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Probability theory is that part of mathematics that aims to provide insight into phe-

nomena that depend on chance or on uncertainty. The most prevalent use of the

theory comes through the frequentists’ interpretation of probability in terms of the

outcomes of repeated experiments, but probability is also used to provide a measure

of subjective beliefs, especially as judged by one’s willingness to place bets.

The roots of probability theory are not as ancient as those of many parts of math-

ematics, and only in the sixteenth and seventeenth centuries does one find the first

glimmerings of the theory in the investigations made by Gerolamo Cardano, Pierre

de Fermat, and Blaise Pascal into games of chance. Despite the luminous reputa-

tions of these famous mathematicians and philosophers, the subject of probability

theory remained on the periphery of respectability, and for a long time development

was halting and lugubrious. Through the first third of the twentieth century, the

eighteenth century works of Jakob Bernoulli (see Bernoulli Family) and Abraham

De Moivre continued to be viewed as the nearly definitive treatises of probability

theory.
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Still, even in the early days of the twentieth century when probability theory clearly

suffered from the lack of a widely accepted foundation, there were profound devel-

opments, most notably Albert Einstein’s use of Brownian motion in 1905 to pro-

vide the first determination of Avagadro’s number [7]. Nevertheless, in 1933 when

Andrey Nikolayevich Kolmogorov published his elegant succinct volumeFounda-

tions of Probability Theory[10], the mathematical world was hungry for such a

treatment, and the subsequent development of probability theory was explosive.

1 Firm Foundation

Central to Kolmogorov’s foundation for probability theory was his introduction of

the triple(Ω,F ,P) that we now call a probability space, or sometimes the “proba-

bilist’s trinity”. The triple’s first element,Ω, is required only to be a set. The second

element is a collection of subsets ofΩ about which more will be said later. The third

element is a function that assigns a real number to each of the elements ofF . This

function is called a probability measureP provided that it satisfies the three fol-

lowing axioms:

Axiom 1. For allA ∈ F we haveP(A) ≥ 0.

Axiom 2. For any countable collection{Ai ∈ F : 1 ≤ i < ∞} for whichAi∩Aj =

® for all i 6= j, we have

P (∪∞i=1Ai) =
∞∑

i=1

P(Ai).
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Axiom 3. P(Ω) = 1 Axioms 1 and 3 are quite bland. Axiom 1 only captures our

understanding that probabilities of events are nonnegative numbers, and Axiom 3

just echoes our assumption thatΩ is a sensible representation for the universe of all

possible outcomes of the chance experiment being modeled. Only about Axiom 2

can there can be any quarrel, and at times arguments have been made for preferring

a probability theory that only requires additivity of probabilities for finite collec-

tions of sets. Kolmogorov’s decision to assume countable additivity is not the only

possible choice, but it has been a fecund one that has proved to be appropriate in a

wide variety of circumstances.

The mathematical benefit of Kolmogorov’s second axiom is that it connects proba-

bility theory with the theory of measure as put forward by Borel, Lebesgue, Radon,

and Fŕechet in the early part of the twentieth century. It was in fact Fréchet who

noted some 13 years after Lebesgue’s famous 1902 thesis that the natural domain

for a probability measure is a collection of sets that is closed under complemen-

tation and countable unions. Fréchet called such collectionsσ-algebras, and Kol-

mogorov required that the second term of his triple be just such a collection.

2 Basic Quantities of the Theory

To the practical mind, Kolmogorov’s axiomatization of probability may seem only

to defer the problem of construction of probability models that serve to inform us

about the physical and social world, but by putting the elusive probability function

P on an axiomatic footing Kolmogorov did provide real assurance that one could
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study probability as sensibly as one could study measure theory, analysis or algebra.

In particular, one could proceed with the investigation of the objects that had been

of concern from probability’s earliest days.

One of the most fundamental notions of probability theory is the random variable,

and in Kolmogorov’s framework a random variable is nothing more than a function

from X : Ω → < with the property that for allt one has that the sets{ω : X(ω) ≤

t} are elements of theσ-algebraF . With this definition we are on firm footing when

we take the definition of the distribution functionF of X to be

F(t) = P(X ≤ t),

because the set{ω : X(ω) ≤ t} is in the domain of the set functionP. In this frame-

work the expectationE(X) of the random variableX can defined as the Lebesgue

integral ofX with regard toP, or as the Riemann-Stieltjes integral with respect to

F , giving us

E(X)
∫

Ω

X(ω)dP(ω) =

∞∫

−∞
xdF(x).

The probability distribution function and the expectation operation provide us with

the core language that is needed to express almost everything that one needs to say

about individual random variables. For example, a basic measure of dispersion of a

random variable is the variance, which one writes in terms of the expectation as



5

var(X)− E(X− µ)2,

whereµ = E(X) and the standard deviation ofX is defined to be the square root

of the variance.

3 Central Role of Independence

With expectations and distributions we recapture much of the most basic language

of probability theory, but the real power of probability theory only emerges with the

introduction of the central notion ofindependenceof events, algebras, and random

variables. To begin that development, one first defines elementsA andB of F to

be independent provided

P(A ∩ B) = P(A)P(B).

This definition is then extended to sub-σ-algebras ofA andB of F by callingA

andB independent providedA andB are independent for allA ∈ A and allB ∈ B.

Finally, random variablesX andY are independent ifA andB independent when

these are respectively the smallestσ-algebras containing all the sets{X ≤ t} and

all the sets{Y ≤ t}.

This definition of independence of random variables may look a little burdensome

at first, but for many purposes it is much more convenient than the definition of

independence that is sometimes given in elementary texts that call for the factor-
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ization of the joint density ofX andY . In fact densities may not exist, but that is

not the telling point. More to the heart of the matter is that with Kolmogorov’s defi-

nition one clearly sees that the independence ofX andY implies the independence

of f(X) andg(Y ) for any monotone functionsf andg, while this intuitive fact is

cumbersome to check if one needs to verify a density factorization.

4 Theorems That Make the Theory

There are two theorems that live at the very heart of probability theory. The first

is the law of large numbers, without which our most fundamental intuitions about

the relationship of probability theory and the physical world would be at odds. The

second is the central limit theorem, which is arguably the result that most clearly

accounts for the practical utility of probability as a helpmate to statistics, as well as

to the social and physical sciences.

Theorem 1 (Law of Large Numbers). If{Xi : 1 ≤ i < ∞} is a sequence of

independent random variables, with the distribution function,F , and ifE | Xi |<

∞, then the event that the sequence

1

n
{X1 + X2 + . . . + Xn}

converges toE(X1) has probability one.

Theorem 2 (Central Limit Theorem). If{Xi : 1 ≤ i < ∞} is a sequence of

independent random variables with distribution functionF , E(Xi) = µ < ∞, and
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var(X) = σ2 < ∞, then

limn→∞P( 1
α
√

n
{X1 + X2 + . . . + Xn − nµ} ≤ x)

= 1
(2π)1/2

∫ x
−∞ e−µ2/2

du.

5 Beyond Independent Random Variables

While the purest view of the aims and accomplishments of probability theory may

be found in the study of sums of independent random variables, the applications of

probability theory require the development of structures that also capture aspects

of dependence. To give the simplest illustration of a such a system, we consider a

set finite setS = {1, 2, . . . , n} which we will call the set of “states”, and a matrix

P = {pij), where all of the matrix entries satisfy0 ≤ pij ≤ 1 and where the row

sumspi1 + pi2 + . . . + pin all equal one. We now consider a sequence of random

variablesXn that are defined by sequential transitions according to the row of the

matrix P . Specifically, ifXn = i, thenXn+1 is determined by making a choice

from the setS in accordance with the probability masses(pij). Such a sequence of

random variables is called a Markov chain, and the theory of such sequences offers

an important first step from the core theory of independent random variables. The

index of the sequence{Xn : n ≥ 0} is usually viewed as “time” and an important

extension of the notion of a Markov chain is that of a Markov Process where the

index is taken to be the whole positive real line and the state space is permitted to be

<d (or even a more complex space). The most important such process isBrownian
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motion.

Another direction for the development of probability theory that goes beyond in-

dependence is provided by the theory ofmartingales. On one level, martingales

capture the notion of a fair gambling game, and although this view is interesting

(and loyal to the origins of probability theory), the theory of martingales turns out

to be an appropriate tool for many kinds of investigation (see Counting Process

Methods in Survival Analysis). In particular, the theory of martingales provides

the key to profound connections between the theory of Markov processes and the

classical theory of harmonic functions.
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