Optimal Strategies for Second Guessers
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A model is given for a class of contests in which the participants
try to guess (or estimate) unknown quantities, and the objective
of each player is to come closer to the unknown quantities than an
adversary. A general optimality result is proved that gives the
best guessing rules for the second guesser. These rules are first
calculated exactly in a certain hierarchical linear model, and then
simpler approximate rules are given.
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1. INTRODUCTION

The goal in many activities or contests is not neces-
sarily to do well in any absolute sense, but merely to
outperform an adversary. The objective of this article
is to provide a model for such a contest, establish the
optimality of certain procedures, and provide suitable
approximations to these optimal procedures. But be-
fore yielding to the mathematics of the model, we wish
to fix ideas with an anecdote.

Two statisticians, Bob and Mike, engaged in a contest
to guess weights of people at a party. They agreed that
Bob would always guess first. Mike would then guess,
and finally the person in question would say who is
closer. For example, for person number one Bob guessed
137 pounds. Mike then guessed 137.01 pounds, and the
guest declared Mike the victor. The contest continued
in a similar vein, and to Bob’s dismay he won barely a
quarter of the time.

It is intuitively clear that the second guesser has an
advantage, and one of the results of Section 2 shows that
this advantage is typically as large as the 75 percent
obtained by Mike in the anecdote.

To continue the story, Bob was so stunned by defeat
and eager for revenge, that he elicited the assistance of a
professional weight guesser. Mike agreed that since the
new team was so powerful it should be willing to make
all its guesses about the weights of the guests before Mike
had to state any of his guesses. The team agreed to the
proposed rule change, and Mike then proceeded to win
even more convincingly than before.

The strategy used by Mike in the second case is
naturally more sophisticated than the one he used when
he was matched against an equal. This second strategy
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derives from a hierarchical linear model like that studied
in Lindley and Smith (1972). It is also closely connected
with the James-Stein estimator and was originally moti-
vated by the “Batting Average”’ example of Efron and
Morris (1973).

Our program begins by establishing in Section 2 a
formal theory of guessing contests. We also give a simple
but very general optimality result that forms the basis
for the rest of the article.

The third section determines the exact optimal strategy
for second guessing under a certain linear model. Practical
approximations to this optimal strategy are worked out
in Section 4. The final section gives a critical discussion
of the various sources of difficulties inherent in applying
this theory of guessing contests. While the main point of
this article is to provide a tractable theory of guessing
contests, we feel that the largest single point established
is the approximate optimality of the simple rule given
by (4.1).

2, HOTELLING'S STRATEGY

The structure of our guessing model can be deseribed
by a system of four p vectors.

Target values: (01,62, ...,0,) =6
First guess: (X1, Xy, ..., Xp) =X
Second guesser’s hunch: (Yy, Yy, ..., Y,) =Y
Second guess: (Gy, Goy ..., Gy) =G

The 8; represent the real values to be guessed. The X,
are guesses made by the person who goes first, and all
these are assumed to be available to the second guesser
before he acts. The Y, represent the second guesser’s
best, estimate of the 6;. Finally, the G; are the guesses to
be announced by the second guesser. Our principal task
is to determine how G should be based on X and Y.

The objective of each player is to come closer to 6
than his opponent, so we begin by setting

VG, 0 = 5 Vi(G, 6) ,

j=1

2.1)

where
Vi(G,8) =1 |G; —6;] <|X;— 6

= (0 otherwise .
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The strategic objective of the second guesser is therefore
to maximize EV (G, 8); that is, the second guesser wishes
to maximize the expected number of times his guesses
ecome closer to the true values.

The only probabilistic assumptions to be made now are
that 0, X, and Y bave a joint distribution that is con-
tinuous. This assumption is made for convenience and
avoids the ad hoc conventions required for dealing with
ties.

Now let »;(X, Y) denote the median of the conditional
distribution of 8; given X and Y. A key role in our guessing
theory is played by the following strategy :

Ge=X:+e if X, <u(X|Y)

=X; — ¢ otherwise .

These strategies will subsequently be called Hotelling -

strategies since they were essentially put forward in
Hotelling (1929, p. 51). There are broad differences
between the present model and Hotelling’s problem in
location economics, but the relationship seems close
enough to justify (or even require) the name. The main
fact in this section is the following simple result:

Theorem 1: The Hotelling strategies are ¢ optimal;
that is,
lim EV (G, ) = sup EV(G, 0) .
e G

Proof: Since any guess G; must be on one side or the
other of X;, we have

PYY(|G; — 0] < |X:—6:])
< max{P*Y(0; < X,), P*¥(6: > X))} .

The basic observation about G;¢is that
lm PRY(|Gie — 0] < | X: — 6:])

>0

= ma.x{Px:Y(l); < X.‘), Px-Y(O; > X,)} .

Taking expectations in the two preceding relations and
summing over 1 < i < p, the theorem is proved.

A compelling impediment to the use of Hotelling
strategies is that they require the knowledge of the joint
distribution of 6, X, and Y, or at least the knowledge of
vi(X, Y). The key task of the remainder of this article
is to isolate some feasible circumstances in which this
impediment can be overcome.

To begin, consider the strategies

G,;=X,‘+€ lf .X,'<Yi
=X;—¢ f X;>Y,;,

where the second guesser places his guess just a bit to the
side of the first guess in the direction of his own “hunch”
Y.

In some cases one can show that these hunch-guided
guesses are in fact Hotelling strategies. Certainly, if the
vectors (6;, Y: X:), 1 <1 < p are independent and
0,'! Y,' ~ N(Y.‘, O’YZ), X.-!G.r, Y,' = X;']gi ~ N(Gi, sz), then
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vi(X, Y) is on the same side of X; as Y. This immediately
implies that the Hotelling and hunch-guided strategies
will then coincide.

Without distributional assumptions on 6, one can no
longer speak of the optimality of a guessing strategy, but
the following result points out a case in which the second
guesser can still realize a substantial advantage.

Theorem 2—Three-Quarter Theorem*: If £ = X — ¢
and ¥ = Y — 6 are identically distributed, independent
and symmetric about zero, then the hunch-guided guess
has probability 4 of winning as ¢ — 0.

Proof: As e¢—0, the probability that the hunch-
guided guesser loses is P(Y <X <0)+P(0<X<¥). By
symmetry and exchangeability this probability also
equals

2PO0< P <X)=P0<Xando<¥)=1.

In a practical application of the three-quarter theorem
the assumption of identical distributions might seem to
pose some difficulties. It is reassuring that the result is
quite robust. For example, assuming unbiased jointly
normal guesses, the second guesser still wins with prob-
ability greater than .68 when varY/varX = 2.5 and wins
with probability greater than .59 when var¥/varX = 10.
(These probabilities are easily confirmed by tables of the
bivariate normal, e.g., Owen 1956.) The more detailed
assessment of robustness in guessing competitions will
be dealt with in a subsequent report, but one should note
an obvious aspect of nonrobustness under gross changes
in the model of Theorem 1 is that the probability of the
second guesser winning will tend to % or 1 according as
varY/varX tends to « or 0.

3. GAUSSIAN GUESSING

Since Hotelling strategies have been shown to be
optimal, one would naturally like to provide a class of
models in which the strategies can be determined
explicitly. The main result of this section is to give such
explicit strategies under a multivariate normal model
studied by Lindley (1971) and Lindley and Smith
(1972).

We write U|V for the conditional distribution of U
given V, 1, for the row p vector (1, 1, ..., 1), and I,
for the p X p identity matrix.

Our Gaussian model assumptions are the following:

8lu ~ N(uly, adl,)

3.1
1~ N(uo, 0,%) @1

and
X, Y]o, [ "’N(O(Im Ip), P) )

1A result equivalent to that given here was told to the first
author in 1975 by R. Chacon and was known much earlier to R.
Chacon and 8. Kochen. The result was also known earlier to T.
Cover in the form: Between two ‘‘equally matched” baskeball
teams the odds are 3 to 1 in favor of the team leading at the half.
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where

(alep 0 )
I‘ ==
0 ayil,

The physical motives behind this model are that the
true weights 6 of the persons we see are viewed as in-
dependent realizations of a single fixed random process
that was itself once drawn from a population of random
processes. For example, the parameter i can be viewed as
a geographically fixed quantity determined at an earlier
time by (random) immigrations. The assumption of
normality is made partially out of traditional con-
venience, but also because it seems justifiable in the
weight-guessing example. The structural model together
with the normality lead uniquely to the Gaussian model
specified in (3.1). The promised explicit determination of
the Hotelling strategy is now possible.

Theorem 3: Under the preceding Gaussian model the
Hotelling strategy is

G*=X:te if Xi<ymot+(Q—-yBX+1-8)7]
+ (1 —a)[8(X:i—X)

+1-p(¥:—7)] (.2

=X;—e¢ otherwise ,
where
v =0 o2+ oxt+ oy )T,
o = go® + po,?
a = go (oot + ox 2+ oy )!
and
B =o0x2ox 2+ oy ).

The proof of the preceding theorem depends on a multi-
variate calculation that we have deferred to the Ap-
pendix in order to take up directly the problem of inter-
preting the result.

The basic part is the mixture of means,

yuo + (L — Y[BX + (1 — Y],

which is perturbed on trial Z by the “mixture’’ of residuals
a0+ (1 —a)[8(X: — X) + (1 — B)(Y: — ¥)]. The co-
efficient 8 = ox~2(ox~? + oy~?)~! appearing in these mix-
tures is near 0, 3, or 1 accordingly as ox*¢y~2is near o, 1,
or 0. This ratio is one natural measure of the relative
abilities of the two guessers, and this interpretation is
reinforced by considering the extreme cases. When
oxloy? ~ o the first guess is essentially ignored and when
oxtey~t ~ 0 it is the hunch that is ignored. This last
case is of particular interest since it corresponds to trying
to outguess a far better informed adversary.

4. STEIN-GUIDED GUESSING

The strategies just derived have the drawback that
they are functions of ue, 0,2, ¢, ox% and oy Although
the magnitude of o and of the relevant variance ratios
may be sufficiently understood for some applications,
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the exact values of these quantitics cannot generally
be assumed to be known. The next objective is thus to
derive reasonable estimates to the unknown mean and
variances. One benefit of this analysis is a clearer under-
standing of the empirical fact (Efron and Morris 1973)
the Stein estimator performs well with respect to the
reward function V.

A Bayesian approach to the estimations given before
can be made along the lines suggested in Lindley and
Smith (1972), but such a procedure can prove quite
complex (cf. discussion by V. D. Barnett in Lindley and
Smith 1972). The estimators considered here are based
on an empirical Bayes procedure that seems both simple
and sensible.

As before, we write Z = (X, Y) and begin by trans-
forming Z into a canonical form. Next we recall that
1,71, = pPTAP, where P denotes the p X p Helmert
orthogonal matrix (cf. Bennett and Franklin 1954, p.
102) and A is the p X p matrix with 1 in the (1, 1) posi-
tion and all other entries zero. We define (U, V) by

I, I PT 0
wv-zan( ) )
I, —-1,/\0 PT
A straightforward calculation shows

(Uy V) ~ N(I‘*) E*) )

where
p* = (2p)iuo(e, 0) ,
e= (1,0, ...,0),
.2, a'_’I,,:] I:I,, 0] [A 0]
¥ = 204* 2po,? ’
[aJI,, s, T2 Lo o] T2 o
and

2

0l = 3o + ov) , o2 = (o —oy) .

From the canonical form shown one notes that ¢,2 can-
not be meaningfully estimated since there is only one
degree of freedom available for its estimation.

We now turn to the analysis of important special
cases that correspond to qualitatively different contexts.

Case A—Known Variances: We need to estimate only
o, and this is done by maximizing the Type II likelihood
(cf. Good 1965). This calculation follows easily from
equation (A.1) ‘of the Appendix, and the estimator
obtained is

Bo = (12352227'Z7) (12,2227 '15,7) " .
This simplifies further to just
s0 the estimated Hotelling strategy becomes
G*=Xi4+e if Xi<offX+ (1-8)7]
+ (1 —-a)[BX:+ (1 —B)Y.]
=X, — ¢ otherwise ,

where the parameters o and 8 are as specified in Theorem
2.
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Case B: 0,2 = 0; 0% = oy? = 6% and o4 unknown. The
canonical model stmplifies to

U, V)~N{ (2p)} 0 R 221”0))
(U, V)~ ((mo(e, ),5(0 z,,)”* w(o )

and this time estimators are easily found without carry-
ing out the likelihood maximization. We take the esti-
mators of uo, 7 = (8% + 2¢¢*)~! and &, respectively, given
by

B = (2p)~*Ux
P
t=p(X UH?
=2
and
& = pvvT .
In terms of X and Y we then get
p=3X+7)
P 1 1 X__ _ 2\ —1
7= —— X,‘ Y{ — Y
’ p(g[\/z( MRV )D
and

; v = |
& = (p)! [— (X:i— Y ] .
i=1Lv2

The approximate Hotelling strategy for this case is
therefore .

GF*=Xi+e if Xi<a-3(X+V+0—-a) 3X:+Y))

=X;—¢ otherwise ,

where

o= (B -]

b4 1 1 (_’ _) 2=3—1

12 {"“(Xi‘*"yi)""‘" X+Y}] .

[i:l '\/2 '\/2
One should note that & has a natural interpretation. It
is just the ratio (between the guesser variance) -+ (be-
tween the trial variance). The optimal strategy favors
using 3 (X +7Y) when @ is close to 1 and favors 3 (X:+7Y")
when & is close to 0. Also, the strategy can be improved
slightly by replacing « by 1 if it happens that & > 1.

Case C: 0,2 =0, oy® = 0, ax® known; ¢4 unknown,

This is a case we feel to be of particular interest. Cal-
culating as before, we find that a Stein estimator deter-
mines the approximate Hotelling strategy, but that it
plays a cameo role since the strategy simplifies to just
“betting on the X; side of X.” This simple result gives
some theoretical justification to the otherwise somewhat
mysterious empirical fact that X performs even better
than the Stein estimator in terms of “gambler’s” loss on
the batting average data set (cf. Plackett’s comment
in Efron and Morris 1973, p. 416, and an easy com-
putation).
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The formal analysis begins as in Case B. Since oy?*= =
the Y is uniformative and the analysis must rest on X.
Also, since 0,2 = 0, the canonical form of the X’s marginal
model can be simplified to

U* ~ N(ptuoe , (ox*+ ae®)l,) .

The obvicus estimate of u, is given by
o= X ’
and if we require that the estimate, 7x, of

rx = (ox* + o¢?)!
be unbiased,

P
tx= (-3 X:— X))
fe=1
becomes the natural choice and the estimated Hotelling
strategy is

G* =X+ e if Xi<aX+ 1 —a9X:

=X; — ¢ otherwise ,

where ¢* = min{1, &} and

P
&= oxt(p — LT (X: — 1T

fe=1
The direction of the guess on the side of X; is deter-
mined by ¢*X + (1 — @*)X;, which is precisely the Stein
estimator as modified by Lindley (cf. James and Stein
1961 and the discussion following Lindley and Smith

1972).

Now since the convex combination of X and X, will
always be on the same side of X; as X, the estimated
Hotelling strategy can be more simply written as just

G,‘*=X,’+E lf X.<X

) (4.1)
= X;— ¢ otherwise .

This is an extraordinarily simple procedure in a model
that we feel may be realistic in several sporting and
business contexts.

To assess the performance of this Stein-guided strategy,
guessing trials were simulated for a variety of special
cases. The 9; were chosen as 0; = 0, §; = ¢, and 8; = ¢°
for each of i = 1, 2, ..., p with p = 10 and then with
p = 100; thus, in all, 3 X 2 = 6 cases were considered.

As an illustration of the computation consider the case
in which 8; = 7 and p = 100. In this case 200 repetitions
were made as follows:

1. X was generated as N(0, I) with 0 = (1, 2, ...
100).

2. G* was calculated by (4.1) with ¢ = 10-°,

3. V was then calculated, and the process was repeated
200 times.

4. The 200 realizations of ¥V /100 were used to estimate
the density of V/100, the percentage of times the second
player wins using the G* of (4.1).

5. This density was plotted in Figure B (in this case,
the unshaded density in the middle graph).
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A. Estimated Density of the Proportion of Second
Guesser Wins Using the Stein-Guided Optimal Strat-
egy (based on runs of 200 contests)

45 T
6,=i%an i
p=100
25 |-
»
. p=10
k]
© 1 1 ] 1 ] ] i
3
2
g 25
;; 8 =iolli
-] p=100
é p =0
s N
g i ! 3 1
[=]
E
%
uw
25 T
8:0alli p =100
p=I0
I | | I I L
0 5 1.0

% = proportion of p triols won by the second guesser

From Figure A one learns by looking at the unshaded
density in the top graph that when as many as 10
parameters growing like % are to be guessed the modal
percentage of correct guesses made by the second guesser
is about 95 percent. The general conclusions to be drawn
from Figure A are

1. The more parameters to be guessed, the greater
the advantage to the second guesser.

2. The more spread out the 8; to be guessed, the more
the advantage to the second guesser.

In Figure B, these conclusions are further examined
by taking the 8; themselves to be random. Here p = 20
was fixed throughout. First we took a realization of
6 ~ N (0, 41;). Then 200 of the X’s we generated with
the same fixed underlying 6 (just as in Figure A). The
density of V/200 was estimated as before, and altogether
25 runs were made. The 25 runs produced remarkably

B. Estimated Density of the Proportion of Second
Guesser Wins in p = 20 Trials Using the Stein-Guided
Optimal Strategy (three runs of 100 contests and com-
bined runs of 2,500 contests)

10 - T =
Run 21
> 0‘1 random Run 17
2
3 Run |
35 -
B
E
G /
]
1 ! L ! 1 |
(o] 5 .0

x = proportion of p=20 triols won by the second guesser
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similar estimates of the density of ¥ /200, and the esti-
mates from runs number 1, 17, and 21 were selected as
indicative of the variability in the 25 runs.

5. REALITIES OF APPLICATION

Almost any discussion of the preceding theory
eventually turns to the problem of football betting, and
it seems generally worthwhile to note why the theory is
not applicable to that problem. A key reason is that the
bookie (or person “setting the line”) is not trying to
estimate the actual point spread. The bookie is trying
to produce a point spread that will produce a nearly
equal number of takers on each side of the spread. The
bookie is therefore not a first guesser in the sense of this
article, and our theory naturally does not apply.

Consider instead two bookies of equal caliber, one of
whom sets his line on Monday and the other on Tuesday
(for the game on Sunday). If the Tuesday bookie
wished to obtain only a more even distribution of custo-
mers on either side of his line than the Monday bookie,
he should be able to do so in almost three-quarters of
the games by using the hunch-guided guessing of Section
2. In this case, each bookie is a bona fide guesser of that
spread s that will evenly split the pool of bettors.

Since there are actually many games each week, the
Tuesday bookie could actually outperform the Monday
bookie by using the Stein-guided strategy of Section 4,
particularly (4.1). The assumptions of (3.1) may not be
applicable to the whole set of games; but if one con-
siders only noncharismatic games outside the bookie’s
city, then (3.1) seems reasonable. (This is a stratifica-
tion step to obtain increased homogeneity of the spreads
to be guessed.)

The examples put forward before are in the long tradi-
tion of gedanken experimente, and the problem of pro-
ducing a truly telling application remains open. An
intriguing aspeet of a theory of this nature is that it is
only necessary to find one good application.

APPENDIX: PROOF OF THEOREM 3

By Theorem 1 the problem depends on the calculation
of the posterior median »;(X, Y), which by the normality
assumptions (3.1) coincides with the posterior mean.
The argument given here for completeness is similar to
those of Lindley (1971) and Lindley and Smith (1972).
It depends on the well-known fact (c¢f. Anderson 1958,
p. 27) that if U and V are jointly normal then

U|V ~ N(EU — EV ¢ + V¢, Zg)

where { = zw—'lzvu, Zg.v = Zyv — Euvzvv—lzuv,
denotes the covariance matrix of V and so on.

Setting Z = (X, Y) and applying the preceding
identities to (3.1), we have

Z ~ N(Mo(lm lp)) EZZ) ]

2VV

(A1)
where

Zzz=dia.g{ax2, 0’Y2}®Ip+0'92J2®Ip+U,,2J2®1pTlp f
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-where & denotes the Kronecker matrix product and J:
is the matrix with all 1 entries. Further,

E@®|Z) =E(®) -EZ)¢+Z-¢,

where
{ = Z2z720
with
I ,,)
228 = ( Zoo
I,
and

Zoo = ool p + 0,21,71, .
We now determine Zzz7. First we note that
1,71, = pPTAP |

where P denotes the Helmert orthogenal matrix (cf.
Bennett and Franklin 1954, p. 102) and Ais the p X p
matrix with 1 in the (1, 1) position and all remaining
entries zero.

One then notes that

(I: @ P)2zz(I: ® PT)
reduces to just
diaglox?, o} Q@ I, + 0t Jo Q I, + po 2t R A
which makes it straightforward to show
Zz = (L. PO ® P) ,

where

ox? 0 Y 0 )
0 =
( 0 aYﬁz) ® (0 aIp—l

1 -1 ox 2oy 2%y 0
#(57)e( )
-1 1 0 ox oy todal 5y

where v and « are in Theorem 2.
From these results an explicit expression for Z-{ is
readily obtained. We first note

Z-L = (XPT, YPT) @ (PT, PT)T3y
and
L% 0
o, P17 = ox e @ (1 p)-
0 aIp—-l
Thus
Z-{ = (XPT, YPT)
L% 0

[emerre(; ;)]

(o6?lp + palA)P = (ex?X + oytY)A ,

where

A.2)

oy 0
A= PT P .
0 aozalp_l

Now represent X as
X=X1,4+X-X1,) .
Then we have

XPT = X(p*1 0) rey 0) + (0) X(z)) H
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where
X, — X, Xi+ X, - 2X;
x(z) ( 3 ) y
V1.2 V2.3
Xi+Xot- -+ Xp— (p— I)Xp)
(1 — p)}
SO

X4

oy X (p4 0, ..., 0)P + o5%(0, X)) P
oy X1, + ocia(X — X1,) .

A similar result holds for YA. Introducing the resulting
expressions for X4 and YA in (A.2) yields

(ex X+oy YA =(1-7)[BX+1-p)T]L,
+(1-a)[BEX—-X1,)+(1-8)(Y~T1,)] (A.3)

]

since
yor(ox? +oy?) =1—y

and
acioxt+ay?) =1—a .

From the expression just obtained in (A.3), E(Z)-¢
and hence E(8) — E(Z)-{ are easily found. To get
E(Z)-{, simply substitute uol, for both X and Y. This
gives

E(Z) ¢ = ya’[ox~? + oy Juol, .

At the same time E(8) = uol,, so we have
E(0) — E(Z) L = yuol, - (A4)

The proof of Theorem 3 is now an immediate con-
sequence of (A.3) and (A.4).

[ Received September 1978. Revised March 1980.]
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