Monotone subsequences in the sequence
of fractional parts of multiples of an irrational™®)

By David W. Boyd and J. Michael Steele at Vancouver

1. Introduction

Hammersley [7] showed that if X;, X,,... is a sequence of independent identically
distributed random variables whose common distribution is continuous, and if 7 (7))
denotes the length of the longest increasing (decreasing) subsequence of X;, X;,..., X,
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then there is a constant ¢ such that % — ¢ and %~ — ¢ in probability, as #n — 0.
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Kesten [8] showed that in fact there is almost sure convergence. Logan and Shepp [11]
proved that ¢ = 2, and recently Versik and Kerov [13] have announced that ¢ =2.

If o is an irrational then the sequence {a}, {2a},. .. of fractional parts of multiples of

o is uniformly distributed in the unit interval. Franklin [5] calls such a sequence a “Weyl

sequence” and applies various tests to determine its quality as a pseudo-random sequence.

In this spirit, it is reasonable to investigate /; (x) and I, («), the lengths of the longest

increasing and decreasing subsequences of {a},. .., {na}. We will be particularly interested
v _

n

. . I
in the behaviour of —- and
n n

Some work along these lines was done by del Junco and Steele in [2]. Using discrepancy
logl 1 logl;

estimates, they were able to show that

1
— — for almost all
logr 5 an fogn 5 for almost all a, and

in particular for algebraic irrationals.

Here we shall be able to obtain more precise results by establishing the exact
connection between /,” (/;") and the continued fraction expansion of «. We will find piecewise
linear functions of n, 4, and A, whose vertices are explicitly determined by a, which satisfy
A —2<I7 £A7 and A7 —2 <[ <1, . The results are precise enough to show, for example,
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- -
or -~ tends to a limit. In fact n” is the correct order of

[

that there is no « for which

L
2

4] I’I2
mwgmtude of [T and I, precisely when 2 has bounded partial quotients. For example, if
5 +1
o= , then
N 2
tim inf "L =—=1.337431...
n 5*
Ir L
lim sup "= 5* =1.495349. ..
nl
+ +
This example gives the minimum value attainable for the difference lim sup — — lim inf 5
7 3
n n

This last result invites comparison with a result of del Junco and Steele concerning the
van der Corput sequence, to the effect that
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An interesting contrast to the result for random sequences is that

6)) n<lhi ()l (oz)<%1 for all a.
A i
In fact lim sup —-"—;11—7-2 for all o, and liminf-—"—"-=1 if « has unbounded partial

quotients. The lower inequality is essentially the familiar result of Erdés and Szekeres [4],
but the upper inequality is peculiar to the sequence {na}. Although it is an easy consequence of

our formulas for A} and /, , a more direct proof would be desirable. Note that, by contrast
+ —

with (1), for random sequences — 4,

The result (1), as well as aspects of the structure of the longest monotone subsequences,
1

—;—52+1

was suggested by a computation of /] and [, fora=2 and e for n < 100,000, using

the algorithm of Fredman [6]. Only the values of n for which I >/ or [y >/, were
printed, and these values suggested the connection with continued fractions.

The pattern of the proof is as follows. We first show that I is the solution to a certain
integer programming problem. We then define 4} to be the solution of the corresponding
linear programming problem, so that obviously 4, =/, . Since there are only two more

constraints than variables, we are able to explicitly find l* and the structure of the extremum
. . . AR .
shows that A7 — 2 < I Finally, we analyse the asymptotic behaviour of —-. Since obviously
2
n
I7 () =1} (1 —a), the results for /; follow automatically.
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2. One-sided diophantine approximation

Ifois an irrational, we will denote its continued fraction expansion by e=[ay: ¢y . a4z, ]

so that if o= a, + oy with ag =[], 0y = {o}, thenforn=1,2, ...

a, =] —— |and o, =< ——.
Gy U1

If we write Pn [ay:4a,....,a,] for the principal convergents, then {101, pp. 1—38,
, 1
(2) Clll+a11: ’
-1
(3) qud — Py = ("' 1)n(Qn+1 + an+1qn)—la qd-1 :O’ do = 13
(4) an=anﬂqn+qn,1,forn=(),1,.,. .

We shall write o,=]|q,x—p,l, so that o,=|lg,x|| for n>1, where, as usual,
llx]| = min({x}, 1 — {x}). Then (2), (3) and (4) imply

(5) an(qn+l +an+1qn)nl’

%) ‘ Opi1 =0pt10, N=01,....

We define the intermediate convergents Prk. by

qn,k
(7) pn,k:‘_kpn+1+pn’ 0<k<an+2»
(8) qn.kqun+1+qna 0<k<an+2'

Note that g, =g, and Gy, ., = qur . Defining o, = |gu % — Puil; (3) and (6) imply that
® Opp =0, —kO,iy, for0SkSa,,,.
The sequence g, is characterized by the following well-known result:
Lemma 1. For n>2, g, is the smallest integer q> q,_; such that ||qa|| < Hgn— 1]l
Proof. See [10], p. 10 or [1], p. 2.

We define {g;} to be the sequence of even-ordered denominators g, and ¢
(1£k<a,,.,—1) arranged in increasing order g, <qo; <---<qy<---, and {g, } to be
the corresponding sequence of odd-ordered denominators. The following is an analogue
of Lemma 1 which we have been unable to find explicitly stated in the standard literature:

Lemma 2. (i) For n=1, q;" is the smallest integer q>q;_, such that {qo} < {g,-,o}.
(i) For n=1, q; is the smallest integer q> q,_, such that {q, o} < {qu}.

Proof. By (9), {g; «} forms a decreasing sequence. Let g satisfy g > gy 1 =qamy and
{qa} < {g;_,«}. Write g = g, +r. Then, in order for {g,_, o+ ra} <{g,-;a}, we must have

(10) {qo} = {ga_10} + {ra} — 1 ={g,_; o} — ||ral].

Thus ||ral] < {gi- 10} = {G2ms®} < {gam®} = [|42ma||. By Lemma 1, this means that 7 = gz 1
sothat 42 @omi + Gom+1 = Gamp+1 = qn -
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To prove (ii), apply (1) to 1 —o.

Remark. The ¢ are the denominators in the semi-regular continued fraction

+1 -1 -1
defined by a=by —— ——
YE=00 T, T, by

<., with h,=2 foralln=1.

The easiest way to see this is to show that these denominators satisfy Lemma 2.
It also follows from a result of Tietze [12]. p. 163.

3. An integer programming problem

It is clear that [ () = I (1 — o) so we will limit ourselves in this section to /; .

Lemma 3. Let o and n be fixed. Let q,; be defined as in the previous section, and let
M satisfv giy <n < qiy+1. Then I (%) is the solution to the following:

M

(1 I =max Y T,

m=1

where the r; are integers for which

M
(122) Y Tulm S0,
m=1
M
(12b) Y rmigmo} =1,
m=1
(12¢) r=20,...,7ryz20.

Proof. Suppose 0 < {n;a} <---<{ma}<1isan increasing sequence of length / with
1<n < --<msn If we write dy =ny, de=m—n_4 for k=2,...,1, then we obtain
{do} = {ma} — {m 2}, and we have

i

(13) 3 {doa} <1 and zl:dkgn.
k=1

k=1
By definition, /] is the maximum value of / under these constraints.

We claim that, in (13), it is no restriction to choose 4, from among the ¢g,.. For, if
gh <d, < gy, then {da} > {g o}, by Lemma 2, so if dy is replaced by ¢, both inequalities
in (13) continue to hold. But then, collecting terms in g} and {g;; «}, (13) reduces to (12).

4. A linear programming problem

Let A} () denote the solution to the problem defined by (11) and (12), where r,, and n
are no longer required to be integers. Define 4, (%) =4, (1 — ). Then obviously ALz
and A; =1, . Now that real coefficients are to be allowed, we find that the intermediate
denominators g5, which appear in g, are no longer needed:

Lemma 4. Let K satisfy q,x Sn<{sg+,. Then

K
AT =max ¥ X,
k=1
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where (x,,. .., Xg) satisfies
K
(14a) Y N =1,
k=1
K
(14b) > o=l
k=1
(14¢) x, 20,...,x20.

Pi’OOf: By (8) al’ld (9)7 q2m,k - (1 - C)sz + Cdom+2 aﬂd GZm,k = (1 - C)GZm + COom+2s

where ¢=

. Thus, in (12a), we may replace any ¢; of the form g,,, by a convex

Aam+2
combination of ¢,, and g¢an.., and in (12b), replace {gi, %} =0, by the same
combination of ¢,,, and o5, ,, without affecting the inequalities.

Theorem 1. Define f_, =(1 — {a}) ! and p,, = Gmont, m=0,1,.... Then, for any given
a, 15 and )] are the following piecewise linear functions of n:

(15) l+= QZk+1+n62k+la ZfﬁZkén<ﬁ2k+29k=Oa13-":
: n, if 0<n<po,

(16) - = Gax+ ROy, if Pax—1 Sn<Pous1, k=01,...,
" n, ifogn<pf_y.

L . . K+2 . .
Proof. We begin with (15). The constraint region (14) has ( ; > possible vertices.

Apart from (0,. . .,0), either K—1 or K—2 of the x; must be 0. If all x, but x; are 0, which
we call a vertex of type I, then (14a), (14b) give

a7 xi=min(05i1, nq;il)'

If all x, but x; and x; are zero, called a vertex of type I, then x;, x; must solve the equations

(18a) X;02i+Xx;055=1,
(18b) Xiqai T Xjq2;=n
so that
_y Baj—n
(192) X =03 7
" Baj—Ba
_y =Py
(19b) X;=0,f ———.
! H ﬁZ}"BZ:
Assuming i < j, then 63" <03} and B,; < B,;, so the condition for x;2 0, x;= 0 is seen to be

B,:<n<B,;. Among the vertices of types I and II, we seek to maximize A=x; + - -+ Xg.

Let us denote the right member of (17) by fi(n) and by g; ;(n) the value of 1= x;+ x; given
by (19). Then

(20) A} =max(max f;(n), max g; ;(n)),
i i,j

where the maximum over i, j is restricted to those which satisfy f,; Sn< ;.

Journal fiir Mathematik. Band 306 8
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Define v; to be the point (f,;. 05;"), i=0,1,... and v_, =(0,0). Then the graph of /;(n)
is the line segment v_, v; followed by the horizontal line from v; to 5. The graph of g; ;(n)
is the line segment from v; to v;. Let us denote the right member of (15) by f(n). Then, in fact,
the graph of f(n) is the polygonal line v, vov, . . . . To see this, observe that

JPa) = @onet T BorOaks1 = Gars1 ‘1"9'21(62‘130'2“1 =Gop+1 T Gardlok+1 = ngla by (5) and (6).

Also f(Baxsz-)=Gaxi1+ Poxs2024+1 = 024+2. Dy a similar calculation. The function [ is
thus continuous, increasing and concave, since the slope ;4 decreases with k. Thus, the
graphs of f;(n) and g;_;(n) lie strictly below the graph of f(n), except for fo(n) and g; ;+1 (1),
i=0,1,... which coincide with f(n) on the intervals [0, o], [Bai Bai+2] respectively.
This shows that 4, = f(n).

1 1
To prove (16), one uses A, («) =4, (1 —«). The two cases « >—2— and o < 5 need to be

o 1
distinguished. If «> 5, note that §_, =5;.

Corollary 1. For all «, A7 —2<If <47 and A, —2<l =4, .

Proof. Clearly A} = I . On the other hand, by the proof of Theorem 1,1 (%, . ., Xg)
satisfies (14) and has A} =x, +-- -+ xg, then (xi,...,xg) need only have two non-zero
components. Thus

K K
Fzy [xk1>(z xk)—2=x:~z.
k=1 k=1

The proof for 4, follows by the standard symmetry.

5. The asymptotic behaviour of /;” and [;

v 1
Theorem 2. The sequence —+ oscillates between local maxima of size ——— attained
1 1

2
n . (9240 2)
at n= B, and local minima of size 2(q2k+102k+1)2attained at n= P,y . In a self explanatory

notation,

Ar 1
(21a) loc max T = I
n (924021
A 3
(21b) loc min "Tzz(%kﬂgzkﬂ)z-
n2
In the same notation,
Ay 1
(22a) loc max — = 1

n (‘]2k+1‘72k+1)5
- i
(22b) loc min —=2(g54024)"-

2
n
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Proof. By (15), if 85, £n < 5., we have

+

S

5 1

oy 2

T T a1 T O 1
2

n

ks

(ST

which, as a function of #n, decreases to a minimum of 2(¢,;.102,+1)” at #=f,,,,, and
attains a local maximum at n=f3,, equal to

1 1
7 T2 7 _
Kt 0o 1 k028 =02k (Gars1 T %ons1Gan) =—— T

(qZkGZk)z

ST

Qok+1926 O

BIfr

b baf
o

2

using (5) and (6). This proves (21), and (22) follows as usual.

Corollary 2. Let A =1lim inf q,,0,, and B=1m inf ¢, 105,.,. Then

L -3 L 1
limsup —-=4 °, lim inf —5-= 2B,
n’ n*

- 1 - 1
limsup 2-=B %,  liminf-"=24"
n* n?

Proof. A direct consequence of (21) and (22).

Remarks. The quantity g0 = qi]gx2| appears naturally in the theory of rational
approximation, as does the quantity v(«)=lim inf ¢,||g,«|| [1], p. 11. The set of values
v(a) 1s called the Lagrange spectrum. By a theorem of Hurwitz, the largest value of v(a) is

_1
5 %.The proof of Corollary 4, below, is modelled on Davenport’s proof of the theorem of
Hurwitz, as givenin [1], p. 11.

. . . ao’ +
Two real numbers «, o’ are said to be equivalent if o= o td
co
integers with ad — bc = + 1. A necessary and sufficient condition for « and o’ to be equivalent
is that their continued fraction expansions can be shifted so as to coincide beyond some

point [1], p. 9.

, where a, b, c,d are

Using (5), we have the following convenient representation:

(23) (@0) ' =@y F o + B =[s1; Qszs- -1+ [0 @y a1, - a0
k
1
. 52 +1
Thus, for example, if a=1= 5 =[1;1,1,...], then
s
5+1 5°-1 3
(qeo ' =[1;1,1,...3+[0;1,..., 1] — ;+ 2 =5%
. AR I 4 PN A
Thuslim sup — =lim sup — =5%=1.495349... , while lim inf -5 = lim inf = = 1.337481....
V) 2 2 2

n n n n

8*
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This is an extreme example as the following shows:

-+

Iy l ,
" and b =1lim inf 2. Then 0 < b and a < =« if and only if

1
2

n
(a,) is a bounded sequence. There is no « for which a=b, and in fact the minimum values of

1

Corollary 3. Let a =lim sup i
3

I

%

D

a 5 L2 i +1 . .
— and a— b are —— and 5* — " atiained only for o =——=— and numbers equivalent to ir.

h
54
Proof. The first statement is obvious since, by (23)

(24) ey < (dek)wl <@ t2.

To prove the second statement, let A, = g,0y. Then the following inequality may be
derived from (2), (4) and (5), [1], p- 12:

(25) Aoy Af + 2 A, (Ag—1 + Aisr) <1

Suppose that an infinite set of a,, satisfy a, =2. To be specific, consider the case where
a,;, =2 for an infinite set of k. Then (25) implies, for these k, that

4A% 1 +2A5 (g2 +A20) <1,

and
AL+ 2 A5 (A + A1) <1
Thus
(26) 4B +4A4B<I,
2N A*+4A4B< 1.
We may rewrite (26) and (27) as
B
(28) 2—-_<-,(4AB)“1—1,
29) A <(44B) -1
4B~ ’
1 3
Taking the geometric mean of (28) and (29), we find that (44B) ™' =12z 580 (44AB)"' = 5
1 1
1 2 g2
> 5 > A similar proof applies if an infinite

which implies that —Z— =(4AB)
number of a,, ,; are = 2. Thus, only if all but a finite number of a,, are equal to 1 we will have
1
52
% =-——_ and this is in fact attained by such « as we saw above.
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Furthermore a= 1 for all «. So, if « is not equivalent to t then

eGP e e e

while for numbers equivalent to 7, we have

.

12
a—b=5"—"=1578. ...

54

1t 1 i 1
An ~ 2 dl n 2
T = ds 4+ and 10C max—jz a,
2 2
n n

Example. We see from (21), (22) and (24) that loc max

k

+
n

so the upper extremes of

are governed by the partial quotients of odd order, while

1
2

n

those of —- are governed by the partial quotients of even order. The following is thus an

2
n

instructive example :
1
o =tan <~2->=[0; 1,1,4,1,8,1,12, 1, 16,.. .7,

with a,,=1 and a,,,, =4k if k= 1. This is obtained from Lambert’s expansion of
1
tan (7> in a semi-regular continued fraction [12], p. 353 by the use of » :range’s

transformation [12], p. 159. Using (23), we have 4 =0, B=1 so that

-+ l+

lim sup —-=co, liminf-—"4-=2,
T 1
n- I’lz

lim sup —-=1, liminf-2-=0.
n’ n’

+
In fact, one can be more precise about —5-. By making the obvious estimates in

3
n
Gour1 =4k Qo+ o1, Gok=GQox—1 + 212>

one has 4k < gy <8%(k+1)!, S0 Gars2 2 Gors1 = (ck)* (compare the discussion for e
given in [10], p. 78). If B, <n < B+ 5, then

Gou(Ganv1 + %2+ 1920 SN <Gops 2 (Gan+ 3 T Uaps1 Gor+2)

so n=(ck)* and hence kg—lo—g’l—-. Hence
log log n
Al 1 1
loc max ~"- = (4k)* = <—k~)g-’-1—~>2.
5 loglogn

n
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The metric theory of continued fractions gives us similarly precise information for
almost all . The following result is sufficient for our purposes:

Lemma 5 (E. Borel and F. Bernstein [9], p. 63). Let ¢ (k) be an increasing function of k.

If'S ¢k)t = oo then for almost all o, a, = ¢ (k) for infinitely many k. On the other hand, if
k=1

S_i k)™t < oo, then for almost all u, a, = ¢ (k) except for a finite set of k.

k=1

Corollary 4; Let [} denote either I or I, . For almost all o, and any ¢> 0, there are
constants C >0 and D < = so that for all n,

1 1

3 -4 3 T te
(30) Crllogn) ® <1 <Dn’(ogn) .
On the other hand

&

o

1 L, ‘ 1
[F<Cn*(logn) ° " and IF = Dn* (log n)
hold for infinitely many n.

Proof. For almost all a, g, =c* for a universal constant ¢ [9], p. 66. Thus f Sn
implies that n=cf so k <c, log n. By Lemma 5, for almost all «, @S¢, k' *2 and thus,
by (21a) and (24),

1 1 1 1 1 Ly,
17 <A <nP(quo) S S0 (ayes+2)° S Dn’(logn)’

The remainder of the proof is similar.

1 H
Remark. Of course (log n)2+ can be replaced by y (log n) for any increasing Y for
which 3 ¥ (k)™ ? < .

I
Corollary 5. For all o, n < I} I, <2n, and lim sup — n" =2. If o has unbounded partial
‘o
quotients, then lim inf "n" =1. For all a,
Y A 2
3 lim inf , §1+~1—=1.894427...,
52
1
5% +1

which is attained only for o= and equivalent numbers.

Proof. The fact that [} [; Zn is a result of Erdds and Szekeres [4]. By Theorem 1,
ifﬁm§n~§ﬂm+1sthen

}": }'n_ =g(n) = (qm + no‘m) (qm+1 + nGm+1)'

By (5) and (6), g(B,) =2, and g(Bn+1) =2Pm+1- Thus g(n) —2n is quadratic in #n and
vanishes at n=B,,, ., and hence satisfies g(n) < 2n for B, <n < p,.,. Hence
[T < A7 <2n.

il AT AT
Since A} A, =2n for n=f,, it follows that lim sup "n" = lim sup ———=2.
n
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1
n . 5.
On the other hand —gQ has a minimum at n= (5, fmr1)"- USINE @1a1 O+ GOms1 = 1,
n
we have
A A 3
IOC min — — =] + 2(‘4171"4"1%1 N’
n
where 4, =q,,0,,. Thus
SR AN e 3
(32) liminf -*——=1+lminf 2(4, 4,,.1)",

n

which is 1 if {«,,} is unbounded. Let ¢,,= 4,,4,,.:. Then (25) becomes
(33) al  AZ<1-=2¢, 1 —2¢,.

Thus

(34) a}%ﬂ-larzﬁ'Zchn <(1 _—2Cm41 "Zcm) (1 —Zcm—zan-l)‘

1 . .
Let ¢ =lim inf ¢,,, which is clearly at most ”y by (33). If q,, = 2 for infinitely many m, then

Il

2 2
14— <1+—, from
6 52

(32). It is easy to check that equality holds in (31) for any « equivalent to 7.

1
34) shows that 4c? <(1 —4¢)?, so ¢c£—. Thus lim inf
6

Added in proof. With respect to Lemma 2 we remark that J. L. Nicolas states that
result without proof in: Répartition Modulo 1, Lecture notes in Mathematics 475, New
York 1975, p. 115.
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