notes the Euclidean length of the vector X, — X.

3 PROBABILISTIC ANALYSIS OF THE ASYMMETRIC TSP

In this section we consider a very general form of the TSP, in which the
distances between cities are given by an arbitrary nonnegative n X n matrix
(¢;). Neither symmetry (c; = ¢;;) nor the triangle inequality (c; + ¢ = ¢y ) is
required. The cost of an optimal tour is min_{}; ¢}, where 7 ranges over
the cyclic permutations of {1,2, ..., n}.

The asymmetric TSP appears to be a tough nut to crack, since it is
NP-hard to construct a tour whose cost is within a constant factor of the
cost of an optimal tour. Despite this evidence that the problem is difficult,
there is a simple heuristic algorithm which, in most instances, will produce a
near-optimal tour. This heuristic is based on solving a related problem called
the assignment problem, and then using certain patching operations to
convert the solution of the assignment problem into a tour. The assignment
problem can be stated as follows:

minimize Z Cio (i)
where o ranges over the permutations (not just the cyclic permutations) of
{1,2,..., n}. The assignment problem can be solved in O(n?) steps.



3 Probabilistic analysis of the asymmetric TSP 195

In order to validate this patching algorithm we conduct a probabilistic
analysis on the assumption that the distances c¢; are drawn independently
from the uniform distribution over [0, 1]. Let A* be the cost of an optimal
assignment for the n X n matrix (¢;), let T* be the cost of an optimal tour,
and let T be the cost of the tour produced by the patching algorithm. Then
A*<T*<T. The inequality A*<T¥* follows because the assignment prob-
lem is a relaxation of the TSP. The inequality T*<T follows because T* is
the cost of an optimal solution of the TSP, and T is the cost of a feasible
solution.

When the ¢; are drawn independently from the uniform distribution over
[0,1], A*, T* and T become random variables. It is a surprising fact, first
proved by Walkup [1970], that E[A*], the expected value of A*. remains
bounded as n — . Karp [1984] has proved that E[A*]<2 for all n.
Lazarus [1979] has proved that E[A*]=1+1/e+ O(1/n). Computational
experiments indicate that E[ A*]is close to 1.6 when n is greater than 100.

Our main results here are that

T—T*

E[T—A*]<2.33n"'? and E[ ]:O(n"”z).

Thus the expected cost of an optimal tour remains bounded as n — c and
tends to be close to the cost of an optimal assignment. Moreover, the
percentage difference between the cost of an optimal tour and the cost of
the tour produced by the patching algorithm tends to be very small when n
is large.

3.1 The assignment problem and the patching operation

Recall that the assignment problem asks for a permutation o that minimizes
Y Civiiy» While the TSP asks for a cyclic permutation 7 that minimizes
Y. Cimi- Thus the assignment problem is a relaxation of the TSP, and A™, the
cost of an optimal assignment, is a lower bound on T%, the cost of an
optimal tour. Computational experience indicates that this lower bound is
often very tight. In Chapter 10, Balas and Toth report the following

experiment.

‘We generated 400 problems with 50<n <250, with the costs
independently drawn from a uniform distribution of the integers
over the intervals [1, 100] and [1, 1000], and solved both the AP
and the TSP. We found that on the average v(AP)[ = A*] was
99.2% of v(TSP)[ = T*]. Furthermore, we found the bound to
improve with problem size, in that for the problems with 50<n <
150 and 150=<n=<250 the outcomes were 98.8% and 99.6%,
respectively.’

Since an optimal assignment can be computed in O(n”) steps, and since
A* tends to be a tight lower bound on T¥, it is natural to solve the
assignment problem as a first step towards the exact or approximate solution
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of the TSP. Balas and Toth survey several rather successful branch and
bound algorithms for the directed TSP based on the use of A* as a lower
bound on T*. In the present chapter we explore a patching algorithm which
uses an optimal assignment as the starting point for the construction of a
near-optimal tour. A similar algorithm was presented by Karp [1979], but
the analysis presented here is simpler and the results are stronger.

The patching algorithm is based on a patching operation. To explain this
operation it is necessary to discuss the cycle structure of a permutation. With
any permutation 7 we may associate a directed graph with vertex set
{1,2,...,n} and arc set {(i, 7(i))|i=1,2, ..., n}. Each connected compo-
nent of this graph is a directed cycle. These components are called the cycles
of 7 and, of course, a cyclic permutation is a permutation that has only one
cycle.

In general o, the permutation which is the optimal solution of the
assignment problem, will have many cycles. The patching algorithm converts
o to a cyclic permutation by a sequence of patching operations, each of
which joins two cycles together. Let T be a permutation, and let i and j be
elements that occur in two distinct cycles C and D. Then the (i, j)-patching
operation, depicted in Figure 6.2, joins C and D into a new cycle by

Figure 6.2 The (i, j)-patching operation

inserting the arcs (i, 7(j)) and (j, 7(i)) and deleting the arcs (i, 7(i)) and
(j, 7(j)). This operation increases the cost of the permutation by

A(r, i, j)= Cir() T Cizty ™ Ciniy ™ Cir()-

The following is a statement of the patching algorithm.

Patching algorithm

begin
T <0,
{o is the optimal assignment and 7 is the permutation currently being
processed}
while 7 is not a cyclic permutation do
begin
let D; and D, be the two longest cycles in 7;
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{the length of a cycle is the number of elements it contains, and ties are
broken arbitrarily}
choose i€ D; and je D, to minimize the patching cost A(r, i, j);
perform the (i, j)-patching operation and call the new cycle T
end;

T <<T

end.

3.2 A probabilistic bound on the largest cost in an optimal assignment

In preparation for the analysis of the patching algorithm, we show that, with
high probability, ¢, is very small for every pair (i, o(i)) occurring in the
optimal assignment. Let ‘log’ denote log, and let ‘lg’ denote log,. Let

a(n) :20 log n([lgrl(n+3)] -2) '

Lemma 5 Let the elements of the n X n matrix (c;) be drawn independently
from the uniform distribution over [0, 1], and let o be the optimal assignment.
Then, with probability 1—O(n?), cioiy<a(n) for all i.

The proof of Lemma 5 requires the concepts of an expanding matrix and an
expanding digraph. Let A be an nXn matrix of 0’s and 1’s. For each set
Sci{l,2,...,n},let I'(S)={j|for some i€ S, a; = 1} and let I '(S) ={j | for
some i€S, a; =1} Then A is an expanding matrix if, for every S<
{1,2,...,n},

n+1
2

Thus an expanding matrix is one in which each small set of rows S ‘hits’ at
least 2|S|+1 columns, and each small set of columns hits at least 2 |S|+1
TOWS.

A digraph G with vertex set {1, 2, ..., n}is called an expanding digraph if
A(G), the adjacency matrix of G, is an expanding matrix; here the i—j
element of A(G) is equal to 1 if and only if (i, ) is an arc of G.

TS Zmin{z IS+, } and IF“(S)Izmin{z Is|+1, 2 ; 1}.

Lemma 6 In an n-vertex expanding digraph, every vertex lies in a cycle of
length <2[lg(n+3)] —4.

Proof Let ds(i, j) denote the minimum number of arcs in a path of G from
vertex i to vertex j. By inductive application of the fact that G is expanding,
we obtain the following inequalities for all [:

+
tk | doti, k) <D= minf2+t -1, 1]

and

+1
k| dg(k, i)< l}[zmin{f“— 1, n2 }
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Setting 1*=[lg(n+3)—2], we have |{k|dg(i,k)<I*}|=(n+1)/2 and
[{k | dg(k, i) <I*}|=(n+ 1)/2. Note that if i is contained in either of the sets
{k | dg(i, k)<1*} and {k | d5(k, i) <I*} then the lemma has been proved, and
so we assume that this is not the case. Hence there exists a k# i such that
ds(i, k)<I* and dg(k,i)<I*, and it follows that i lies in a cycle of
length<21*=2[lg(n+3)]—-4. O

Lemma 7 Let A =(a;) be an n X n matrix of 0’s and 1’s whose elements are
independent random variables such that, for each i, j, Pr{a; = 1]= 10 log n/n.
Then Pi[ A is not an expanding matrix]= O(n?).

Proof Call a set S<{1,2,...,n} row-faulty if |S|<n/4 and |[[(S)|<2]S|,
and column-faulty if |S|<n/4 and |[IT"'(S)|<2|S|. Then A fails to be an
expanding matrix if and only if there is a row-faulty or column-faulty set.
The expected number of row-faulty sets is bounded above by

£ (GiJa-pre

where p =10 log n/n. Since

k 2k
(Z)S<Lll<—e_> ’ (2r;c>s(%) and l1-p<eP=nlom

the above summation is bounded above by
1 (ne n’e® |, 20k/n)k
—_—— n .
k=1 \k k2
Since k=1 and n?*"<n®> when k=<n/4, this summation is
<YI# (n2e** = 0O(n"?). Thus the expected number of faulty rows is
O(n~?). Similarly, the expected number of faulty columns is O(n2), and
thus the probability that A fails to be an expanding matrix is O(n™?). O

Given the cost matrix (c;), define the 0-1 matrix A(C) = (a;) by

101log n

>

1 if ¢; <
aij = n

0 otherwise.

By Lemma 7, Pr{ A(C) is an expanding matrix]=1-O(n?).

Let G° be the digraph with vertex set {1,2,...,n} and arc set
{Gi, ) | cioy<10log n/n}. Then G< is an expanding digraph if and only if
A(C) is an expanding matrix. Thus, Pr{G° is an expanding digraph]=
1-O(n™?). To complete the proof of Lemma 5, we need only prove the
following lemma.

Lemma 8 Let o denote the optimal assignment for C. If G° is an expanding
digraph then, for all i, c;,y<a(n).
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Proof The proof is by reductio ad absurdum. Suppose G is an expanding
digraph and ¢, >a(n). By Lemma 6, G” contains a cycle of length
t<2[lg(n+3)] —4 from i to i. Let the successive vertices along this cycle be
iy, ip, ..., i, where i =i,. Consider the permutation ¥ given by:

ﬂ(il) = O'(iz), ﬁ(iz) = U'(i_z), ) 6(1.1) = O'(il)
and
13(])20'(]) fOI' j¢{ilyi2""5i1}'
Then

Z Ciaiy ™ Z Cio(i) = (Clla(h)+ 1‘ \a(t)+cza(z,))

i=1
M( 110(1,)+ +Ci‘0'(i())~

But, by the way G was constructed, each term in the first summation on
the right-hand side is <10 log n/n. Also each term in the second summation
is =0, and ¢, ,a,)> a(n). It follows that

10t logn
Z Cio(iy Z ClO’(l) n g a(n)é(),

contradicting the optimality of . [

3.3 Analysis of the patching algorithm

Our main goal in this section is to derive an upper bound on the expected
cost of converting the optimal assignment to a tour, using the patching
algorithm.

Call the n X n matrix (¢;) exceptional if its optimal assignment includes an
arc of cost>a(n). By Lemma 5 the probability that a matrix is exceptional
is O(n™?), and thus the patching costs associated with exceptional matrices
cannot contribute more than O(n~") to the overall expected patching cost.
Call a cost ¢; small if c;<a(n), and large otherwise. Associate with (¢;) a
matrix (¢;) defined as follows:

_ {c,«j if ¢;; is small,
Tl if ¢; is large.

If (c;) is not exceptional then (c;) and (¢;) have the same optimal assign-
ment. Thus, for purposes of bounding the overall expected patching cost, we
may assume that the optimal assignment is always computed using (¢;)
instead of (¢;). This means that, once a cost is determined to be large, it is
never involved in the computation of the optimal assignment o, and thus is
not conditioned in any way by that computation. Thus, at the beginning of
the patching process, the large costs may be treated as independent random
variables, each of which is drawn from the uniform distribution over
(a(n), 1].

Now consider the patching step when cycle C, of length r, is patched into
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cycle D, of length m. Every arc occurring in C or D is of nonnegative cost.
The cost of each arc (i, j) between C and D is either small (Sa(n)) or large
(>a(n)).

The costs ¢; of the large arcs between cycles C and D are independent
random variables with the uniform distribution over (a(n), 1]. This holds
true at the beginning of the patching process, and none of the computations
performed in previous patching steps involve these values, so it remains true
at the present step. Thus, the cost of patching C into D is stochastically
smaller than it would be if the costs of all arcs within C or D were 0 and the
costs of all arcs between C and D were uniform over (a(n), 1]. We analyze
the patching algorithm under this pessimistic assumption.

Certain properties of the optimal assignment o will be important for our
analysis. First note that, since the c; are drawn independently from a
continuous distribution, it will be true with probability 1 that no two
permutations have the same cost and, as a consequence, that the optimal
assignment is unique. Also, the optimal assignment is equally likely to be
any one of the n! permutations of {1, 2, ..., n}. To see this, define two nXn
cost matrices to be equivalent if one of them can be obtained by permuting
the columns of the other. Each matrix lies in exactly one equivalence class.
Excluding events of probability 0 such as the occurrence of two equal
columns, an equivalence class consists of n! equally likely matrices, and each
of the n! permutations is the optimal assignment for exactly one of these
matrices.

The fact that the optimal assignment is a random permutation is essential
for our analysis. To give the reader a feeling for the cycle structure of a
random permutation, we list the cycle structures of ten randomly generated
permutations of 1000 elements. The cycle structure is given as
(ay, as, . .., a,), meaning that the permutation has ¢ cycles, and their respec-
tive lengths are aq, a,, ..., a, where a;<a,<---<a,.

2,2,3,25,49,919)

(1,8,9,20,24,147,781)

3,6,6,10,17,42,107, 156, 653)

(1,1,6,16,58,70,75, 298, 475)

(1,9,13,16, 17, 35, 40, 41, 828)

(1,2,3,3,21, 94, 139, 338, 399)

(2,3,5,28,117,332,513)

(1,1,10, 16, 95, 155, 722)

(1,2,997)

(45, 246,709)
In these examples the number of cycles is small and very few elements lie in
short cycles. The following facts about random permutations indicate that

this tends to be true in general. In the following three facts let o denote a
random permutation of n elements.
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Fact 1. The probability that element 1 lies in a cycle of length x is 1/n,

for x=1,2,...,n.
Fact 2. The expected number of cycles in o is

RS VR Y
Stz t.. .+ o~logn

Fact 3. The probability that exactly ¢ elements lie in cycles of o of length
less than or equal to r is <1/[#/r]|!.

Lemma 9 The conditional expectation of the total patching cost, given that the
optimal assignment has cycle structure (a,, a,, ..., a,), is

<2(1— Da(n)+ i lf !

k=1 \/ak(ak4.1+ak+2+ .. .+at) .

Proof The algorithm performs t—1 patching operations. For k=1,
2,...,t—1, astep occurs in which a cycle D, of length g, gets patched into
the longest cycle D,, which is of length a, .+ ay »+...+a,. As discussed
above, we may assume pessimistically that the arcs within D, and D, are of
cost 0, and the arcs between D, and D, are independent random variables,
each of which is the sum of two independent random variables drawn from
the uniform distribution over («a(n), 1]. A standard calculation shows that
the expected value of the patching cost is

1

\/ak(akﬂ +a,,+...+a,)
and, summing over all the patching steps, the total patching cost is

<2(t—Da(n)+:r tf !

iV (e +ag ot ta)

Theorem 7 E[T - A*|<2.33n Y24+ 0(n""3).

<2a(n)+iVr

Proof By Lemma 9,

E[T—A*]sE[Z(z—l)a(n)Jr%\/q—r f : ]

k=1 \/a]((ak+l+. . .+a,)

where {ay, a,, . .., a,) is the cycle length distribution of a random permuta-
tion of {1,2,...,n}. By Fact 2, E[t]~logn so E[2(t—Da(n)]=
O((log n)3/n). If o is a permutation with cycle structure {a,, a,, . . ., a,) then
t—1 1 1
S b
k=1 \/ak(akHﬂL. .ta)  wcr©@=w2 Vr(C)max{r(C), m(C)}

where C ranges over the cycles of o, r(C) is the number of elements in cycle
C, and m(C) is the number of elements in cycles of length greater than r(C).
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expected number of cycles of length r is 1/r, we obtain

I3 et

k=1 '\/ak(ak+1+. . .+at)

Lnoo] 1 2r Ln/2]
=) r‘3/2——_<1+ +o(D*")>+ Y
r=1 n—r n—r r=Tnte]

- { ) o
= ( Z‘] r’3’2> \/—;+ o(n ) <2.65n 12+ o(n V2.

Finally, applying Lemma 9, we have E[T—A*]=<2.33n "*+0on "?. O

We close by noting the following corollary, which establishes that the
percentage difference between T, the cost of the tour produced by the
patching algorithm, and T*, the cost of the optimal tour, tends to be very
small when n is large.

EY

T*

Corollary 1 E[ ]: O(n~"?),

®

ES
] = O(n~Y?). This

Proof Since T*= A™ it suffices to prove that E[T

follows from three observations:

(i) E[T-A*]=0(n""* (Theorem 7).
(if) On all instances, T—A*<2n.
(iif) For every £ >0, Prf A* <1—¢] goes exponentially to 0 as n — co. This is
most easily seen by noting that A*=Y min{c;}. O

3.4 Open questions

We mention two variants of the random directed TSP for which it should be
possible to conduct a probabilistic analysis of approximation algorithms
based on patching. The first of these is the random undirected TSP, in which
the matrix (¢;) is symmetric, and the elements on or above the main
diagonal are drawn independently from the uniform distribution over [0, 1].
The second variant is the random directed TSP with repeated visits to cities
permitted, so that, instead of tours, we deal with directed spanning walks.

It would also be of great interest to make a probabilistic analysis of
branch and bound methods for the optimal solution of the directed TSP.
One common branch and bound method makes use of the fact that the
optimal solution of the assignment problem provides a lower bound on the
cost of an optimal tour. The method develops a tree of problem instances,
each of which is obtained from the original instance by setting certain costs
¢;; to o, thus excluding tours which use the arc (i, j). Given such a derived
instance I, let o(I) be the optimal solution of the assignment problem. If
o(I) happens to be a cyclic permutation then it solves instances I of the
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TSP, and there is no need to create descendants of I in the tree of problem
instances. If the permutation o(I) is not cyclic then its shortest cycle
determines its descendants. Suppose the shortest cycle of o(I) is (i,

i1,...,0—1). Then o(I) maps iy to iy, i; tO iy,..., I to ig. Every cyclic
permutation must omit at leat one of these arcs. Accordingly, instance I has
as its children instances I,, I,...,I,_; where I is obtained by setting
c to oo,

£j>4 1 1(mod k)

The general step of the branch and bound method is as follows. In the
current tree of problem instances, let instance I be the leaf for which the
cost of the optimal solution to the assignment problem is least. If o(I) is a
cyclic permutation then it is the optimal tour for the original instance of the
TSP. If o(I) is not cyclic then its shortest cycle determines k children which
become leaves of the tree of instances. The process continues until a cyclic
permutation is found.

Since the optimal assignment is equally likely to be any one of the n!
permutations of {1, 2, ..., n}, and exactly (n—1)! of these permutations are
cyclic, there is a 1/n chance that the solution of the original assignment
problem will be an optimal tour (this chance can be increased to approxi-
mately e/n by setting the diagonal elements c¢; to o, and thus eliminating
permutations with fixed points). If the problem instances occurring in the
branch and bound tree were independent random instances then, indepen-
dently at each step, there would be a 1/n chance of finding a cyclic
permutation and terminating the branch and bound computation. Two
papers have been published which make such an erroneous independence
assumption and conclude thereby that the optimal tour can be found by
branch and bound in polynomial expected time. Lenstra & Rinnooy Kan
[1978] point out the error in one of these erroneous papers. A correct
analysis of the branch and bound method remains to be made.

Exercises

12. Prove: For every matrix (¢;), T*=A*.

13. Prove: In a random permutation of {1, 2, ..., n}, Pr{element 1 lies in a
cycle of length r]=1/n, for r=1,2,...,n.

14. Prove: The expected number of cycles in a random permutation of
{1,2,...,n}is 1+3+1+ .. . +1/n

15. Prove: For every positive integer a, Priu(n)<n/a]<1/a!. Here the
random variable w(n) denotes the length of a longest cycle in a random
permutation of {1,2,...,n}.

16. Let (¢;) be an n X n matrix in which every diagonal element c; is equal to
o, and the off-diagonal elements are drawn independently from the uniform
distribution over [0, 1]. Prove:

Pr[the optimal assignment for (¢;) is a cyclic permutation]~ e/n.

17. Let X(N) be the minimum of N independent random variables, each of
which is the minimum of two independent samples from the uniform
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distribution over [0, 1]. Prove:

1 /=
E[X(N)]<§ \/%

18. Prove or disprove: There exists a constant (3 such that, for every £ >0,
Pr{|A*-B|>e]—0 as n— oo,

Here A* is the cost of the optimal assignment for a matrix (c;j) whose
elements are drawn independently from the uniform distribution over
[0, 1].

19. What happens to the distribution of (T — T%*)/T* when the elements of

(c;) are drawn independently from the uniform distribution over [a, 1]
a>0?

>



	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	


