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ABSTRACTH

Three concrete examples are used to show how sym-
bolic computation can be of value in statistical research.
Enough of the syntax of MACSYMA is discussed to pro-
vide an introduction to actual usage. The questions con-
sidered concern the relationship of conditional cumulants
of homogeneous statistics, a method for proving limit
theorems by studying zeros of polynomials, and the
Legendre transformation of some probability densities.
One question which is constantly considered is  When
will MACSYMA seriously help 7"

1. Introduction

MACSYMA and other symbolic computational tools
are now widely available. Still, the statistical commun-
ity has not felt the full impact of these new tools and
many people may not yet realize that the conduct of
rescarch in probability and statistics will be forever
changed by their presence. The purpose of this report is
to illustrate how even naive use of MACSYMA can be of
substantial benefit in research activity which is far from
being a priori computational.

The plan of the report is to first give a gentile intro-
duction to the structure and syntax of MACSYMA, give
a few hints for using MACSYMA comfortably in a
UNIX environment, and then give three examples. The
examples are not concocted but are just selected from the
my »wn e¢xperience in using MACSYMA as one of the
tools of day-to-day research. Finally, brief comments are
given  concerning the ways one can customize a
MACSYMA environment to facilitate the types of com-
putalions common in probability and statistics.

2. Getting Started

The way to get started using MACSYMA is to fire
up MACSYMA, open An Introduction to MACSYMA
by Joel Moses and the MACSYMA Group of Symbloics,
Inc.(1984), and start playing. This is fun and effective. In
stark contrast, you can go to MACSYMA with a tough
problem which you have not succeeded in doing by
hand, try to use MACSYMA for the first time and end
up meeting only frustration and likely failure.

In teaching MACSYMA to my friends, the hardest
thing to get across always seems to be that MACSYMA is
just a tool. A proper attitude is created by thinking of
MACSYMA as being like integration by parts. Surely
integration by parts is a magnificent tool. It shines in
vital areas like the calculus of variations. It gives birth to
the formulas of Gauss, Green, and Stokes. It is a weapon
of first cnowe in many parts of asymptotics. But for all
of thesr virtues, integration by parts will not solve all
problems, and neither will MACSYMA. The first task of
the heginner is to shun the inevitable disappointment of
naive expectations and to articulate those areas of per-
sonal mierest where MACSY MA has a realistic chance of
SuCzess.

The scope of MACSYMA and its interactive nature
are easy to see by looking over a brief but complete
UNIX script of a trial session. In the first computations
we review, the syntax should be obvious if one bears in
mind that the c-lines are entered by the user and the d-
lines are MACSYMAs responses. One small point is that
" is used to denote exponentiation. The symbols (dl),
(d2), etc. will appear on the ieft side on the terminal just
like the c-labels. Their appearance on the right side in

this report is an artifact of using the typesetting features
of MACSYMA ( check out the flag setting typeset:iruel.

(c1) diff(sin{x)/%,x,3)

3sin(x) _ 6sin(x) _ coslx) . 6 cos(x) (d1)
x? x° x x3
(c2) taylor{cos(x)" 3,x,0,6);
_3x%  7x* _61x% ,
1 5 + = it (a2)
(c3) solve(2*x™ 2+x+2)
_J1si+1 _ _ J15i—1
[x = T - 7 ] (GR))
(c5) quit(;

This micro-session is enough to show some of the
power in symbolic computation. One does not need
MACSYMA to calculate the third derivative of sin{x)/x,
or the Taylor series of cos{x ) to four terms, but it is in
fact easier and more reliable than doing it by hand.
Definite and indefinite integrals are also available with a
comparably natural syntax. The use of solve illustrates a
slight variation on natural syntax ,but
solve(2*x” 2+x+3)=0 works just as well.

Before going to a real example, one should learn
some quick syntax. First ";" terminates a command (or ¢
) line. Also, [a,bc] is a list containing a, b, and ¢ There
are assignment operators ":=" which defines functions ,
and " for more typical assignment.

3. Some Practical Hints

There are some frustrations which most newcomers
to MACSYMA seem to meet and which are easily over-
come once "you know the trick". First, the beginner
should avoid the MACSYMA editor. The best way to use
MACSYMA is to work interactively only while explor-
ing and playing. Once a serious problem is to be studied
the MACSYMA commands should be put in a file , say
comp.ile, and executed in MACSYMA with the com-
mand batch(" comp.file")

The benefits of this process are (1) If an error is
made you can stop MACSYMA with “7Z and then just
edit comp.file width your favorite editor, (2) The code
you create becomes an asset which can be used in
different contexts after the traditional pattern of
"modify rather than write”, and (3) The code can be
conveniently quoted in papers, shared with others, etc.

Please do not be mislead. There are many other
tools in MACSYMA which allow one to communicate
with files and with structures within MACSYMA; but,
for a while, these seem best left to vertuosi.

Two more practical hints ? Even if you do not wish
to do ANY symbolic computation MACSYMA can be a
Godsend for its FORTRAN and eqn facilities. in a nut-
shell FORTRAN(expression) produces the FORTRAN
twele 1o compute the specified expression. I find this a
very pleasant way to avoid coding mistakes. In the same




way the lypeset flag of MACSYMA permits you to get
the eqn code of the resulting d-line. This is much more
pleasant and precise than writing your own equations
with eqn. The equations of this report were all done in
this way.

4. Simplicity Though Diligence

One way in which MACSYMA can be of aid in
research is simply by removing the difficulties of looking
at the problem from many sides. Often one has an idea
which can go unexplored because the calculations look
oo cumbersome. This inhibition emerges for two reasons.
First, it takes conviction to go trough a tedious calcula-
lion which may not lead to a vseful result, and second,
the notion of usefulness is often linked to simplicity.

This block can be busted by MACSYMA in a
number of cases. One from my experience concerns con-
ditional cumulants of homogeneous statistics. The reason
on can expect MACSYMA to be effective here is that the
tasks required are just tedious, not ingenious. At
differentiation, substitution, and rational simplification
by expansion MACSYMA is as surefooted as a mountain
goat.

5. Cumulant Correction Formulas

We will assume that f satisfies the homogeneity con-
dition (1.1) and set

Zn = f(Xl,Xz,"‘,Xn) (2.1)

where the X; are independent and uniform on [0,1}.
Further, we denote by Z', a random variable with the
same definition as Z, except that one of the X,'s is con-
strained to be on "forward" part of the boundary of
[0,1)%; that is, one of the X;'s is constrained to be in the
set B = [0,1¢ —[0,1)%.

If Y is any random variable the cumulant generat- °

ing function of Y is defined by
o i
zxi(Y).iT - log E(e) 2.2)
i=1 ’

and the numbers k,(Y) are the cumulants (or semi-
invariants) of Y. Naturally, «,(Y ) is the mean of Y, k is
the variance, and these are the most important of the
cumulants. The third and forth cumulants ( the skew-
ness and the kurtosis) are of interest principally because
after the variance all of the cumulants of a normal dis-
tribution are zero. The cumulants of Z, do not have to
tend to zero for it to be asymptotically normal, but if the
third and forth cumulants tend to zero it is a strong
indication of asymptotic normality.

One of our goals in pursuing the simulation method
studied here (and in particular with bothering about
higher cumulants) is to obtain a computationally
~xpedient method of assessing the possibility of asymp-
tolic normality in the case of computationally important
random variables like the length of the minimal span-
ning tree. In Ramey (1982) the asymptotic normality of
the MST was proved under the hypothesis of an assump-
fon which seems very difficult to verify (but which is
still quite plausible). The asymptotic normality of the
length of the MST remains an important open problem.
In fact, there is no subadditive Euclidean functional for
which normality has been proved yet it is quite likely to
hold for the whole class ( c¢.f. Beardwood, Halton, and
Hammersley (1959) and Steele (1981)).

To begin the conditioning argument, we let
S = min{s: X; ¢lOs)}
thus, S is the size of the side of the smallest cube contain-

ing the data and the origin. We note that with probabil-
ity one there is exactly one of the X; on the forward
part of the boundary of [0,S¥. A key observation is
that we then have that the distribution of Z, equals the
distribution of S?Z', where S and Z', are generated
independently.

Now we can just calculate,

eXpEKl(Z,,)-i,—l‘— - EECPis) (23
z ,

4

s o0 . i
- EE(®'%"15) - EepoKi(Z'n)S*i’%,

i=1

Next we expand both sides of the above using

oo i tZ
expzai.i,.r =1+a;+(a} +ﬂz)-§,-
i=1 ¢! :
.3
+(af +3a2a1+a3)§-+

14
(a +6a,af +4aza, + 3a? +a“)'Z!'+

and then complete taking the expectation by using the
elementary fact that E(S%) = dn(a + dn )L On sim-
plifying the algebra, one finds the following tidy expres-
sions for the conditional cumulants {To save space we
will write x; for x,(Z,):

k(Z) = k(1 + -n%) (2.4a)

2
KA(Z0) = k(1 + %)—xf—ﬁ% (2.4b)

6K1K2p2 2;(13;)3
{
2 + 753 2.4¢)

o 3
K3(Z n) = K3(1 + -—;}5—-)"‘
and finally we have
2
kdZ°,) = m(l-*—%) — 12(x,k5 + K})n—l,;d—f(léld)

24k fkyp3 _ éxy)p?
n3d?3 d*n?

The method we have used is a natural one, but
there are two surprises. The first of these is that the
homogeneity hypothesis is powerful enough to give such
simple results. The second is that it turns out to be
incredibly neater to give an expression for the condi-
tional variances in terms of the unconditional ones rather
than viceversa.

The idea of using a generating function approach to
obtain conditional cumulant formulas is inherent in the
definition of cumulants. It has been used often, and in
particular the method is applied in Brillinger(1969) to
obtain a general formula relating cumulant to condi-
tional cumulants. Interestingly, that an attempt to obtain
the identities (2.4a-d) directly from Brillinger’s general
formula is almost certainly doomed to failure because of
the very much greater algebraic complexity of the

expressions for the unconditional cumulants in terms of
the conditional ones.

There is a second method for obtaining results relat-
ing conditional and unconditional cumulants which uses
Mobius function of the lattice of partitions. Speed(1983)
introduced this method and showed its attractiveness in
a number of examples including an intriguing derivation
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of Brillinger's formula. The Mobius function method
shows great promise; but, at the present level of complex-
ity, series inversion used here still seems to be the tool of
choice.

Some comments on the formulas (2.4a-d) are in
order before going on to the simulation method. In the
first place, even the modest equation (2.4b) is able to pro-
vide some interesting lower bounds on the variance of
certain subadditive Euclidean functionals. We will illus-
trate with the traveling salesman problem (TSP) in
dimension 2, but comparable results will obviously hold
for the minimal spanning tree, minimal triangulation,
and other functionals and other dimensions.

The only fact we require about the TSP is that if
f{X X5 -+.X,) is the length of the shortest tour
thrqugh the points X; 1 & $n then k, is asymptotic to

Bn? as n tends to infinity (Beardwood, Halton, Ham-
mersley (1959)). Since this f is homogeneous of order

p=1, equation (2.4b} implies that K, is (X-’ll_). This modest

bound is of interest because it is known that k; is
hounded for all n { Steele (1981) ), but no better lower
bound than the one just give is known. Naturally, it is
expected for the TSP in d=2 that k, converges to a posi-
tive constant as n goes to infinity.

6. Simplicity Though Diligence

One way in which MACSYMA can be of aid in
research is simply by removing the difficulties of looking
al the problem from many sides. Often one has an idea
which can go unexplored because the calculations look
too cumbersome. This inhibition emerges for two reasons.
First, it takes conviction to go trough a tedious calcula-
tion which may not lead to a useful result, and second,
the notion of usefulness is often linked to simplicity.

This block can be busted by MACSYMA in a
number of cases. One from my experience concerns con-
ditional cumulants of homogeneous statistics. The reason
on can expect MACSYMA to be effective here is that the
tasks required are just tedious, not ingenious. At
differentiation, substitution, and rational simplification
by expansion MACSYMA is as surefooted as a mountain
goat.

One of the properties of mathematics ( which also
persists in_ statistics) is a strong preference for simple
answers. Part of the process of getting to understand the
power of symbolic computation rest in comming to terms
with complex results. What makes this novel is that one
typically does not have to deal with complex results
because once a calculation gets past a certain complexity
threshold it is given up for lost. In a computational
environment one can get extremely complex results and
one faces the new challenge of using such results intelli-
gently.

7. The Legendre Experience

This feature of the changing role of complexity is
well illustrated by the enjoyable practice of computing
Legendre transformations. For any function f(x) the
Legendre transformation may be defined by

gy) = max(xy — f(x)

The importance of this transformation in analysis
comes in part from the relaxed inequality

oy L) +g(y)

For example, the following famous transform relation is
the key to Holders inequality,

b4 q
xy £ R A
p q
provided i+_l_ = 1. In the same way that one can use
Holder’s inequality to determine the the dual space of

the pth power integrable functions, one can start off
with any Legendre transform pair.

A statistical problem of interest is the determination
of all of those functions h{u,0) which have a finite
integral when multiplied by the normal density
& x;u,0) and integrated with respect to u and o. To
study this MACSYMA was used 1o calculate the (bivari-
ate ) Legendre transformation of ¢ with respect to
& and o. The result takes a page to express. Still, this
worm of an expression is probably the best available tool
for determining which priors on x4 and o will guarantee
a posterior distribution which is absolutely continuous
with respect to Lebesgue measure.

For a discussion of the classical Legendre transfor-
mation ( as it applies to Hamiltonian systems } as well as
one version of a MACSYMA Legendre transformation
one should consult Rand (1984).

8. Mixed Computations

The symbolic computational capacities of
MACSYMA are augmented with numerical and graphi-
cal capabilities. This addition to the workbench permits
the joint investigation of "formulas” and the exploration
of their quantitative features.

One way this plays out to the investigators advan-
tage is that it is possible to gain insight from much larger
examples than would normally be possible. A useful
example of this from my own experience come for the
theory of random trees.

The detailed example is given in Steele(1985), but
the role of MACSYMA is easy to review without those
details. The generating function for the number of leaves
of a random tree was derived in Renyi(1959) under the
model of randomness which corresponds to the uniform
distribution on the Pruffer codes ( These codes provide a
natural one-to-one correspondence between labeled
unrooted trees and n-2 tuples of the integers 1 <k <.

For the purpose of modeling, the uniform model on
trees is quite limited , e.g. one can not escape the conse-

quence of there being approximately .’5. leaves on the

great majority of the trees. How much nicer for model-
ing purposes if we had a family of tree valued random
variables whose expected number of trees could be
chosen by the modeler ? There is such a family and a
method for generating choices from that family given in
Steele(1985).

One virtue of Renyi's distribution on random trees
is that Renyi was able to prove a central limit theorem
the number of leaves of a tree form his family ( as n
tends to infinity). To establish the corresponding result
in the exponential family of random trees it appeared to
be almost necessary to show that the generating func-
tions given by Renyi had all real zeros. Naturally that
opinion takes considerable motivation. Using MACSYMA
it was possible to examine polynomials up to n=10 were
it was discovered that for large n there were non-trivial
complex roots. The plan of analysis was saved when it
was found that by adding a stochasticly negligible term
to Renyi’s polynomial the roots could be forced back to
the real line. This eventually lead to a proof of the cen-



tral limit theorem for the number of leaves of a tree
from the exponential family. This is particularly satisfy-
ing because it plays back into the original motivation by
making the mean number of leaves an essential parame-
ter.

9. Concluding Remarks

This introduction to MACSYMA has been casual
and discursive. The goal has been to motivate others to
begin productive interaction with the tools which are
now widely available. The hints which have been given
are those that seem to be responsible and welcoming,
There is a great deal of benefit to the statistical commun-
ity which can be gained from symbolic computation and
it is inevitable that current efforts will be made to look
primative by those which will follow very shortly. It is
especially intersting to imagine how our collective con-
ception of what constitutes a useful answer will migrate
in the next few years.
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