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Some elementary probability models are given that help articulate the trade-offs involved in
managing secrets. One of these models captures the notion that the likelihood of disclosing a
secret increases as the square of the number of people who are aware of it. Also, several classes
of countermeasures are examined to determine their ability to increase the time window during
which a secret can be held. One model suggests that disinformation countermeasures offer a
promising technique for conserving secrets.

(CONFIDENTIALITY; DISINFORMATION COUNTERMEASURES; CLIQUE COMMU-
NICATION MODEL; SECRET DISCLOSURE)

1. Introduction

In Tom Clancy’s Hunt for Red October, Vice Admiral James Greer says, “The likelihood

- of a secret’s being blown is proportional to the square of the number of people who’re

in on it.” The models given here are motivated in part by the desire to understand the

analytic validity of Admiral Greer’s theorem. More broadly, they aim to provide quan-
titative insight into the factors that influence the disclosure of secrets.

One of the models introduced here confirms Greer’s square law, and, while the recapture
of conventional wisdom provides some reassurance, the square law per se should not be
over-valued. The real benefit of any honest secrecy model has to be the quality of guidance
it provides about secret disclosure under conditions that can ‘be influenced by manage-
ment. Certainly, one quantity that should be under management control is the number
of people who are initially informed of the secret, but even simple models should allow
additional possibilities. Some practical examples include (1) the level of security of com-
munication channels, (2) the use of protocols that govern communication between people
who are in on the secret, and possibly (3) the protections provided by disinformation
countermeasures.

Before giving specific models, some clarifications should be made of the words person
and secret. There are many secrets of importance besides those that influence national
security. More mundane secrets, like those that influence stock prices, hold sufficient
value to society to justify careful modeling. When the notion of a secret is properly
framed and generously interpreted, secrets can be seen as an inevitable part of life.

Who holds these secrets whose disclosure we want to model? Anthropomorphic lan-
guage overemphasizes secrets held directly by individuals, although many significant
secrets are held electronically. Still, managers with responsibility for secure information
are well aware of this, and one does no harm by talking about people who hold secrets.
Nevertheless, before endorsing or rejecting any model of secret disclosure, attention must
be given to the substantial variety of systems that hold secrets.

The next two sections illustrate components that help build models that capture the
analytical essence of the social and technological systems that hold secrets. Each of these
sections provides an elementary probability model for secret disclosure that is analytically
tractable yet intuitively reasonable.
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The fourth, fifth, and sixth sections take on the task of modeling countermeasures to
increase security. The first discussion of countermeasures focuses on the benefits of secure
communication channels. One appealing aspect of the secure channel countermeasures
is that it joins secrecy modeling with some topics of classical optimization.

§5 explores the possibility of increasing the window of secret security by a mechanism
called slices. Sometimes a secret can be separated into parts in such a way that until the
adversary learns all of the parts of the secret no critical disclosure takes place. A simple
example is a 30-digit code that is divided into three ten-digit codes. Some loss is incurred
when two of the three parts are disclosed, but, as a practical matter, the secret is secure
until the third set of ten digits is revealed.

In §6, a disinformation countermeasure is examined to see how it can increase the
window of secret conservation. Although the analysis must leave many issues unexplored,
a clear sense emerges of substantial benefits that can be gained.

The final section engages the trade-offs inherent in secret keeping models and coun-
termeasure techniques. Cautions are given there concerning the application of all our
models, but one critical caution ¢annot be deferred. The focus in this exposition is on
components of secret models, but secrets of real value require models that incorporate
many components acting in concert. It would be inappropriate, or even disastrous, to
rely on simple components without tempering one’s judgement with all the additional
wisdom that can be found.

2. The Simplest Model: Clique Communication

The first and simplest model studied here is the Clique Communication Model (or
CCM). The context for the CCM (and the other models that follow) is a social environ-
ment where a secret is created and is eventually disclosed through some natural feature
of the evolving environment.

The variable of fundamental interest is the length of time 7 between the creation of
the secret and the moment it is disclosed. Under the CCM, the expected value of T will
be shown to be

E(T)=2/(n(n— 1)\p). 2.1

Here, n denotes the number of people (n = 2) who are initially aware of the secret, A is
a parameter that measures the rate of communication between any pair of people who
arein on the secret, and p is the probability that any given communication is compromised.

Some feeling for the behavior of E(T) in the CCM is gained by considering a typical
situation where A = 2/day and p = 0.01. The brief table (Table 1) of E(T) as a function
of n shows the benefits of keeping » to a bare minimum.

Constructing Table 1 is straightforward using formula (2.1), yet one may still find it
surprising that reasonably secure channels (p = 0.01) and modestly infrequent com-
munication (A = 2/day) lead to an expected disclosure time of just a bit over two days
when seven people start out with knowledge of the secret.

Before investigating any credibility in the expression for E(T), one has to examine
the formal description of the CCM. The essence of the CCM is that it is a communication
model. It rests on the premise that if a secret must be known to n people, one can

TABLE 1
Expected Numbers of Days Until Disclosure

Number of People in on the Secret 2 3 4 5 6 7

Expected Number of Days until Disclosure 50 16.6 8.3 5 33 24
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reasonably assume that the people know the secret so that they can work together in
some way. Of the many ways to tease out the consequences of this premise, the simplest
suggestion is that each of the n people is in regular communication with each other and
with no one else. This motivates the name of Clique Communication Model.

To specify the stochastic behavior of the CCM, we need a model for the communication
between two people who are in on the secret. We begin by associating a Poisson process
N;(¢) to each pair of individuals i and j so that N;(z) counts the number of communi-
cations between person { and j in the time period [0, ¢]. Also, in the absence of more
detailed information, one may as well assume that the n(n — 1)/2 Poisson processes
Ny(t), 1 <i < j = n, are independent and have the same intensity A. If N(¢) denotes
the number of communications that take place in the clique in the time period [0, ¢],
then

N = 2 Ny) (2.2)

1si<j=n

and N(t) is again a Poisson process. Moreover, from the assumptions made about the
Nj;, we see that N(¢) has a constant intensity x and p = An(n — 1)/2.

We now need a mechanism to disclose the secrets, and we make the basic assumption
that disclosures take place only through a compromised communication. One way to
incorporate this notion into our model is to associate a random variable Xj; to the kth
communication between individuals / and j such that the random variables X are in-
dependent and satisfy

P(Xy=1)=p=1—P(Xy=0).

The final assumption we make in the CCM is that the variables { X;; } are independent
of the processes { N;;}, and of course the interpretation of Xj; is that X;3 = 1 if and only
if the kth communication between i and j is compromised.

This completes the formal definition of the CCM, and the first task is to develop
information about 7', the time until disclosure. If N denotes the number of compromised
communications, then by the independence hypotheses and the definition of p we see
that N is again a Poisson process. This new process has constant intensity pu, and, from
the definition of T, we have an expression for tail probability

P(T>1t)=P(N@)=0)=e, t=0. (2.3)

By integrating P (7 > ) over 0 < ¢ < o0, we find the expression for E(T) cited in form-
ula (2.1).

What does this formula for E(7T) say about the management of secrets? The most
salient feature of this model is the built-in fact that the expected window of secrecy decays
quadratically with the number of people who are in on the secret. But the expression for
E(T) also reflects the quantitative roles of A and p. If we let p = Ap, then in sympathy
with the usual terminology of survival analysis (Miller 1983) the parameter p is properly
called the hazard rate. After making the wisest available choice for the value for n, the
efforts of management are well invested on making p as small as possible.

If controlling the compromise probability p is impossible, or too expensive, or too
hard on working conditions, the CCM says the only way to lower the hazard rate is to
lower the communication rate A. Mastering A (and more generally p; and A;) turns out
to be a fruitful principle, and a later section shows how recombination of the p,, can help
create more secure communication.

There are several oversimplifications in the CCM. First, why should we assume that
all the intensities of the processes V;(1) are equal? If we let A\;; denote the intensity of the
N;(t) process and let A be the average of the A;;, then again we have that N(¢) as defined
by equation (2.2) is a Poisson process with intensity given by
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n
pw=p 32 =p(} ) @.4)
i<j 2
The derivation of the formula for the expectation of E(7") can be derived just as before.
On the other hand, if one accepts constancy of the communications rate A; = A, then
the probability p of compromised communication can be permitted to depend on i and
J. Parallel with the case of (i, j)-dependent communication rates, we can let p denote
the average of the p;, and we again recapture the exact expression (2.1) for E(T). This
persistence finally fails if one insists on varying both communication rates and compromise
probabilities, but one still gets a succinct expression for the expected value of T,

ET=( 3 pAyp)™" 25

Isi<j=n
Naturally, this expression reduces to (2.2) for p; = p and A; = X; and, although (2.5) is
formally more general than the modest formula (2.2), the basic CCM is probably a more
valuable tool for providing defensible advice in applications. For the expression (2.5) to
provide honest guidance in a bona fide secrecy modeling context, one needs values for
pyand Ay, and such detailed information is not likely to be available in many situations.

Still, there are useful inferences to be drawn from the formula for ET given by (2.5).
In particular, (2.4) supports the intuitive fact that to maximize ET one should minimize
the rate of communication across the least secure channels. The analysis of §4 systematizes
this observation and uses (2.5) to frame an optimization criterion for communication
over insecure networks.

We have just seen that the assumptions of the MCC concerning p; and A; can be
modified considerably, but it is not possible to drop our other assumptions and still retain
simplicity. One can build more complex models with dependencies that are built into
the processes { N;;} or the disclosure indicators { X;x }, but the resulting models are not
likely to yield explicit formulas. In such cases one can proceed only by simulation. Here
we take the point of view that such analyses are best deferred until one is confident that
the simplest analytic models are well understood, both for their shortcomings and their
strengths.

3. Birth Process Models

The Clique Communication Model is so natural one needs to fight not to become
wedded to the notion that any secret disclosure model has to grow out of a communication
model. Only by breaking radically from the CCM, can one develop confidence that the
general ground of disclosure modeling is covered. Our second model, the Birth Process
Model (or BPM), begins by acknowledging that in some situations the sharing of secrets
between co-workers is almost inevitable. Obviously, in many situations there are innocent
diffusions of the secret, and not every co-worker disclosure should be viewed as a critical
breach. The widening circle of individuals who know the secret is thus analogous to a
collection of organisms with a communicable infection, and the diffusion of the secret
is much like the spread of an epidemic.

The key distinction between the CCM and the BPM is that the BPM acknowledges
that simply enlarging the pool of people who know the secret does not automatically
constitute disclosure. We could continue to consider disclosure by compromised com-
munication, but to put as much distance as possible between the BPM and the CCM,
we propose a new mechanism. We will assume the secret is eventually communicated
to a leaker, i.e. a person who leaks the secret immediately after learning it.

Let N(t) denote the number of people who know the secret at time ¢. It is reasonable
to assume that during the small time period / each informed person tells the secret to
an uninformed person with probability Az + o(/). From this assumption and the hy-
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pothesis that N(¢) is a counting process with independent increments, it follows that
N(t) is a pure birth process with parameters A\, = n\ for n = N. If N people initially
know the secret, then the probability P,(¢) that exactly n people know the secret at time
t is given by Feller (1968):

n—1
Pn 1) = e-—)\Nt 1 — e—)\t n—N, 3.1
® ( O ) 3.1)
for all n = N, and, of course, P,(1) = 0 for n < N. We can now easily calculate E(T),
the expected time until disclosure. First, we note

n=N

P(T>1n-~= % P(T>t,N(it)=n)= % P,(Y(1 — p)” 3.2)
n=N

where p is the probability that any given person in the system is a leaker. The integral
of P,(¢) simplifies to a beta integral so integration of (3.2) leads to a simple expression
for E(T):

o0 » N--1
E(Ty= 2 (1 —p)"/(An)=X""{log(1/p)— Z (1 — p)"/n}. (3.3)
n=N n=1

This formula is not as succinct as that obtained under the CCM, but it still contributes
to our intuition. First, we see E( T) decreases monotonely with N, the number of people
originally in on the secret. The rate of decrease does not confirm Greer’s square law, but
this lack of confirmation is effectively good news since we wanted our second model to
be genuinely different from the CCM. Another reassuring feature of (3.3) is that the
slower the secret innocently diffuses, the longer the secret can be kept. In fact, E(T) can
be made arbitrarily large provided the diffusion rate A of the secret can be made arbitrarily
small. Finally, our intuition about the quantitative dependence of E(T) on N in the
BPM can be reinforced by considering Table 2 where E(T') is evaluated for p = 0.01, A
= (.2/day.

The BPM just analyzed can be embedded in a larger class by taking the parameters
of the birth process to be A,, = (An)* instead of just A, = An. For 0 < a < | this parametrized
birth model (BPM) is physically reasonable in the sense that P (N(t) < oo) = 1 for all
0 <t < oo ; moreover, the choice of o can accommodate useful changes in the modeling
of the secret’s diffusion. For example, if # is large it is feasible that it might become less
likely for an individual to spread the secret because it is already widely known. This
phenomenon can be accommodated by the parametrized birth model, though it would
lie outside the scope of the BPM. The parametrized birth model is more specialized than
the CCM or PBM and it will not be pursued further, but the flexibility it suggests is
valuable enough to bare keeping in mind.

Before leaving the BPM and PBM, some comparisons should be made between the
material of this section and related models for rumors and epidemics. In Moon (1972),
Boyd.and Steele (1979), and Haddad, Roy, and Schiffer (1987), stochastic rumor models
were analyzed where the focus was on the number of communications in a network
before a piece of information had been communicated to a// the individuals in the network.

TABLE 2
Expected Number of Days to Disclosure under BPM

N 2 3 4 5 10 20 30

ET) 18.0 15.6 140 12.8 9.3 6.2 4.6
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The models of this section thus have more in common with the epidemic models of
rumor spread that were studied in Rapoport and Rebhun (1952) and Daley and Kendall
(1965) (cf. Chapters 9 and 10 of Bartholomew 1973). A key distinction between these
models and BPM and PBM rests in the fact that under the BPM and PBM the critical
variable is the time until a specific subset of the population obtains the information.

4. Simplest Countermeasure: Cautious Channels

One benefit of having models for secret disclosure is that they provide a context for
analyzing countermeasures. The first one we explore rests on the systematic use of the
more secure channels in the CCM. We recall that in the general CCM the communication
rates A\; and the compromise probabilities p; depend on i and j, and the time until
disclosure T satisfies

E(T) = (Z pyry)~". (4.1)
ij

Now, if the compromise probabilities satisfy px + pi; < py for some triple of distinct
integers I, j and k, it is easy to increase the expected length of the window of security in
the CCM; one just replaces any required call from i to j by a call routed through k. This
single-step improvement carries the seed of a general method. The key to this method
rests in viewing the compromise probability matrix (p;;) as a matrix of edge costs on the
complete directed graph with vertex set {1, 2, ..., n}, i.e. a weight of p; is assigned to
the directed edge (i, ) from i toj. We begin by calculating the minimal cost path between
i and j for each of the distinct pairs i and j. For small » this is easily obtained by inspection
and for larger # one can use Dijkstra’s algorithm (cf. Reingold, Nievergelt, and Deo
1977, pp. 341-346). Now, all communications between i and j are routed along the
minimum weighted paths.

To weigh the benefits of this protocol, we consider the five-person network specified
in Figure 1. For each pair of distinct vertices, we label the associated edge with p;;, and
for the sake of this example, we suppose p; = p;;. Also, assuming A; = A = 2 calls/day,
we find unrouted communication (4.1) lends to E(7T") = 16.6 days. If we route calls along
the paths that attain minimum cost p}, the weights on the edges of the network of Figure
1 can be replaced by the values in parentheses; and, for the time 7™ until disclosure
under the re-routing protocol, we find E(T*) = 25 days. Thus, by simply re-routing calls

3(2) 2(2)

a(2)

(1) 8(3)

(1)

A 7(2)

FIGURE 1. Communication Network with Compromise Probabilities (in 1/1000ths), Numbers in Parentheses
Correspond to Shortest Paths.
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along paths that minimize total probability weight, we provide a 50% improvement in
an expected secrecy window.

5. Countermeasures by the Slice

One can sometimes divide a secret into parts so that all of the parts have to be learned
by the adversary before there is a critical breach of the secret. The nature of the secret
determines when such a decomposition is reasonable, and the possibility can exist just
as easily in the context of the CCM, BPM, or the PBM. For simplicity, we will focus
mainly on the CCM.

As before, we let N(¢) denote the number of disclosures that have been made up to
time ¢, but in this case disclosure means the disclosure of just one slice of the secret. At
any time of increase of N(1), we will suppose that the slice which the adversary obtains
is a random selection (with replacement) from the set {sy, 52, .. ., s} of all slices.

We originally motivated the CCM as a model of a clique of people working together,
and such a motivation suggests that slicing the secret into k pieces has to lead to an
increase in the communication rates A;. A conservative way to increase the A; would be
multiplication by a factor of k, since one always has the option of communicating the
slices one after another.

Assuming the A; are replaced by kA;;, the process N(2) is easily seen to be a Poisson
process with parameter p' = k 2 \;py. If we let Ni(t) denote the number of times slice
s, is disclosed by time z, then the k Poisson processes Ni(1), 1 < i<k, are all independent
and share the same intensity parameter u'/k = 2 A;py = p. If T; = min {z: Ni(t) = 1}
denotes the time the adversary first obtains the ith slice, we see T = max,c<, 7, is the
first time at which all k slices of the secret have been disclosed. From the independence
of the T, we see the expectation of T is

E(T) = J:o {(1—( —e*)Ydt = p "Hy 5.1)

where H, is the harmonic sum 1 + 271+ 37! + - .« + k™!, An approximation for Hy
that is accurate even for small k is In (7k/4), so we have a simple approximation for
E(T):

E(T)= p"'In (7k/4) = E(T). (5.2)

Many practical secrets fail to permit decomposition into a large number of slices, so
the most relevant values of k are the small ones. Table 3 provides the values of E(T)
and its approximation E(T) for | <k <5.

From Table 3 we see that breaking a secret into four parts can more than double the
expected length of the window of security. Moreover, this increase does not require any
change in the basic technology as reflected in A or p. One cannot ignore the potential
importance of unmodeled costs, but the prospect of doubling the expected secrecy window
is too attractive to ignore without reason. Many planners are well served by asking them-
selves if their secret might be sensibly decomposed into parts.

TABLE 3
Expected Time Until Disclosure

k 1 2 3 4 5

E(T) u! 1.5u7" 1.83p7" 2.08p7" 2.28u™!
ET) 1.01p~! 1.50u"" 1.83u7" 2.08u7! 2.28u7
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6. Slyer Countermeasures: Disinformation

It is as foolish to study secrecy without disinformation as it is to study poker without
bluffing. But, even though disinformation countermeasures cannot be ignored, we cannot
now embark on this systematic analysis. For one thing, such an analysis requires game
theoretic tools that are remote from the elementary probability models we have counted
on so far.

Instead of pursuing a full theory of disinformation we will develop a variant on the
CCM that illustrates some essential features of a disinformation countermeasure. This
particular method has the benefits of (1) being simple enough to be used and (2) providing
a dramatic improvement in the expected size of the security window of the basic CCM.

In any model where some communications contain false information, the secret pre-
servers need a method for knowing which communications are bona fide. The method
we explore is driven by the principle “What 1 tell you twice is true.” Formally, the
protocol is specified by two rules:

(1) When a bona fide communication is to be sent, two messages are initiated simul-
taneously on different communication channels. If these messages confirm each other
the communication is accepted as valid, otherwise the communication is ignored.

(2) At a rate that is much greater than the rate at which bona fide communications
are sent, one sends pairs of messages simultaneously on different channels such that the
two messages are not confirmatory.

How does this protocol influence the adversary’s ability to discover the secret? Since
the number of voided communications is large compared to the number of bona fide
communications, the adversary cannot trust any single isolated intercepted message as
being a part of a legitimate communication. The adversary has to wait until two simul-
taneous and corroborative messages are intercepted. Parallel to the CCM, the total de-
mand for bona fide communications is modeled by a Poisson process with parameter
An(n — 1)/2, and p denotes the probability that any given communication will be com-
promised. Since the probability that both parts of the pair of messages that make up a
bona fide communication are intercepted is p?, the process N(?) that counts the number
of valid communications that are intercepted by the adversary is a Poisson process with
parameter p?An(n — 1)/2, and the time T until the secret is disclosed satisfies

E(T) =2/p*\n(n—1). 6.1)

The simplicity of the disinformation protocol and the straightforward derivation of
formula (6.1) should not prejudice the practical implications of (6.1). For example, if
we use the values p = 0.01 and A = 2/day as before, formula (6.1) says the expected
length of the security window under the disinformation protocol is 100 times larger than
it was under the basic CCM.

7. Summary and Conclusions

Three secret disclosure models and three classes of countermeasures have been intro-
duced and analyzed. The Clique Communication Model that was introduced first has
the benefit of an explicit square law. The CCM served to introduce the communication
rates A; and compromise probabilities p; that help in the effort to understand counter-
measures.

The Birth Process Model (BPM) given after the CCM introduced the useful notion of
innocent diffusions of a secret in addition to critical leaks. The Parametrized Birth Model
(PBM) introduced as a variant of the BPM has the benefit of permitting a change in the
rate of spread of innocent diffusions as the number of people who are in on the secret
becomes larger.
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A model for secrecy preservation creates a context for modeling countermeasures, and
the three countermeasures explored here add considerably to the richness of our models.
The method of Cautious Channels connects secrecy models with a classical problem of
operations research and isolates a technique that improves secrecy without requiring
technological innovation. Next, the technique of slicing is shown to provide an increase
in the expected length of the window of secrecy from 50% to 128%, depending on whether
two to five slices are feasible. Such an improvement seems impressive, but reconsideration
is required when the disinformation method suggests that one can sometimes increase
the expected window of security by a factor of 100.

All the models and countermeasures considered here make suppositions that are some-
times profoundly false. One of our unstated but persistent assumptions is that the adversary
is passive. In our models the adversary waits and listens but never takes action to lure
us into compromise. One should not forget that real adversaries also have active strategies.
Some of these, like the “Trojan horse” analyzed in Karger (1987), are known to be
powerfully destructive. Still, many systems are primarily subject to passive threats, and
the logical first step is to model such systems as simply as possible.’

! The second identity of (5.1) and the approximation (5.2) were kindly suggested by a referee. Also, the
model given in §3 has been substantially influenced by the referees’ comments.
Research supported in part by National Science Foundation Grant #DMS-8414069.
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