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A topological method is given for obtaining lower bounds for the height of
algebraic decision trees. The method is applied to the knapsack problem where an
Q(n?) bound is obtained for trees with bounded-degree polynomial tests, thus
extending the Dobkin-Lipton result for linear trees. Applications to the convex hull
problem and the distinct element problem are also indicated. Some open problems
are discussed.

1. INTRODUCTION

Decision trees are often used to model algorithms for combinatorial and
geometrical problems. While motivation for these models rests primarily on
their generality and conceptual simplicity, they also have the benefit of
offering at present the most promising prospect for proving worst-case
lower bounds in many problems.

For linear decision trees several powerful techniques are known for
bounding the tree height from below (e.g., Reingold [11], Dobkin [3],
Dobkin and Lipton [4, 5], Yao [15], and Yao and Rivest [17]).

Much less is known for general algebraic decision trees. Beyond the naive
information bound, Rabin’s theorem (Rabin [10]) and the convex hull
problem (Yao [16]) are apparently the only known results.
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The purpose of this article is to provide a general method for establishing
lower bounds for the worst-case performance of algorithms prescribed by
arbitrary algebraic decision trees. Technically this work extends the results
of Dobkin and Lipton [4, 5], but the tools put to work here provide
nontrivial bounds for a large class of previously untouchable problems.

Before giving the detailed computational model it seems worthwhile to
mention informally a concrete application.

THEOREM 1. Any algebraic decision tree of bounded order which solves the
n-dimensional knapsack problem must have height at least Q(n?).

This result extends the knapsack bounds under the linear decision tree
model due to Dobkin and Lipton [4] and the (n log n) result of Dobkin [3}.

The method used here rests critically on a result from real algebraic
geometry due to Milnor [9]. Since the machinery used by Milnor may not be
familiar to workers in complexity, we have tried to give an exposition of the
basic facts necessary for making this work self-contained. The bounds
discussed here should prove useful in many related problems.

In the next section we rigorously specify the computational model and
outline the lower bound method. The third section exposits Milnor’s in-
equality and gives a heuristic argument which tries to pinpoint the necessity
for the more sophisticated tools.

The fourth section is devoted to applications and in particular to the
proof of the result on the knapsack problem (Theorem 1) which was
mentioned above.

The final section mentions some open problems and suggests a line of
attack which if sufficiently developed might add significantly to the power
of the present method.

9 COMPUTATIONAL MODEL AND THE GENERAL METHOD

Let W C Q" be any set. A (dth-order) decision tree T for testingif x € W
is a ternary tree with each internal node containing a test of the form
p(Xy, Xg5--, X,): 0, where pis a polynomial of degree at most d. Each leaf
of T contains a “yes” or a “no” answer. For an input X, the procedure starts
at the root and traverses down the tree. At each internal node a branching is
made according to the polynomial test at that node and when a leaf is
reached the answer to the question “Is x € W?” must be given correctly.

Now let C;(W) be the minimum height /. for any d th-order decision tree
T (for the set W). Our key objective will be to obtain lower bounds on
C,(W), and the bound given here will depend heavily on the topology of W.

By *W we denote the number of (disjoint) connected components of W.
Also for any polynomial p(xy, x,,..., X,) We set S, = {x| p(x) # 0}, and
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for any integers n, m > 0 we put f(m, n) = max{¥S,| p is a polynomial of
n real variables and of degree at most mj.

The following elementary result provides the skeleton of our method. (To
put flesh on the bones will require the bounds on § obtained in the next
section.)

THEOREM 2. Let W C X" be an open set, and let T be a dth-order
algebraic decision tree for deciding if x € W. If W is the disjoint union of N
open sets, then the height hy satisfies the inequality

2"78(hyd,n) = N.

Proof. For each leaf [ of T let ¥, be the set of inputs x € R" leading to /
and let I, be the set of constraints resulting from the tests. Let £ be the set of
leaves [ such that I, consists only of strict inequalities and such that the
answer stored at / is “yes.” One should note that, for every [ € £, V}is an
open set and V;, C W.

We now write W = va , W; where each W, is a connected open set and
the W, are disjoint, and write V, {x: p(x) < 0,p,(x) <0,..., p)(x) <0}
where each p; is a polynomial of degree not greater than d and where
5 < hy. As a consequence of this representation, ¥, C {x|q,(x) # 0} =
where qx) =1 p,(x) is a polynomial of degree at most A,d. Moreover
each connected component of ¥, is contained in at most one component of
). Hence, ¥, has at most B(h;d, n) connected components V;, V, ... .

Since each leaf of T is correctly labeled, each V), has to be completely
contained in some W,. Since the number of such V;; is at most B(h.d, n)
and there are only |£| values of / which lead to “yes,” the number of
components N of W is bounded by | £| B(h,d, n). In the last deduction, we
have used the fact that each W, must contain some points in U , ¥} (since
the set W — U ¥, is of measure 0). Since 27 =| £| the theorem follows. U

3. CouNTING CONNECTED COMPONENTS

To use Theorem 2 one needs bounds on 8(m, n) and this is apparently no
easy matter. Fortunately, there is a bound due to Milnor [9, Theorem 3]
which is sufficient for some applications:

B(m,n)<(m+2)(m+1)""". (3.1)

The proof of Milnor’s inequality rests on the several substantial results from
Morse theory and algebraic topology, about which we will say more below.
First we would like to give a heuristic indication of an analogous result.
The only preliminary needed for the argument is Bezout’s theorem which
says that any system of n algebraic equations in n variables with degree d
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has either infinitely many (complex) solutions or at most d". For a classical
approach to the proof of Bezout’s theorem one can consult Enriques [7], or,
for the case n = 2, there is a nice proof in Seidenberg [12].

To use Bezout’s theorem we suppose that p is a real polynomial in n
variables with degree m, and we note that R can be chosen so that
A = {x|x €R", p(x) >0, R* — I7_,x? > 0} has at least as many bounded
connected components as {x|p(x) > 0} has connected components
(bounded or unbounded). Since each bounded connected component of 4
must contain a local maximum of pq, the number of bounded components
of A is majorized by the number of zeros of the system Vv pg = 0. By
Bezout’s theorem, this number is either infinite, or else bounded by (m + 1)".

This finite bound is for our purposes almost as sharp as Milnor’s bound.
The real work comes in providing a rigorous perturbation argument which
rules out the case when Bezout gives only the trivial infinite bound. That is
precisely the case which causes all the trouble and presents this section from
being self contained.

The inequalities proved in Milnor [9] actually provide bounds on the sum
of the Betti numbers (in Cech cohomology) for the set V' = {x|x € R", p(x)
= 0}, where p is a polynomial of degree at most m. This leads immediately
to the bound *V < i(m + 2)(m + 1)*~!, since the zeroth Betti number is
equal to the number of connected components (see Eilenberg and Steenrod
[6, p. 254, Exercise A.3]). The same bound remains true when V is defined
by a strict inequality p(x) > 0; one can see this by utilizing the fact
{x| p(x) > 0} = U (V,, where V, = {x| p(x) = ¢}. This implies inequality
3.1.

For readers who are not familiar with the notions of Homology groups
and Betti numbers, Chapter 6 of Hocking and Young [8] can provide a
pleasant introduction. We should further remark that a recent exposition of
Bott [2] gives a direct and intuitive introduction to Milnor [9] and the
closely related ideas of Morse theory. As it happens, the problem of
determining B(m, n) is probably quite deep. As noted in Arnold [1], it is
intimately connected with the basic concerns of Hilbert’s 16th Problem.

Despite the apparent simplicity of the heuristic argument given above, we

benefit from a genuine stroke of good luck that any bound like (3.1) is
known.

4. APPLICATIONS

We now use Theorem 2 to derive lower bounds. Clearly, the function
2*B(xd, n) is an increasing function of x. Let a(d, n, N) be the minimum x
satisfying 2*8(xd, n) = N. Theorem 2 immediately yields the following
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formal bounds:

C,AW)=ald, n*W). (4.1)

Any general upper bounds on f8 can be used to derive lower bounds on «

and hence C,. In particular, Milnor’s bound (3.1) gives the following result.

THEOREM 3. For any real ¢,

C,(w)= m_in{elog2 N, é(N“"V" - 1)},

when N =% W,

COROLLARY. If *W = Q(n" *®") for some fixed 8 > 0, then
C,(w) = Q(log(*w)).

Proof. Let x = C,(W). Then 2*8(xd, n) = N. Hence by (3.1)

2*(xd + 1)" = N.
Either 2* = N€ or (xd + 1)* = N!7¢, proving the theorem. [J
The corollary follows by writing *W = n"!*8(") and setting

_1_g(n)
“T21+g(n)

in the theorem.

Thus, Theorem 3 gives a lower bound nonlinear in n when *W grows at
least as fast as n{! 7" This is also necessary since the theorem only gives a
lower bound O(n) when *W = O(n™).

In the first example given below, *W ~ 2"*/2; thus we have a good lower
bound. The other two examples have *W < n”, and Theorem 3 does not
give nonlinear bounds. However, Theorem 2 (or, (4.1)) is still true for these
later examples, and a better determination in the future may result in an
improved bound.

ExamrLE 1. THE KNaPSACK PROBLEM. Given real numbers x,, x,, ...,
x,, decide if there exists some subset S C {1,2,..., n} suchthat 3, ¢x, = L.

In this case, W = {(x|, X3,..., x)|[[s(Z;esx; — 1) # 0}. It was shown in
Dobkin and Lipton [4] that #¥W = 2"*/2, Thus, C(W) = Q(n?) for any
fixed d. This generalizes the result of Dobkin and Lipton where they showed
C(W) = Qn?).
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ExAMPLE 2. ELEMENT DISTINCTINESs. Given x;, x,,..., X, € &, is there
a pair i, j with / 7 j and x; = x;? In this case,

W= {(xl,xz,...,xn) I (x, —xj)#O} C A
i)

It is easily shown that I = n! since each region {(x}, X5, ..., X,) | X,y <
Xo@y < oor Xg(m) 1S @ maximal connected component of W for each permu-
tation 0. One therefore has C,(W) = a(d, n, n!).

ExAMPLE 3. EXTREME PoinTs. Given n points on the plane does the
convex hull formed by them possess n vertices?

Here W cannot be expressed by an easy algebraic relation but it is still
possible to show *W = (n — 1)!. Obviously, W is an open set in (R*)". For
any configuration {X,, X,,..., X,} in W C (R?)", we have a cyclical order-
ing o of the points {x, |1 =i = n} which is given uniquely by taking the
points in cyclical order. Clearly, any of the (n — 1)! cyclical permutations
can arise in this way so all that remains is to show that if ¢ 7 ¢’ then the
configurations which give rise to these permutations are in disjoint compo-
nents of W.

For each configuration in W we consider the (3) element array 4 given by
A(x;x;x,), where A is the signed area of the triangle formed by the 3-set
{x,x,x,} C {xy, x3,..., x,}. If the configuration corresponding to ¢ is
continuously deformed in any way to the configuration for ¢’ then 4, is
transformed continuously into 4. Since ¢ and o differ there is some triple
{x;x;x,} for which A(x;x;x,) has differing signs in 4, and A,. By the
intermediate value theorem there is therefore some time during the continu-
ous deformation when A(x;x;x,) = 0. This says that x;, x;, x, are then
collinear and at that point there are at most n — 1 extreme points in the
configuration. This proves that any passage from ¢ to ¢’ must go out of W,
so ¢ and o’ correspond to different components.

The main consequence of the preceding bound is that

C,(W) Za(d?Zn,(n - 1))

and it was originally hoped that this would be sufficient to prove a
conjecture of Yao [16] that any algebraic decision tree of order d for the
extreme point problem must have height Q(#nlog n). The Milnor bound in
this case is not sufficiently sharp to obtain the desired bound. We indicate
in the next section a bound which would be sufficient.

While these last two examples are disappointing in that they do not give
the conjectured nonlinear lower bounds, one should note that since only a
yes—no answer is required there is a logical necessity of only two terminal
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leaves. So, the information theoretic bound in these two cases gives only the
absurd bound log, 2.

5. OPEN PROBLEMS AND DIRECTIONS

Surely the most interesting and important problems pivot about finding
sharper bounds on B(m, n). It is conceivable that B(m, n) = 2°("*+n which
could imply by Theorem 2 that C,(W) = Q(1/. d(log, N — m)). This bound
would yield an 2(nlog n) lower bound in Examples 2 and 3 for fixed d.

In fact, a somewhat weaker result will suffice for this purpose. Let
B(d, m’,n) be the maximum of *S, for any p of the form II7%,p,
(X1, X3,..., x,), with each p, of degree not greater than d. Clearly
B(d, m’, n) = B(dm’, n). The result one really needs in Examples 2 and 3 is
B(d, m’, n) = 29(4""*"_Can one prove better bounds on B(d, m’, n) than
on B(m, n)? Here we note that it is not hard to see that

B(l,m' n) < é (m.l), n<m, (5.1)

j=o '/

since B(1, m’, n) just equals the number of regions of R" which can be
partitioned by m’ hyperplanes. (This is proved in Steiner (1926) [13], which
is in the first volume of Crelle’s J. Reine Angew. Math. and which is better
remembered for containing five fundamental papers of N. H. Abel. For
modern treatment of (5.1) see Wetzel [14] and the references given there.)

A more modest approach to the problems suggested by Examples 2 and 3
rests on obtaining bounds for any small values of d = 2. It is known (Yao
[16]) that C,(W') = Q(nlog n) in Example 3, but there are no other known
nonlinear lower bounds even in the case d = 3.
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