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A b s t r a c t .  Scan statistics are commonly used in biology, medicine, engineering and 
other fields where interest is in the probability of observing clusters of events in a win- 
dow at an unknown location. Due to the dependent nature of the number of events 
in a large number of overlapping window locations, even approximate solutions for 
the simplest scan statistics may require elaborate calculations. We propose a new 
martingale method which allows one to approximate the distribution for a wide vari- 
ety of scan statistics, including some for which analytical results are computationally 
infeasible. 
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1. Introduct ion 

Scan statistics are used in a wide range of fields including brain imaging (Yoshida et 
al. (2003)), psychology (Margai and Henry  (2003)), ve te r inary  medicine (Enemark  et al. 
(2002)), forestry (Coulston and Rii t ters  (2003)), crime hot-spot  analysis (Kaminski  et al. 
(2000)), industrial  qual i ty control  (Shmueli (2003a, 2003b)), and especially molecular  bi- 
ology (Durand and Sankoff (2003), Goldste in  and Wate rman  (1992), Karl in  and Brendel  
(1992), Naus and Sheng (1997), and Sheng and Naus (1994)). Four recent books sum- 
marize the current  s ta tus  of the field: Glaz and Balakr ishnan (1999), Glaz et al. (2001), 
Balakrishnan and Z o u t r a s  (2002) and Fu and Lou (2003). 

Different applicat ions use scan statist ics of different kinds. In the simple form con- 
sidered by Naus (1965), there  is a t empora l  Poisson point  process which is considered 
over a fixed t ime length T and there  is a fixed size window of much shorter  length. We 
then  move (or scan) the window cont inuously from the s ta r t  to end, counting at each 
location the number  of events wi thin  the window. Th e  scan statistic is then  defined as 
the max imum number  of events as the window moves over all possible locations. In most  
applications, the main  quest ion of interest  is whether  the cluster of events defined by the 
max imum is a likely chance occurrence or not,  so the  most  common null-hypothesis  is 
tha t  the point  process is a homogeneous  Poisson process. T h a t  is, we are interested in the 
probabi l i ty  of observing at least the observed number  of events as the maximum,  given 
tha t  the null-hypothesis  is true.  More generally, we are interested in the dis t r ibut ion of 
the test  statistic. 

The  most  commonly  used variants  of the scan stat ist ic are (i) t empora l  and o ther  
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one-dimensional scan statistics versus spatial, spatio-temporal and higher dimensional 
scan statistics, (ii) continuous scan statistics where events can occur anywhere versus 
discrete scan statistics with a sequence of trials at which the event either occurs or 
does not occur, (iii) a homogeneous versus known inhomogeneous background intensity 
defining the null-hypotheses, (iv) a conditional or unconditional scan statistic where the 
conditioning is on the total number of events observed, (v) a fixed versus variable size 
scanning window, (vi) single scan statistics with only one type of events versus double 
scan statistics with two or more types of events, and (vii) univariate versus multivariate 
scan statistics, with the latter simultaneously scanning multiple data streams. 

While simple to formulate, the probabilistic nature of the scan statistics is very 
complex due to the dependencies of the overlapping window locations considered. Exact 
derivations of the distribution function is only available for the simplest scenarios such 
as temporal scan statistics with fixed window size and a homogeneous null-hypothesis. 
Good approximations as well as lower and upper bounds are known for additional scan 
statistics, but for most practically important applications the scan statistic must be 
evaluated using simulations (Glaz et al. (2001)). 

Martingales have been used successfully for many practical statistical and probabil- 
ity problems, and their introduction has major impacts on fields such as survival analysis 
(Aalen (1978), Andersen et al. (1993)). In this article we present a martingale approach 
to scan statistics with which it is possible to obtain good approximations for the dis- 
tribution of several scan statistics for which analytical results are not readily available. 
Using martingales, Li (1980) derived the first moment and we derive the second moment 
of the waiting time until we observe a specified number of events within one or several 
windows of specified lengths. Using these two moments we obtain approximations for 
the distribution of this waiting time. 

The martingale approach to derive the generating function and moments is an al- 
ternative approach to the Markov chain embedding method where the waiting time 
until reaching a pattern is represented as a hitting time at a state of a relevant Markov 
chain. Elaborations on the Markov chain embedding methods and its applications to 
the theory of runs and patterns are given, among others, in Fu (1986, 1996 and 2001), 
Chao and Fu (1991), Pu and Koutras (1994), Uchida (1998), Aki and Hirano (1999), 
Antzoulakos (2001), Robin and Daudin (2001), Balakrishnan and Koutras (2002), Fu 
and Chang (2002), Fu and Lou (2003) and Han and Hirano (2003). Related methods on 
the occurrence of patterns include the probabilistic methods based on recurrent event 
theory (Feller (1968), Breen et al. (1985), and Chrysaphinou and Papastavridis (1990)), 
the method of Markov renewal embedding (Blom and Thornburn (1982) and Biggins 
and Cannings (1987)) and Markov chain embedding which uses analysis of exponential 
Markov chains (Stefanov and Pakes (1997) and Stefanov (2000)). Recently, Stefanov 
(2003) introduced a new approach to evaluate the generating function of the waiting 
time for a pattern generated by both discrete and continuous processes. 

The article is organized as follows. In Section 2, we present the martingale approach 
for deriving the first two moments and generating function of the distribution of the 
shortest waiting time until the occurrence of one of several predefined patterns in a 
sequence of iid discrete observations. In Section 3 we use the first two moments to 
approximate the waiting time distribution. In Section 4, we use these results to evaluate 
approximations for the distribution of fixed window scan statistics. The accuracy of 
these approximations is evaluated with the help of available lower and upper bounds. 
In Sections 5 through 7 new approximations are derived for the variable window scan 
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statistics, the double scan statistics and the mult ivar ia te  scan statistics.  Finally, some 
concluding remarks and open issues are reviewed in Section 8. 

2. Moments and generating functions 

Here we will derive the first and second moments  and the genera t ing  funct ion of the 
wait ing t ime until  we observe one element  from a set of several predefined pa t te rns .  We 
will then  show how these moments  yields a computa t ionMly feasible approximat ion  for 
the dis t r ibut ion of the waiting time. 

2.1 Expected time 
Let Z be an a rb i t ra ry  discrete r andom variable which takes values in the set E, and 

let (Z,  Zk }k>l be a sequence of independent ,  identically d i s t r ibu ted  r an d o m  variables. 
Consider a collection of finite sequences (Aj} I<j<K over E, and wi thout  loss of 

general i ty  assume tha t  no sequence contains ano ther  as a subsequence.  Next ,  we denote  
by "rAj the  waiting t ime until  Aj occurs as a run in the series Z1, Z2,. �9 .. We are interested 
in b o t h  expected t ime of 

(2.1) 7 = min{ ' rA1, . . . ,  "rAg } 

and probabili t ies Try = P("r  = "rAj). 
The  mart ingale  approach to this problem was in t roduced  in an elegant paper  of Li 

(1980), and it has been fur ther  developed by Gerber  and Li (1981), Williams (1991), 
Blom et al. (1994), and Pozdnyakov and Kulldorff  (2003). For clari ty of presentat ion,  
we will briefly review some of these results. 

Following Li (1980), we introduce a measure of the amount  of overlap between two 
sequences. Let  A = ( a l , . . . ,  am) and B -- ( b l , . . . ,  bk) be two sequences over the a lphabe t  
E, and for each pair  ( i , j )  we write 

1 / P ( Z  = by) if 1 < i < m,  1 _< j < k, and ai = by 

(~ij = 0 o the rwise .  

Next,  we define A * B by set t ing 

(2.2) A �9 B = 511522"" 5,~,~ + 621532"" 5ram-1 + "'" + 5ml, 

and we set II = O h , . . . ,  7rK) • Y = ( Y l , . . . ,  YK) • Finally, we consider the ma t r ix  

[ A I * A 1  A I * A 2  . . .  A I * A K ]  
! 

A2 * Ax A2 * A2 A2 * AK | 
(2.3) M = . . " / ' 

L AK * A1 AK �9 A2 AK * AK J 

which Gerber  and Li (1981) proved to be nonsingular.  One has two notable  results of Li 
(1980): 

THEOaEM 2.1. (Li, 1980). The expected value of "r is given by 

1 
E("r )  = 

Y~ + "'" + YK 
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where Y* = (y~, . . . ,y*K) • is the unique solution to the linear system M Y  = 1, and 
1 = ( 1 , . . . , 1 )  • 

THEOREM 2.2. (Li,  1980). The vector of  probabilities II = (Tq, . . . ,Tr / ( )  • satisfy 
equation M •  = E(~-)I .  

2.2 Generating funct ion 
Mart ingale  arguments  for finding the generat ing funct ion of the waiting t ime in 

the case of one pa t t e rn  were originally developed by Gerber  and Li (1981). In their  
method,  the t ransi t ion from one pa t t e rn  to  many  is based on some results on hi t t ing 
t imes in a Markov chain, bu t  our approach is based on matching expressions of the 
s topped  mart ingale  for different terminal  pat terns .  This  a l ternate  m e th o d  is intuit ive 
and simple; moreover,  it can be employed to  get higher order  moments .  

To see how this works, we first consider a simple example  first, and then  we will 
show how it can be generalized. 

Example 2.1. We flip a fair coin and we wait  for one of two sequences: A1 = H H  
and A2 = H T H .  We are interested in the genera t ing  funct ion of ~- = min{~-A1, TA2 }. 

Assume tha t  we have two teams of gamblers.  Before n - th  round a new gambler  from 
the first t eam joins the  game and s tar ts  be t t ing  y l a  n dollars on the sequence A1; here 
0 < a < 1 and Yl is a number  tha t  we will choose later.  If  Zn ~ H ,  then  he leaves the 
game wi th  nothing. If Zn -- H ,  he doubles his money, and bets  the whole for tune on 
the event  t ha t  Zn+l = H.  If he win, he leaves the  game wi th  4ylc~ n dollars. If he loses, 
then  again he leaves with nothing. The  second t eam bets  in the similar fashion on the 
sequence A2 bu t  the initial bet  of the gambler  who joins game at  n - th  round is y2o~ n. 
Let  X n  be the net casino gain at moment  n. Since the amount  of each bet  at n - th  round 
is always de termined  by the history up to the momen t  n - 1, and in each case the odds 
are fair, therefore,  the  net  casino gain is a mart ingale.  It  is easy to  see tha t  

, ~ - 1  (4a  r -1  + 2CK) + Y2 X 2a~'], if T X T  = (YI + Y2)a--j-Zy_l - [Yl X = TA1, 
1 (Yl + y 2 ) a ~  [Yl x 2a  ~ + Y2 x (8a  ~-2 + 2a~)], if ~- = TA2, 

which simplifies to 

" ~a~'-* - [ (4 /a  + 2)yl + 2y2]a ~', if ~- X~ = (Yl -[- Y2) ~ = TA1,  

( y l  + [2y l  + 2 + i f  = % .  

Now let us assume tha t  we can choose the initial bets  (y{', y~) in such way tha t  

+ 2 ) y ;  + = 1 

2y~ + ( 8 / a  2 + 2)y~ = 1. 

The n  regardless which sequence occurs first the s topped  mar t ingale  is given by 

O? r - -  1 Old." 

= + _ 1 

Since the expected  value of 7 is finite, and the increments  of the mart ingale  Xn is almost  
sure bounded,  we find by the Opt ional -Stopping T h e o r e m  tha t  

O~ ~_ , C~ E o r  ' 
0 = EX~ -- (y~ +y~)-~--~_iEa - (y~ +y2) a _ 1 
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and we m a y  solve for E a  T to ob ta in  

E a  T = 1 - O/ , 
i --O~ (yl  -~- Y~) -~- 1 

This  me thod  also works in the  general  s i tua t ion  of K s topp ing  sequences,  provided 
t h a t  one makes  the  na tu ra l  a l terat ions.  Firs t  we in t roduce a slightly modif ied measure  of 
the amoun t  of overlap between two sequences.  I f  A = ( a l , . . . ,  am) and  B = ( b ~ , . . . ,  bk) 
are two sequences over E then  we define 

(2.4) A * B(a)  = ~11~22""" ~ m m / O l i n - 1  + (~21(~32 " '"  ~ m m - - 1 / O  ~ m - 2  -'k " "" -Jr ~ m l / X .  

Assume tha t  we have K t eams  tha t  be t  on the  K sequences in the  cor respondence  wi th  
the rules of fair odds  as they  are descr ibed in the  above example  and  the  n - th  player  
f rom j - t h  t e a m  s t a r t  his be t t ing  on the  sequence Aj wi th  an  initial  be t  of yjan dollars. 
The  net casino gain  at  t ime ~- is given by 

Let  

(Yl + + yK)c~__-11 K Ai(a)yic~ T, if T ---- TA1 " ' "  7" - -  E i = l  A1 * 
( y l + . . . + y K ) a  ~T-1 ~-]glA~*Ai(c~)yiaT , if T =  o~--1 TA2 ' 

XT---- 

(y, + + yK)  "T-1 Ei IA,  �9 T, if 0~--------~ - -  ~" T A K  " 

A I * A I ( a )  AI * A2(a) . . .  AI * AK(a)  ] 

A2 * Al(O~) A2 * A2(a )  A2 * AK(a)  | 
( 2 . 5 )  M ( a )  = . . " / " 

AK * AI(a)  AK * A2(~) A K *  A K ( a ) J  

Note  t ha t  M(1 )  -- M and as it was shown in Gerbe r  and  Li (1981) the  mat r ices  M ( a )  
are non-singular  for all 0 < c~ _< 1. 

T h e  m e t h o d  of E x a m p l e  2.1 then  yields a general  result .  

THEOREM 2.3. The generating function of 7 is given by 

Ec~ T --- 1 - 
( 

where Y* -- ( y ~ , . . . ,  y'K) • is the unique solution to the linear system M(c~)Y = 1. 

2.3 Second moment 
I t  is pe rhaps  surpr is ing t ha t  a more  e labora te  scheme is needed to app ly  this general  

idea of ma tch ing  the  s topped  mar t inga le  to compu te  of the  second m o m e n t  of T. The  
crucial  idea is to in t roduce  two t e ams  for each sequence (i.e. in to ta l  we have 2 K  teams) ,  
and to i l lus t ra te  the  idea, we again  consider a sequence of Bernoull i  trials. 

Example 2.2. We flip a fair coin and  we wai t  until  we observe one of two sequences: 
A1 = H H  and A2 -- H T H .  Our  goal is to find the  second m o m e n t  of wai t ing  t ime  
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7 = min{wA1, TA2}.  The gambling is organized now in the following way. When  a 
gambler from the first t eam of those two tha t  bet  on Aj joins the game at the n- th  
round he starts  his bet t ing wi th  yjn dollars, a gambler from the second team bets zj 
dollars. 

The net casino gain at  the moment  7 is given by 

(Yl -+- Y2) 2 ~- (Zl ~- Z2)7 

- -  [Yl (4(~- -- 1) + 2v) + y27 + 6zl + 2Z2], if T = TA1, 

X~- ~--- (Yl -~- Y 2 ) ~  + (Zl + 22)7 

-- [y127  + y 2 ( 8 ( 7  -- 2) -{- 27 )  -t- 2Zl + lOz2] ,  if  T ---- TA2. 

Rearranging terms we get 

XT 

= { (yl 
(yl 

y2~ r ( r + l )  -~- / 2 Jr- (Zl -}- Z2)T 

--  [ (6y l  -~ 2 y 2 ) 7  Jr- 4 ( - - 1 ) y l  -~- 6Zl  -t- 2Z2], i f  

-~- ] 2 -~- (Zl ~- Z2)7 

- [(2yl + 10y22)7 + 8 ( - 2 ) y 2  + 2z~ + lOz2], if 

T~--TA1 , 

T ~ 7A2. 

Now, let us assume tha t  we can choose the initial bets (y~', y~) and (z~', z~) in such way 
tha t  we have the relation 

, 

Yl + 2y~ = 1 

2y~ + 10y~ ---- 1 

and the relation 

4 ( - 1 ) y [  +6z~  +2z~  = 1 

8( -2)y~ +2z~  + 10z~ = 1. 

For such a choice of initial bets the stopped martingale is given by 

+1) 
= 2 

- - +  (z~ + z~)T-- T - 1. 

After taking the expected value of bo th  sides of the last equat ion and solving it wi th  
respect to ET 2 we get a formula for the second moment.  Natura l ly  one needs to employ 
the Optional-Stopping Theorem here, and, a bit later, we will show tha t  this is indeed 
justified. 

Now, to write the value of the net casino gain at  the moment  7 we first need to 
introduce the following notat ion.  If A = ( a l , . . . , a m )  and B = ( b l , . . . , b k )  are two 
sequences over E, then  we define 

(2 .6)  A . B  = -(~11~22 . .  �9 ~rr~,m(?n -- 1) --  ~21~32 "" �9 (~mm_l (TY/, -- 2)  . . . . .  ~,.nl O. 
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The stopped mart ingale X~- is given by 

K K 
Ei=l  Yi ~ + Ei=l  ziT- 

- E Ki=l A1 * AiyiT - EK_I A1 * Aiyi - EK_I Am * Aizi, 
K 

K K A X ,  : - -  E i = I  A2 * A~yi7 - EiIiIiIiK=l A2 * Aiyi - E i = l  2 * Aizi, 

K K 
E i = I  Yi ~ + E i = I  Z i T  

K K K 
-- E i = I  AK * AiYir - E i = I  AK * Aiyi - E i = I  AK * Aizi,  

if 

if 

if 

T = T A 1  , 

T = T A 2  , 

T ~ T A K .  

Let us define 

(2.7) N = 

A1 * A1 A1 * A2 . . .  A1 * AK 

A2 *. A1 A2 *. A2 A2 *. AK 

k AK * A1 AK * A2 AK * AK 

Suppose tha t  we can find such Y* -- ( y { , . . . ,  y ~ ) •  and Z* = ( z ~ , . . . ,  z~() • tha t  

M Y *  = 1 

N Y *  + MZ* = 1 

then the stopped mart ingale X~ is given by 

~-~ . 7(w + 1) K 
= E z * ' r  1. X~ ~ Yi ~ + - T - 

i=1 i=1 

Now it is t ime to apply the Optional  Stopping Theorem. However, the increments of the 
net casino gain Xn are no longer bounded almost sure, so we need a stronger version. 
The classical Doob's Optional-Stopping Theorem (e.g., Shiryaev (1995) p. 485) will do 
the trick; one just  needs to note tha t  Xn is at most O(n2), but  P(~- > n) goes to zero 
at exponential  rate. After some algebra we get a general formula for ET 2. 

THEOREM 2.4. Let Y* = (y{ , . . . , y*g)  • and Z* = (z~ , . . . , z~ ( )  • be the unique 
solution to the linear system 

M Y *  = 1 

N Y *  + M Z* = 1 

then 
ET 2 = 1 + (1 g . K 

g . 
~-~=1 Yi/2 
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3. Approximating the distribution of the waiting time 

With  the first two moments  in hand,  we can approx imate  the dis t r ibut ion of the 
waiting t ime ~- with the help from several possible benchmark  distr ibutions.  This  choice 
is critical, and the most  na tura l  choices may  not  be the  best.  In some ci rcumstances  one 
can do be t t e r  t han  to use exponential ,  g a m m a  or Weibull. 

W he n  selecting the best  approximat ion,  it is impor t an t  to realize tha t  for our  pur- 
poses the  accuracy in the tail  of the dis t r ibut ion is im p o r t an t  because we are interested 
in the probabi l i ty  of the waiting t ime being larger t h an  T, where T is relatively fax away 
from 0. Moreover,  as t ime goes on wi thout  observing the desired event, the process is 
more and more independent  of the s tar t ing condit ions,  and hence, P(T : T I T > T - 8) 
is approximate ly  equal to P(~- -- T - 1 I 7- > T - s - 1) for large T. This  is the prop- 
er ty  of a homogeneous Poisson process, and hence we would expect  tha t  the tail  of the 
waiting t ime dis t r ibut ion is approximate ly  exponent ia l .  This  leads us to  suggest using 
the dis t r ibut ion of r andom variable c + X to approx imate  the dis t r ibut ion of T, where 
c = # - a is a constant ,  X is exponent ia l ly  d i s t r ibu ted  wi th  pa rame te r  cr, # = E(~-), 
and a 2 -- Var (T) .  This  ensures tha t  the approx imate  dis t r ibut ion has the same first two 
moments  as the t rue  distr ibution.  We call this the  shifted exponential distr ibut ion,  and 
it suggests t ha t  

P(T <_ n) , ~  1 - -  e x p ( - ( n  + 0.5 + cr - #)/a),  

where the 0.5 t e rm is a cont inui ty  correction.  
To show tha t  this is indeed a good approx imat ion  of the distr ibution,  we will com- 

pare it wi th  two other  candidates:  
1) exponential 

P(7  < n) ~ 1 - e x p ( - ( n -  l)/#), 

where l is the length of the shortest  sequence 
2) gamma 

1 / ( n -O /b  
xae-Xdx, P(7- < n) ,.~ ~(a) Jo 

where l is again the length of the shortest  sequence, b -- or2/#, and a = #lb. 
Here the factor  l has been in t roduced to improve the  per formance  of these two 

approximat ions,  bu t  we will see tha t  even wi th  the best  choice of I the shifted exponent ia l  
d is t r ibut ion does be t t e r  than  each of these. We also invest igated the Weibull  d is t r ibut ion 
based approximat ion.  But  the  Weibull approximat ions  are significantly worse than  those 
of the exponent ia l  and the gamma,  so we omit  them.  

4. Fixed window scan stat ist ics 

Example 4.1. Assume tha t  we observe a sequence of Bernoulli  trials where the 
probabi l i ty  of failure is known and relatively small - 5 % .  w e  have an alert if we observe 
too many  failures during a short  per iod of t ime. Specifically, we stop the process if we 
observe three  or more failures in any 5 sequential  trials. 

The  first quest ion is how long we have to wait  for an alert  which is caused purely 
by randomness,  and this problem can be easily addressed by T h e o r e m  2.1. Indeed,  
we have an alert  when the following runs occur  first t ime: (1) 3-out-of-3--FFF, (2) 
3-out-of-4--FFSF, F S F F ,  (3) 3-out-of-5--FFSSF, F S F S F ,  F S S F F .  



T a b l e  1. 

A M A R T I N G A L E  A P P R O A C H  T O  S C A N  S T A T I S T I C S  

F ixed  w i n d o w  scans :  a t  l eas t  3 o u t  o f  10, P(F) = .01, # = 30822,  a = 30815.  

sh i f t ed  u p p e r  lower 

n e x p o n e n t i a l  e x p o n e n t i a l  g a m m a  b o u n d  b o u n d  

500 0.01600 0 .01589 0 .01597 0 .01588 0.01589 

1000 0.03183 0 .03173 0 .03179 0.03171 0.03174 

1500 0.04741 0.04731 0.04736 0.04729 0.04733 

2000 0.06274 0 .06265 0 .06267 0 .06262 0.06267 

2500 0.07782 0 .07773 0 .07775 0 .07770 0.07776 

3000 0.09266 0 .09258 0 .09258 0 .09254 0.09261 

4000 0 .12162 0 .12155 0 .12154 0 .12150  0 .12169 

5000 0.14966 0 .14960 0 .14957 0 .14954 0.14965 

29 

Tab l e  2. F ixed  w i n d o w  scans :  a t  l eas t  4 o u t  of  20, P(F)  = .05, tt = 

n 

sh i f t ed  u p p e r  

e x p o n e n t i a l  e x p o n e n t i a l  g a m m a  b o u n d  

50 0.09110 0 .07827 0 .08268 0 .07713 

60 0.10977 0 .09770 0 .10059 0 .09543 

70 0.12807 0 .11672 0 .11828 0 .11337 

80 0 .14599 0 .13534 0 .13573 0 .13095 

90 0.16354 0 .15357 0 .15292 0 .14819 

100 0 .18073 0.17141 0 .16985 0 .16508 

481.59,  a = 469.35.  

lower 

b o u n d  

0 .07940 

0 .09989 

0.11991 

0.13949 

O.15864 

0 .17736 

By Theorem 2.1 and easy numerical calculations one finds the expected time is 
1608.4. Moreover, Theorem 2.4 tells us that  the standard deviation of the waiting time 
is 1604.8, a value that  is notably close to the mean. Still, this is not surprising; an alert 
is a rare event and dependence between two consecutive alerts is weak, so one expects 
the distribution of the waiting time to be approximately exponential. 

For the fixed window scan statistic, Glaz and Naus (1991) developed tight lower 
and upper bounds which are presented in Tables 1 and 2 along with the approximations 
based on the exponential, shifted exponential, and gamma distributions. As can be 
seen, the shifted exponential approximation performs consistently well, and it has the 
reassuring feature of staying between the lower and upper bounds. When p is large and 
a is close to #, the differences between the various approximations are marginal and all 
of the estimates are close to the true probability, but one should note if p is relatively 
small and a differs from p, the approximations based on the exponential and gamma 
distributions do not perform as well as the shifted exponential approximations. 

In conclusion, we see that  the first two moments are sufficient to obtain a very 
good approximation for the fixed window scan statistic. We will see shortly that  the 
martingale approach can be successfully used for other scan statistics, even those for 
which no good bounds or approximations were known earlier. 
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5. Scan statistics with a variable window size 

W he n  searching for clusters, the cluster size is often unknown. T h a t  means  tha t  
we do not  know the proper  window size to use. For example,  if we use a window size 
of 3 days we may be unable to de tec t  a 3 week cluster, or vice versa. To solve this 
problem, Loader  (1991) and Kulldorff  (1997) used the likelihood funct ion instead of the 
event count  to rank  the potent ia l  clusters. This  means,  for example,  t ha t  a cluster with 
5 events during 10 days may be ranked higher t h an  bo th  a cluster  with 6 events during 
20 days and a cluster  with 2 events dur ing  4 days. 

Example 5.1. Suppose tha t  in a sequence of 30 Bernoulli  trials with probabi l i ty  of 
failure p -- .25 we observe a window of size 7 with 5 events, and we want to know the 
probabi l i ty  of observing a cluster  of this or higher likelihood during 30 r an d o m  trails. 
The  first step is then  to find other  cluster  with higher likelihood, which tu rn  out  to be a 
window of 5 with 4 events and a window of 3 wi th  3 events. This  is, we should moni tor  
for the following three  types of alerts: (1) when we observe an F run  of length 3, (2) at 
least 4 F out  of 5 consecutive trials, (3) at least 5 F out  of 7 consecutive trials. 

It  is easy to see then  tha t  the alerts of all kinds are produced  by only three sequences: 
FFF, FFSFF, FFSFSFF. Therefore ,  by Theorems  2.1 and 2.4 we find tha t  the 
expected  t ime for an alert  is 72.345, and s t anda rd  deviat ion is 69.828. 

By  The o r e m 2.3 and the help of Mathemat i ca ,  one can show also tha t  for an arbi- 
t r a ry  p one has 

E(c~. ) _ P(c~) 
Q(c~)' 

where 
P ( ~ )  =- p30z3 -k p4qc: + p5q2a7 

and where 

Since 

Q(c 0 -- 1 + ( -1  + p)c~ + ( -p  + p2)c~2 
+ (_p2 + p3 + p2q)o~3 + (_p2q + p3q)o~a + (_p3q + p4q + p3q2)c~5 

+ (_p3q2 + p4r + (_p4q2 + : r  

E(T)- OE(o/r) c~=l 
c9o~ 

one can get the expected  t ime via differentiation. 
Now, going back to the original problem, we can see tha t  observing a cluster  5-out-of- 

7 failures in the sequence of 30 trials is not  a rare event since the expected  t ime till having 
this cluster  (or a more ext reme one) is abou t  70. Th e  shifted exponent ia l  approximat ion  
gives a p-value which is approximate ly  equal to .33. Th e  s imulated (10000 simulations) 
p-value is also ~.33.  

Example 5.2. Assume tha t  we observe iid Bernoulli  trials with p = .01 and we 
scan for (1) at least 2 failures in 10 consecutive trials, (2) or at least 3 in 50 consecut ive 
trials. 

We are interested in the approximat ion  for the dis t r ibut ion of the wait ing t ime till 
one of these two si tuat ions occur. The  to ta l  number  of s topping pa t te rns  tha t  t r igger  
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Table  3. Variable  window:  a t l e a s t  2 ou t  of  10 or  a t l e a s t  3 ou t  of  50, P(F) = .01, # = 795.33, 

a = 785.85. 

shif ted s imula ted  

n exponent ia l  exponen t i a l  g a m m a  N = 100000 

50 0.05857 0.05085 0.05542 0.05029 

60 0.07033 0.06285 0 . 0 6 6 8 5  0.06187 

70 0.08195 0.07470 0.07817 0.07404 

80 0.09342 0.08640 0.08939 0.08623 

90 0.10474 0.09796 0.10050 0.09718 

100 0.11593 0.10936 0.11150 0.11058 

these two alerts is 224. In this case, the exponential and gamma approximations are 
especially interesting, because it is difficult to get the exact distribution of % to the 
best knowledge the most efficient method is the computationally heavy Markov chain 
embedding method given by Antzoulakos (2001). The introduced approximations could 
be useful provided they are accurate, and as we will see they are. 

The numerical results are given in Table 3, and compared with estimated probabili- 
ties based on 100000 replications. We see that the two moment approximation based on 
the shifted exponential distribution performs quite well, and these approximations are 
the first approximations that anyone has given for this variable window scan statistic. 

6. Double scan statistics 

Naus and Wartenberg (1997) and Naus and Stefanov (2002) considered double scan 
statistic where one is interested in the probability of observing a cluster where the window 
contains at least k 1 events of type 1 and at least k2 of events of type 2. The martingale 
approach works for these types of scan statistics as well. 

Example  6.1. Assume that  we have two types of failures F1 and F2 and suppose 
that  we stop if we have three failures of the first type in a row or at least two F2 
out of three consecutive trials. The waiting time for an alert caused by randomness is 
determined by the first occurrence of any of the following four runs: (1) FIF1F1,  (2) 
F2F2, (3) F2F1F2, and (4) F2SF2. 

If we let P(F1)  = Pl, P(F2)  = P2, and P ( S )  = q = 1 - Pl - P2, then the matr ix 
M ( a )  is given by 

= 

1 1 1 0 0 0 

1 1 ! 1 
0 ~ + p2 p~ p2 

1__ 1 1 ! 0 p~ ~ + p-~ v~ 
! ! 1 1 0 ;~ p~ ~ + 

and by solving the system M ( a ) Y  = 1 we get generating function for ~- 

E ( a  ~) =-- 1 - 1 + 1_---2~ 

1 1 1 - - +  - + - -  
1 Pl q Plq 

1 1 (  1 
- - + - - +  - -  + - -  l + - + - -  
Pl P~ a2P~ P2 Pl q 

-1 
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Table  4. Doub le  scans:  three  F1 in a row or  a t  least  two  F2 ou t  of  3, P ( F I )  = .04, P ( F 2 )  = .01, 

# = 324.09, a = 318.34. 

shif ted s imula ted  

n exponen t ia l  exponen t i a l  g a m m a  N -- 100000 

10 0.02438 0.01480 0.02175 0.01401 

15 0.03932 0.03015 0.03568 0.03084 

20 0.05403 0.04527 0.04959 0.04508 

25 0.06851 0.06015 0.06342 0.06169 

30 0.08277 0.07479 0.07714 0.07590 

35 0.09681 0.08921 0.09074 0.09134 

40 0.11064 0.10340 0.10419 0.10529 

45 0.12425 0.11738 0.11749 0.11878 

50 0.13766 0.13113 0.13063 0.13342 

Table  5. Doub le  scans:  a t  least  two F2 ou t  of  10 or  a t  least  th ree  of  any  kind ou t  of 10, 

P(F1) = .01, P ( F 2 )  = .005, tt = 3571.8, a = 3566.2. 

shif ted s imula t ed  

n exponent ia l  exponen t ia l  g a m m a  N = 100000 

100 0.02706 0.02625 0.02681 0.02713 

200 0.05393 0.05318 0.05352 0.05489 

300 0.08004 0.07936 0.07955 0.08052 

400 0.10544 0.10481 0.10488 0.10639 

500 0.13014 0.12957 0.12953 0.13299 

Here for a natural  numerical  example ,  we note  that  if Pl = .04, P2 = .01, and 
q = .95, then we get 

E(T)- OE(cer) a=x Oa = 3897.7. 

To find the standard deviation of the waiting time, we now only need to take the second 
derivative of the generating function, the standard deviation can also be calculated via 
Theorem 2.4. In particular, when Pl = . 0 4 ,  P2 = .01, and q -- .95, the standard 
deviation is equal to 3895.6. The closeness of p and a suggests that  again the exponential 
approximation to the distribution of z may be appropriate. 

Example 6.2. Assume we have a scanning window of length 10 and we stop the 
scanning process if we have one of the following two situations: (1) at least two failures 
of type two, F2, (2) at least three failures of any kind. 

The total number of stopping sequences is 153. We have 
1) 9 sequences with exactly two F2 

F 2 F 2 ,  F 2 S F 2 ,  . . . , F2SSSSSSSF2, 

2) 108 sequences with exactly two F1 and one F2 

F2 FI FI , F2SFIFI, F2FISFI,..., F2S SSSSS SFI FI , . . . , F2 FI SSSSSSS FI , 
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F I  F 2 F ~ ,  F~ S F 2 F a ,  F 1 F 2 S F 1 ,  . . . , F I  S S S S S S S F 2 F ~ ,  . . . , F~  F 2 S S S S S S S F 1 ,  

F1FIF2 ,  F1 ,~F1['2, F1 F1 S F2, . . . , F] S S S  S S S  S F1 F2, . . . , ['1F~ S S  S S  S S  S F2, 

3) and 36 sequences with exactly three FI 

F I  F 1 F 1 ,  F 1 S F 1 F 1 ,  F 1 F 1 S F I  , . . . , F~  S S S S S S S F 1 F 1 ,  . . . , F 1 F I  S S S S S S S F 1 .  

As we can see from Tables 4 and 5 all the approximations do well if/~ is large, and 
the shifted exponential does better if # is relatively small. 

7. Mult ivar iate scan statistics 

For a multivariate scan statistic, we have multiple data streams and we have common 
scanning window. We are interested in the probability of simultaneously observing a 
specified number of events in each data stream. For example, we may be interested in 
the probability of seeing at least 3 events in data  stream A and 5 events in data  stream 
B during any 10 day period. The probability may be different for the events in the 
different data streams. 

E x a m p l e  7.1. 
= 

and 

Let {Zi}i>l will be iid sequence of bivariate random variables, i.e. 

Assume that  

Z~ j) E {1,2,3}, j = 1,2 

Pk,~ = P(Z~ 1)-- k , Z ~  2) = m ) ,  k , m  = 1,2,3. 

We stop at time T if (1) Z(~I + Z O) > 5 or (2) Z(2) 1 + Z (2) -- 6. 
This stopping rule is determined by 33 stopping sequences: 

71] 71] 71] .... 
Now the question is how to compute E(7). At first glance this "two-dimensional" 

situation seems significantly different from the considered earlier examples, but it is not. 
To see how easy it is, we first introduce the following 9-letter alphabet of 2-tuples: 

In this alphabet each of the 33 sequences is identified with a 2-letter word, so we can 
again apply our earlier results without any changes. For example, if probabilities Pkm 
are given by 

.7 .05 .02 

.1 .04 .01 

.05 .02 .01 

then the expected waiting time is 37.007 and the standard deviation is 35.633. 
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T ab l e  6. B i v a r i a t e  m u l t i n o m i a l  scans :  /t = 494.92,  a = 493.45.  

sh i f t ed  s i m u l a t e d  

n e x p o n e n t i a l  e x p o n e n t i a l  g a m m a  N = 100000 

10 0 .01603 0.01814 0 .01570 0 .01833 

20 0 .03572 0.03784 0 .03513 0 .03758 

30 0 .05500 0 .05714 0 .05425 0 .05718 

40 0.07391 0 .07606 0.07301 0 .07497 

50 0 .09243 0 .09459 0.09143 0 .09507 

60 0 .11058 0 .11276 0 .10950 0.11422 

70 0 .12838 0 .13056  0 .12723 0 .13214 

80 0.14581 0 .14800 0.14461 0.14902 

90 0 .16290 0 .16509 0 .16166 0.16301 

100 0 .17964 0.18184 0 .17838 0.17905 

T a b l e  7. B i v a r i a t e  B e rnou l l i  scans :  tt = 786.31,  a = 783.49. 

sh i f t ed  s i m u l a t e d  

n e x p o n e n t i a l  e x p o n e n t i a l  g a m m a  N = 100000 

25 0 .02883 0 .02853 0 .02822 0 .02828 

50 0 .05922 0.05904 0 .05826 0 .05857 

75 0 .08866 0 .08859 0 .08747 0.08842 

100 0 .11718 0.11721 0 .11584 0 .11776 

125 0.14481 0.14494 0 .14336 0 .14627 

150 0 .17157  0 .17179 0 .17005 0 .17118 

Finally, let us provide numerical  results in the case of more realistic mult ivariate lid 
sequences. Specifically, let us consider a sequence with a different dis t r ibut ion over the  
9-letter alphabet:  

.9 .03 .02 

.02 .01 .005. 

.005 .005 .005 

Table 6 contains the numerical  results for this example. 

Example 7.2. Assume {Z~}i_>l is an lid sequence of bivariate random variables, 

i.e. Zi = [Z[1), Z~2)] • where each component  is a Bernoulli  random variable with the 
following joint distribution: 

P(Z} 1)=O,Z! 2), = 0 ) = . 9 8 ,  P(Z} 1) = 1, Z! 2), = 0 ) = . 0 0 5 ,  

g ( z }  1 ) =  0 ,  Z !2)=, 1 ) =  .005, P(Z}I )  = 1, Z}2) = 1 ) =  .01. 

In each row we have a scanning window of length 5, and we s top if in one of the  two 
windows we have at least 2 ones. As before first let us introduce the following 4-letter 
alphabet:  

[~ [10] [~ 
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In this new alphabet we have 40 stopping sequences that  correspond to the stopping rule 
described above. Numerical results are presented in Table 7. 

8. Discussion 

The martingale approach yields a formula like that  of Theorem 2.4 for any moment 
of ~-, and, in theory, higher moments should provide better scan statistics approximations. 
Nevertheless, for the scan statistics of importance in practice, it is evident two moments 
are all one needs to get very good estimates. 

We used the martingale approach for a number of different scan statistics, but we 
view it as a general tool of wide applicability. We believe that the martingale methods 
can also be applied for continuous, inhomogeneous, or spatial scan statistics--all of which 
are of practical importance. We are less optimistic about the utility of the martingale 
approach for conditional scan statistics, except to the extent that  the unconditional scan 
statistic is sometimes a good approximation of the conditional scan statistic. 

When one compares the martingale approach to the Markov chain embedding 
method recently developed by Antzoulakos (2001), Fh (2001) and Fu and Chang (2002), 
one finds that  neither method dominates the other--each has its own advantages and 
disadvantages. The martingale approach always results in a smaller set of linear equa- 
tions to be solved, sometimes significantly reducing computational complexity. Also 
the martingale method can be used to obtain higher moments. On the other hand, the 
Markov chain embedding method works for Markov dependent trials, but the martingale 
approach does not seem to be able to cover this case. 
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