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ABSTRACT
Recent work on the assignment problem is surveyed with the aim of illustrating the
contribution that stochastic thinking can make to problems of interest to computer scien-
tists. The assignment problem is thus examined in connection with the analysis of greedy
algorithms, marriage lemmas, linear programming with random costs, randomization based
matching, stochastic programming, and statistical mechanics. (The survey is based on the
invited presentation given during the “Statistics Days at FSU” in March 1990.)

1. Introduction.

The role of probability and statistics in computer science has been expanding vigorously
for almost thirty years. It is no longer possible to survey that role honestly in a single article,
so the path taken here is rather to look hard at one concrete problem that illustrates many
different parts that probability and statistics can play.

The problem chosen for the task is the Assignment Problem. Before formally introduc-
ing this problem, it seems appropriate to review its qualifications as an illustrative vehicle.
It is simple to state and has been extensively studied, but its most compelling charm for the
present pupose is the breadth of topics to which it is naturally connected. The assignment
problem allows one to discuss a number of beautiful ideas that tie together topics as diverse
as linear programming and statistical mechanics.

A final benefit of studying the assignment problem is that it provides natural illus-
trations of a basic distinction that is sometimes eclipsed. The probabilistic analysis of
algorithms is quite distinct from the analysis of probabilistic algorithms. Despite the poly-
syllabic overlap, these activities have radically different tools, aims, and assumptions.
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2. The Assignment Problem.

Consider the task of assigning n jobs to n machines while minimizing the total pro-
cessing time required to do the n jobs. We assume the required processing times (or more
generally the processing costs ) are specified by n? real numbers cij where c;; is viewed as

the cost of performing job i on machine j. Formally, the Assignment Problem is the task of
determining a permutation x that solves

n
min )  Cix(i)-
p Z; in(i)
In the sections that follow we will consider two basic stochastic models for this problem;
one is given by choosing the c;; as independent identically distributed random variables,
the second is given by choosing the off-diagonal values of c;; as the interpoint distances of
a set of n points in R?. Each of these models is examined in the contexts of heuristic and
optimal algorithms. \

3. Simplest Stochastic Model.

No doubt the simplest stochastic model for the assignment problem is given by con-
sidering the ¢;; to be independent random variables with the uniform distribution on [0, 1].
Walkup (1979) investigated this problem and discovered the striking fact that the expected
cost of the minimal assignment is bounded independently of n. More precisely, Walkup
showed the cost A, of minimal assignment satisfies EA, < 3.

Shortly we will take up the issue of bounding (or even determining) EA,, but it is first
worth examining some naive approaches to choosing x and estimating EA,.

3.1 Greedy Assignments.

Greedy algorithms are among the most studied methods in combinatorial optimization,
and in many instances the natural greedy algorithms are indeed optimal. The theory of
matroids has developed in good measure because it provides a systematic view of situations
for which greedy algorithms yield genuine optima.

In the case of the assignment problem, the greedy approach is not particularly suc-
cessful, but it still merits a quick look since it provides one of the few instances where a
complete analysis is easy. Moreover, examining the failures of the greedy algorithms helps
to reveal the subtlety behind the the analysis of the optimal solution.

Local Greedy Assignment.

Consider the assignment process that successively examines each jobi, 1 < i < n, and
makes an assignment to the free machine for which ¢;; is minimal, i.e. (i) is chosen so
that cixi) = min{cij : j # o(k), for all k < i}. Under the hypothesis that the {c;;} are
independent and uniformly distributed on [0,1], the i’th assignment equals the minimum
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of n — i + 1 independent uniformly distributed random variables, so the expected cost of
the i’th assignment is exactly 1/(n — i + 2). The total expected cost of the assignment is
therefore asymptotic to logn.

Global Greedy Assignment.

A less naive heuristic for the assignment problem chooses matches successively out of
the set of all possible matches by choosing the pair i and j for which ¢;; is the least cost
among the unmatched pairs. This method looks promising since the expected cost of the
first match is just 1/(n?+ 1), rather than the 1/(n+ 1) of the local greedy assignment. Still,
this early success soon falters, and the global greedy heuristic again leads to an expected
total cost of order logn.

. To see why this is so requires a little work. To develop a recursion via a first-step
analysis, we let a,(t) denote the expected cost of the assignment produced by the global
greedy heuristic under the assumption that the cost ¢;; of the n? job-processor pairs are i.i.d. -
and uniformly distributed on the restricted interval [t,1]. To solve the original problem, we
therefore need to determine an(0).

If my(t, u) denotes the density of the minimum of k¥? random variables with the uniform
distribution in [t, 1], it is easy to see that

an(t) = /" um,(t, u)du + /‘1 an-1(u)m, (¢, u)du.

Next, by scaling we have a,(t) = nt + (1 — t)a,(0), so writing a, for a,(0) and substituting
into the integral recursion, we find

1 1
an = / um, (0, u)du +/ {(n = 1Du+(1-u)ay—1}m,(0, u)du
0 0
_ n n?
T (1+n?) (1 +n2)’
This recursion easily shows that a, is exactly of order logn, a result that goes back to

Kurtzburg(1962).

+ an-l

3.2 Methods Based on Marriages.

Hall’s matching theorem was christened the “Marriage Lemma” by H. Weyl(1949), and
his colorful phrasing of Hall’s theorem has become standard: “If a set of n men and n women
has the property that any subset of k women knows at least k men, then it is possible to
marry the n women to the n men so that each women marries a man she knows.” We thus
have at hand a sufficient condition for the existence of a perfect matching in a bipartite
graph. The sufficient condition of Hall’s theorem is also obviously necessary.

There are several ways the Marriage Lemma can be turned toward the assignment
problem. Perhaps the simplest idea is to consider all of the pairs (i, j) such that ¢;; <t and
then ask when it is possible to extract a perfect matching from the resulting graph. If the
graph satisfies the condition of the Marriage Lemma, we obtain an assignment that has cost
bounded by nt; thus if we let B, denote the event that
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Y Keaj<t)2|SlforallSC{1,2,...,0},
1gjg<n ies :

tﬁen we have the bound
EAn, < nt+ nP(B;).

This bound can be used to improve on the O(logn) bound that was obtained by the
greedy algorithm, but seems to lack the force to show EA, is bounded independently of n.
The difficulty comes from the requirement that we consider all S in our construction of B;.
Fortunately, there is a mild variant of the Marriage Lemma that lets us restrict attention
to a smaller collection of subsets. With this new condition in hand one can indeed show the
uniform boundedness of EA,,.

Symmetric Marriage Lemma and Checking Boundedness.

It is possible to give a symmetric version of the marriage lemma that has the benefit of
avoiding the largest values of |S|. The symmetrized version says: “If for each 0 < k < [n/2]
it happens that each set of k women knows at least k men and each set of k men knows at
least k women, then there is a matching between the men and the women.”

It is not hard to prove the Symmetric Marriage Lemma using Hall’s theorem; in fact,
it can be obtained with help from almost any of the matching theory tools. For example,
one can prove it using an induction after the style of the well-known proof of the marriage
lemma due to Halmos and Vaughn(1950), or one can extract it from general results like
Menger’s theorem or the MaxFlow-MinCut theorem.’

To prove EA,, is uniformly bounded we modify our earlier construction to take advan-
tage of the new lemma. Thus, we let C, denote the event that for all S C {1,2,...,n]}
satisfying |S| € [n/2] we have the inequalities

Y Uej<n21S8]

1<j<n i€S
and
> Uej 218l
1<i<n j€S

If Z(t,j) denotes the number of distinct elements in a sample of size N drawn with
replacement from {1,2,...,n} where N has the binomial distribution with parameters t and

j, then
n/2]

¢ n . .
CIELDY (3) P, < .

By choosing ¢t = 9/n, it is routine (but tedious) to show that EA, is bounded by 10.
Although one can try to squeeze more out of this argument, say by noting

EA, < min n{t + P(C?)},

but the underlying construction has built in constraints that seem likely to keep it from
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equalling the best known bounds for EA,. Consequently, attention will be directed toward
other methods.

Walkup’s Method.
The preceeding calculation gives us the same qualitative understanding of EA, that

‘Walkup obtained, but Walkup’s method gives a quantitatively superior bound. Partly for

this reason, we briefly sketch Walkup’s original approach; but, since there are methods that
are even more quantitatively precise, the main attraction in Walkup’s method now comes
from the further light it throws on on the use of marriage lemmas.

The last variant of the Marriage Lemma that we recall says: “If there is a k > 1 such
that each man knows exactly k women and each woman knows exactly k men, then it is
possible to marry the men and the women.” In other words, any regular bipartite graph
contains a perfect matching. To make use of this variant we would like to find a way
to construct a regular bipartite graph that carries with it the information in our weighted
graph. Such a construction is not presently known, but the idea of examining regular graphs
is definitely fruitful. It turns out that we need to look toward regular directed graphs.

We first show there is a pleasant way to associate a random variable with each vertex
50 that these vertex variables can be related usefully to our uniform edge variables. We
first note that if independent random variables Y and Z are distributed so that P(Y <
A =P(Z<AN)=1-(1-=-2)Y2=FQ), 0< X <1, then X = min(Y, Z) is uniformly
distributed on [0, 1]. Now, if we associate with each vertex an independent random variable
with distribution F and associate to each edge the minimum of the two associated vertex
variables, we obtain a model of a random graph with edge weights that are uniformly
distributed. Alas, the new edge variables are no longer independent; nevertheless, the
process shows promise.

To get a rigorous approach to A, under the original independent uniform edge weight
model we apparently need to introduce a slightly more complex structure. Thus, foreach 1 <
i,j < n we consider independent variables {Yi;} and {Z;;} with the distribution F and use
them to build a random regular directed biparﬁte digraph G. We write A = {a,, az, ...,a,}
and B = {b, b3, ...,ba} for the vertex set bipartition. We then take (a;,b;) to be a directed
edge of G if Y;j is among the d smallest elements of {Y;i : 1 < k < n}, and finally we take
a directed edge (s, a;) if Z;; is among the d smallest of {Zsj : 1 < k < n).

This construction is now relativly easy to analyze. If Yj(;) is the k’th smallest element
of {Yij : 1 £ j < n}, and Uy, is the k’th smallest of n independent uniformly distributed
variables, then EY;q,) _<:2EU(|,) and hence EY;x) < 2k/(n +1).

With these observations in place, we just need a good bound on the probability p(n, d)
that a random regular bipartite digraph contains a perfect matching. Thus we have the

amusing situation that the last marriage lemma we use is a random marriage lemma. By a

counting argument and traditional estimations, Walkup(1978) showed:

1=p(n,2) < (5n)7"
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and
1 - p(n,d) < (122)"Y(d/n)(#+1U4=2)  for 4> 3.

Given these relations, it becomes an easy calculation to show that expected cost of the
optimal assignment is bounded by 3.

. Although the analysis given here has always focused on the uniform distribution, this
has been for sake of convenience. In Frenk, van Houweninge, and Rinnooy Kan (1982,1986),
one finds the Walkup approach to the assignment problem can be developed as well for
a broad class of distributions. In fact, even the early papers of Kutzrburg(1962) and
Borovkov(1962) considered non-uniformly distributed variables.

So far we have seen how the two greedy algorithms can be bested by estimates based
on marriage lemmas of several flavors (basic, symmetric, regular, and di-regular stochastic).
This should create some appreciation of the remarkable bound that one obtains by using
the tools of linear programming.

3.3 Linear Programming Bounds.

The provence of linear programming is the set of problems that can be formulated in
terms of the minimization of a linear function subject to constraints:

n
minimize E cjzj
j=1

hid LP
subject to Za;jzj =b, i=12,.,m

j=1
z; 20, i=12..,n.

The assignment problem is easily cast in this framework. We first consider the problem:

minimize Z CijZij
i
n
subject toz:z.-,- =1, i=12,..,n
j=1 AP

n
Zz.-,- =1, Jj=12,..,n,
i=1

and z;;20.

If we now further require the z;; to be integers, it is clear that the linear programming
problem AP is an appropriate reformulation of the assignment problem. Without that
extra integrality constraint it is a priori conceivable that the optimal solution to AP is not
a zero-one incidence vector. It turns out that we are actually in luck and the vertices of
the convex polytope determined by the constraints of AP are always integers. We will not
digress on the details here, but this fact follows from a beautiful (but elementary) result
from the theory of polyhedra: If A is the vertex-edge incidence matrix of a bipartite graph
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G, then every square submatrix'of A has determinant 0, 1, or -1.

Dyer, Frieze, McDiarmid Inedudli't'.y

What we need is a way to bound t};e, exp'ectej'nion .of the value of the solution
z* ;.Z°(01,CQ, -.»€n) of the linear programming problem LP whél_'e the cost' coefficients
€1,€2,-..,Cn are non-negatiye_r#ndom variables, but where constraint coefficients a,-,‘; 1<
i <m, 1 <j< n, and constraint levels b;, 1 <i < m are ﬁxed constants.

The bound on Ez* is _computed in terms of a fixed feasible solution £;, 1 < j < n,
where by “fixed” we mean that. the Z; are detetmmed only by cons:deramon of (a;;) and
(b;). Thus, the vector (zj) is not permltted to depend oon the specific realization of the
random cost coefﬁcnents (¢5)- o
Theorem (Dyer, Frieze, McDxarmxd ) Ifej, l <j< < n, are mdependent and umformly '
dlstnbuted on [0,1]}, and £;, 1 < j < nis a fixed feasible solution of LP, then the value 2*
of the optimal solution satisfies A

E‘z‘A <mmax{z; :1<j<n}. . . .. -DFM

Application to the Assngnmcnt Problem

Nothing could be simpler than to apply the Dyer, Frieze, McDiarmld mequlalty to the
assignment problem AP. We first, note that we have 2n nontrivial constraints so m = 2n.
Further, if we let z;; = 1/n for all 1 < i,j < n then z;; is clearly a feasible solution.
Hence, the right hand side,of DFM works out to be just 2, and the proof of Karp’s bound
is complete. The method that underlies the proof of the DFM inequality is extremely
general and far from being exhausted. The key idea —“conditioning on a basis® — was
evident already in Karp(1987), but the understanding of the method was greatly advanced
through the generalizations given in Dyer, Frieze, and McDiarmid(1986) and the related
paper McDiarmid(1986). ;

In order to review the DFM technique it will be useful to have at hand the basics of
the simplex algorithm of linear programming. Probabilists and statisicians who are familiar
with traditional undergraduate expositions of the simplex algorithm may be relieved to see
how succinct a reformulation is possible.

Blitzkrieg Simplex Theory

The simplex method for solving linear programming problems (like LP) can be boiled
down to the fact that one can rewrite LP in a form that either suggests a further reformu-
lation — or else renders the solution obvious. It takes only a few lines to give a useful and
rigorous development of this claim. ;

First, we rephrase LP in tidier matrix form, so it now reads

minimize z = ex
subject to Ax=b
x 2 0.

Here, of course A is an m x n matrix, x is an n-dimensional column vector, b is an m-
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dimensional column vector, and ¢ is an n-dimensional row vector. We will sometimes need
to write A = [a;,a3,...,8,] where a; denotes the j’th column of A.

A fundamental construct underlying reformulation is the notion of a basis. This is just
an index subset B C {1,2,...,n} of cardinality m with the property that the corresponding
columns of A are linearly independent. By custom, the variables z; such that i € B are
called the basic variables. We will denote the complement of B by N and call the z; such
that i € N the non-basic variables. ,

“The first -step of our reformulation takes us from the equation Ax = b to one that
expresses the basic variables as a linear combination of the non-basic variables and the
constraint variable b. Thus, separating x and A into components consisting of the basic
and non-basic variables and collecting these on different sides of the equation, we write

Apxg=b— Anxy

wher Ap denotes the matix consisting of the columns {a; : i € B}. Other subscripted
variables are defined analogously.

It is useful to have an expression for x5; and, since our definition of the basis requires
the linear independence of the columns of the square matrix A g, we can write

Xpg = ABIb - AE‘Anxn.

Next we express the objective function z = cx in a form that reflects the division into
basic and non-basic variables. Certainly, we can write z = cpxp -+ cyx;; but, by using
our formula for xg, we can clear away the basic variables entirely and write the original
problem LP in the very useful dictionary form:

xg = Ap'b— Ag'Anxy
DF
z= chE‘b +(en - cBAglAN)xN.

We are now in position to see the point of this maneuvering. Suppose we are lucky and

all the coefficients of the non-basic variables in the formula for z in DF are non-negative,
i.e. suppose that

cj > cgAg'a; forallj€N. oc

In that case, the formula for z given by the second row of the dictionary makes it clear that
one can minimize z over all choices of x) > 0 by letting xx = 0. Finally, for x = (xn5,xp5)
given by xy = 0 and xg = A;’b to be a genuine optimal solution to the problem LP we
only need to check the second part of feasibility xg > 0.

We will call OC the optimality criterion for the linear program LP. For our theoretical
needs, the key insight behind the simplex method is that it gives an explicit condition for a
basis to correspond to an optimal solution.

Naturally, for this criterion to be useful algorithmically, more work is needed. For
example, if one of the non-basic variables z; has a negative coefficient in the second equation
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of DF, we need to re-write DF with z; as a basic variable. Since the basis B has exactly m
elements, we therefore need to move some variable z; from B to N to make room for z;. The
rules for such changing of the basis are part of the fundamentals of linear programming, but
they need not concern us. The only additional facts we need concerning linear programming
are those that support the probabilistic use of the stopping rule OC.

The first result is a classic existence theorem that tells us there is an optimal basic
solution whenever the problem LP is feasible and bounded (i.e. in all the cases that matter)
there is an optimal solution that satisfies OC. The second result tells us that in the cases of
interest to us the optimal basic solution is unique. More precisely, we call on the following
two results:

Basis Existence Theorem. If a linear program in the form LP has an optimal solution,
then it has an optimal basic solution, i.e. a solution of the form x = (xy,xpg) where B is a
basis and xn = 0.

Basis Uniqueness Theorem. If a linear program in the form LP has an optimal solution,
then for any § > 0 there is an ¢ with | € |< & such that the corresponding problem with cost
vector ¢’ = ¢ + ¢ has a unique optimal basic solution.

Sketch of the Conditioning Argument

We now have at hand everything needed to give a “one line” sketch of the proof of
the DFM inequality. Let % be a fixed feasible solution and write down the conditonal .
expectation of ck given that B is a basis. By the optimaliiy criterion OC and linearity,
this expectation ends up depending on the calculation of the conditional expectation of a
uniformly distributed random variable conditional on its being larger than a given value.
This is an easy calculation. Finally, one just does honest arithmetic on the resulting identity,
collecting the expectations of interest on one side and then using the crudest of bounds on
the rest.

Naturally, his sketch is far from complete, but study of the paper of Dyer, Frieze, and

McDiarmid(1986) will show that it is nevertheless honest. The crudeness of the sketch

‘ may help to show that a great deal of unexhausted potential remains in Karp’s idea of
“conditioning on a basis.”

4. Randomized Algorithm for Matching.

So far we have discussed how one can analyze the behavior of the objective function of
an optimization problem if one imposes a probability model on the inputs. There is another
way that probability comes into the theory of algorithms—sometimes it is beneficial to make
randomized steps in the course of an algorithm. The best known algorithms with this feature
are probably those based on “Simulated Annealing” as initiated by Kilpatrick, Gelatt, and
Vecchi(1983). The simulated annealing paradigm is especially intriguing because it is rather
easy to implement, and it applies to almost any problem. One drawback to simulated
annealing is that it is not easy to analyze, and the analytical results that are available are
of a qualitative nature. Typically, we can say that simulated annealing will converge, but
we cannot say when.
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Saski and Hajek(1988) studied simulated annealing in the context of Eucldean match-
ing, and his analysis provides a rare look.at how simulated annealing performs on a problem’
for which we have good polynomial time algorithms: The conclusion of Hajek’s analysis is
that simulated annealing does not even lead to a polynomial time algorithm for the imatch-
ing problem, much less to an algorithm that is competiéivé with the earlier methods. This
analysis provides perhaps the strongest negative result in the theory of simulated annealmg

An interesting contrast to the failings of simulated anneahng for minimal matching
is that other randomized algonthms for the problem act.ually provide the fastest known
practical methods. One such randomized method due to Mulmulley, Vazirani, and Vazxram
is particularly attractive because it is also well suited for implementation on parallel ma-
chines, (c.f. Lovasz( 1989)). The MVV method is"a bit too involved to detail here; but the
essential idea is to examine what can be learned about ma‘t.chings'by considering ‘certain
determinants (or more precisely, Pfaffians) in indeterminate variables. Now, determinants
in indeterminate variables would seem to be computationally unattactive since they: would
seem a priori to require time and space of order n!.

There are several tricks that help one get around the apparent difficulty of computing
with indeterminate variables. First, it turns out to be possible to take advantage of the
fact one can evaluate determinants in “real”. variables-in time of order only n3 (where n
is the number of rows of the matrix). Second, if we replace the indeterminate variables
with independent random uniform:[0, 1] variables, then with probability one a polynomial
in these variables evaluates to zero if and only if the polynomial is identically zero. In other
words, as far as the presence or absence of polynomial identities is concerned, independent
random uniforms can be used to create surrogates for indeterminate variables.

The last idea is that for N-sufficiéntly large, a random choice from {1,2,...,N} can
be used to capture the qualitative features of a random uniform on [0,1]. The following

techinical lemma’is the tool one uses to provxde a’ ngorous analysis of algorithms based on
these 1dea.s - ‘ ' ' :

4.1 Schwartz Lemma.

The lemma in question has nothing to do with the well known lemma on conformal
mappings, but rather is a tool that helps make 'computational sense out of arguments that
might otherwise seem to call on the use of real numbers (a computational taboo). Although
we could skip the proof, it is brief and contains a charming induction.

Schwartz’ Lemma. Suppose f(z;,z3,...,Z,) is8 a non-zero polynomial of degree not
greater than k. If X;, 1 < i < n are independent random variables uniformly distributed
on the finite set {1,2,...,n}, then

P(f(X1,X32,...,Xn) = 0) < fﬁ'i
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Proof. Without loss of generality, we can assume that f can be written as a polynomial in
the one variable z; but with coefficients that are polynomials in the variables Z9,T3,...,Zn:

f(z1,22,...,20) = Jo(z2,23,...,2,) + z1f1i(z3,23,. .., 2,) +---+2ffk(=2,ra,---.3n)~

IfA= {f(Xx,X),...,X,.) =0} and B = {j.-(X,,X;,,...,X,.) =0forall0 <i< k},
then

P(A) < P(B) + P(A|B°)

<k(n-1)/N + k/N.
where we have applied induction to bound P(B) and the bound on P(A) follows from the

fact that when we hold zj,z3,...,2, fixed and vary z;, then f can have at most k roots.

From our bound and induction on n, the lemma is thus proved.

5. Euclidean Matching and Assigning

For any set {z), z3,...,z4} of n points in the Euclidean plane, a matching is a collection
of [n/2] disjoint pairs of points. By the weight of a matching we will denote the sum of the
Euclidean distances between the elements of the pairs in the matching. The algorithms for
finding a maximal weight matching are among the most studied in the theory of combina-
torial optimization. The problem is a formally tractable one (i.e. there are polynomial time
algorit.l'um), but the deterministic algorithms for minimal matching are not particularly fast,
and practical problems regularly arise that outstrip available computational resources.

The most widely implemented deterministic methods for finding a minimal weight
matching have running times of order n. There are algorithms that are faster than this. In
fact, one can show that minimal matching is of the same theoretical complexity as matrix
multplication, so one can perform minimal matching at least as fast as O(n'827) recall-
ing Strassen’s fast matrix multiplication method. So far, these newer deterministic methods
have not excelled in practice, so probabilstic and heuristic algorithms remain of considerable
interest. !

Parallel to our analysis of the assignment problem proper, we can give an appealing
heuristic for the Euclidean matching problem by proceeding myopically. In this case the
resulting globally greedy algorithm successively matches the two closest unmatched pairs
of points. Even naive implementations of this greedy heuristic are faster than traditional
matching algorithms, but by making use of specialized data structures Bentley and Saxe
(1980) provided an implementation of the greedy algorithm which has a worst case running
time of 0(n*?logn) which is better than any known exact algorithm for determining a
minimal matching.

Let G, and O, denote the respective weights of the greedy and optimal matchings of
an n-set {z;, z3, ...,z..) C R2. There are several known relations between Ga and O,. In
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particular there is a ratio bound due to Reingold and Tarjan (1981), the order of which
cannot be improved. ‘

In Papadimitriou (1977), the behavior of O, was considered for points { X}, X3,...,Xn}
which were chosen at random from [0,1)%, and it was outlined how the techniques used in

Beardwood, Halton, and Hammersley (1959) to study the traveling salesman problem, could
be modified to prove

1 .
On/n2 = ¢ >0 almost surely as n — oo.

Avis, Davis, and Steele(1988) considered the corresponding issues for the greedy algo-

rithm and proved results that imply that for G,, the cost of the matching obtained by the
greedy matching, one has:

1
Gn/n2 — ¢ >0 almost surely as n — oo.

The results of Avis, Davis, and Steele(1988) actually provide for so-called complete
convergence, a mode of convergence that is stronger than convergence with probability one
and that is less sensitive to modelling consideration when applied. The methods used in
Avis, Davis, and Steele also apply to random variables with general distributions in R4, In
R4 the variables G, are asymptotic to n(4=1/4,

Other Euclidean Matching Problems

There are several variants of the Euclidean matching problem that have interesting
connections with other problems of the theory of algorithms. One of these is the two-sample
matching problem studied in Ataji, Komlés, and Tusnidy(1983). A second development
concerns the connection between bin packing an “up right” matching. The later problem is
well discussed in Shor(1986) where one finds a discussion of several matching variants and
related literature,

6. Advances via Statisitcal Mechanics.

Simulated annealing had its origin in statistical mechanics, and the design of its earliest
applications rested on considerations of physical analogy. While many now regard simulated
annealing as just one among many possible stochastic relaxations of the greedy algorithm,
the insights that statistical mechanics can provide to the theory of optimization are far from
exhausted.

Mézard and Parisi (1987,1988) have in fact made remarkable use of ideas from the
theory of Spin Glasses to make important progress on the assignment problem. Although
this work proceeds within a framework that is not easily linked with that used here, these
authors provide interesting arguments for the limit relation '

EAn - 1'2/6.
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They also give a derivation of a corresponding (though somewhat less explicit) limit relation
for the Euclidean costs O,. The explicitness of these results is almost shocking when one
considers the energy that has been put into the upperbounds on EA, that we have reviewed
and the corresponding hard work that has gone into proving lower bounds (see Lazarus(1979)
and especially Goemans and Kodialam(1989) ).

These methods of Mézard and Parisi offer many directions for further study, and they
surely suggest that the ideas of statistical mechanics are likely to feature prominently in
subsequent work in combinatorial optimization.z

7. Concluding Remarks.

We began with the analysis of the assignment problem under the uniform model, and
we saw how several useful techniques fared in action. After the simple analysis of two greedy
algorithms, we saw that a deeper understanding of the matching problem was possible using
variations on the Marriage Lemma. Before leaving the uniform model we finally saw that
remarkable fresh insights could be won by use of linear programming tools, and our sketch
of the proof of the Dyer, Frieze, McDairmid theorem motivated blitzkrieg derivation of the
simplex method.

Afterwards, we looked more broadly at matching. In particular, we reviewed a prob-

abilstic algorithm that is solidly practical and examined a sampling of probabilistic results
that are avaliable under the Euclidean model. Finally, we looked at what the ideas of sta-
tistical mechanics can contribute to matching and the assignment problem. This lead us
to consider the method of simulated annealing and the remarkable developments of Mézard
and Parisi. .
7 Clearly, more was said here about the service that probability provides to computer
science than about the service that statistics provides. To some extent this reflects the in-
fluence of the assignment problem as a vehicle of exposition. Nevertheless, something is also
revealed about the the three disciplines. While there have been some striking applications
of statistics (or more broadly data analysis ) in computer science, the influence of statistics
seems to trail that of probability.

To round out the story just a bit, we recall two illustrative applications of data analysis
in computer science. The first is Bentley’s use of data analytic considerations in the art of
practical code speed-up’s, c.f. Bentley (1982). The second is Colin Mallows’ masterful use of
data analysis in the solution of John Conway’s challenge problem, c.f. Mallows (1989). Even
briefly noted, these examples serve to recall that real statistics can also make compelling
contributions to computer science.

Perhaps the most remembered suggestion made at the FSU 30°th Birthday Party
(“Statistics Days at FSU”) was Thomas Cover’s proposal that such happy events roll across
the nation as different departments celebrate historical milestones. While one might question
the suitability of birthday gifts on such occasions, a natural choice might be the soon-to-
appear monograph Probability Theory of Combinatorial Optimization , Steele(1991). This
volume treats in greater depth almost all of the topics surveyed here.
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