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1. INTRODUCTION

For any set {x;,xs,...,x,} of n points in the Euclidean plane, a maiching is
a collection of [#/2] disjoint pairs of points. By the weight of a matching we
will denote the sum of the Euclidean distances between the elements of the pairs
in the matching.

The best known methods for finding a minimal weight matching are
implementations of Edmonds’ algorithm and have running times proportional
to n® (see, e.g., Papadimitriou and Steiglitz [10]). Because of the relative slow-
ness of the Edmonds’ algorithm, substantial attention has been given to heuris-
tic methods for obtaining matchings which are almost optimal (see, e.g., Avis
[2], Iri, Murota, and Matsui {7], Reingold and Supowit [12], and Reingold and
Tarjan [13]).

One particularly appealing heuristic is the so-called greedy algorithm which
successively matches the two closest unmatched pairs of points. Even naive
implementations of the greedy heuristic are faster than Edmond’s algorithm,
but by making use of specialized data structure one can do much better. In par-
ticular, Bentley and Saxe [4] provided an implementation of the greedy algo-
rithm which has a worst case running time of 0(n3/2log n).

If G, and OPT,, denote the respective weights of the greedy and optimal
matchings of an n-set {x;,X,,...,X,} C R2, there are several known relations
between G, and OPT, (see Avis [1]). Among the most interesting is the ratio
bound of Reingold and Tarjan [13],

G,/OPT, < (4/3)n'o8213, 1.1

By providing an explicit construction, Reingold and Tarjan [13] also established
that inequality (1.1) cannot be improved. Still, as one might suspect, (1.1) is
often too pessimistic, and in many problems one finds that G, and OPT, are
of the same order.

In Papadimitriou [11], the behavior of OPT, was studied for points { X;}
which were chosen at random from [0,1]?, and that paper outlined how the
technique used in Beardwood, Halton, and Hammersley [3] to study the travel-
ing salesman problem, could be modified to prove

OPT, ~ coprvnt 1.2)

with probability one.
One consequence of the main theorem proved here is that one also has

Gn —~ ng/ﬁ

with probability one. The result to be proved provides convergence which is
stronger than convergence with probability one and deals with random variables
with general distributions in R.

THEOREM 1.1: For each integer d = 2, there is a positive constant k,; such that
if X\,X,,... are independent and identically distributed random variables
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with values in RY and bounded support, and if G, denotes the Euclidean edge
weight of the matching attained by the greedy algorithm applied to
(X, Xs,..., X}, then given ¢ > 0

\ \

oo |
2 P(l””_d)ﬁ’dGn - kdf if(x)(d_”’/ddxl > e) < oo,
n=1 | RE |

Here, f is the density with respect to d-dimensional Lebesgue measure of the
absolutely continuous part of the distribution of the X;.

There are several observations one should make concerning Theorem 1.1
before attending to the proof. First, one should note that since the X; have
compact support, we always have

f F(x)d D/ dx < oo,

Second, the Borel-Cantelli Lemma applied to the conclusion of Theorem 1.1
implies that n‘'~%7?G,, converges with probability one. The stronger version of
convergence guaranteed by Theorem 1.1 is called complete convergence, and
it is precisely such convergence that is most relevant to the probabilistic anal-
ysis of algorithms like the partitioning method introducing by R.M. Karp for
the traveling salesman problems (cf, Karp [8] and Karp and Steele [9}).

The third observation concerns the distributional assumptions on the
{X,}. If the support of the {X;} is purely singular (i.e., P(X; € A) = 1, where
A is a set of Lebesque measure zero), then f is identically zero and Theorem
1.1 tells us that G, = o(n'?~Y’/?) with probability one. Also, there is a small
technical point which should not be ignored. If the {X;} have a nontrivial sin-
gular part and a nontrivial absolutely continuous part, then the associated den-
sity f is not a probability density, since it does not integrate to 1.

Finally, since the essential ideas behind the proof of Theorem 1.1 are
already present when d = 2, we will restrict ourselves to that case in order to
keep the notation uncluttered.

2. PRELIMINARY LEMMAS

Several nonprobabilistic results about the greedy matching algorithm will be
needed. The best of these, Lemma 2.4, spells out a basic combinatorial smooth-
ness of the greedy functional, but first we need some bound on the lengths of
the edges chosen by the greedy heuristic.

LeMmMa 2.1: There is a constant ¢, such that for any square S of side s and any
n points {X1,Xz, . ..,%,} C S, we have |x; — x;| < ¢;sn~"? for some 1 =i <
j=n.

ProoF: If each x; were covered by a disc with center at x; and radius r, and,
if all of the discs were nonintersecting, then each disc would cover at least
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7r2/4 of the square. The total area of the square covered by the discs then
would be at least nwr2/4, hence we have nwr?/4 < 1 and establish the lemma
with a crude ¢; = 4772 (see also Few [6]).

Lemma 2.2: There is a constant ¢, such that any k edges of a greedy matching

which lie completely in a subsgquare S of 0, 117 of side s will have toral weight
at most cz\/% s.

Proor: List the edges ey, e,, . ..,e, which lie in S in the reverse order from
which they were chosen for the greedy matching. Note for any | =/ < k that
when edge e; was chosen for the greedy matching, there were at least 2(k —j) of
the X;, namely, the endpoints of the rest of the e;, which were yet unmatched in
S. Thus, by Lemima 2.1, the lemth of e; is bounded by ¢;s(v2(k —j) + 21,

and the lemma follows, since Z (k=) +2) ' <24k
J=1

LeEmMa 2.3: For any & > 0, a greedy matching of {x1,Xz,...,X,} C [0,11% has
at most c367% edges with length as great as 6.

Proor: If there are 7 edges as large as 6, then the total length of these edges
is at least 76. Now, by Lemma 2.2, this total length of any 7 edges of the greedy
matching is bounded by c,7/2. Hence, we have 7 < ¢}/8%, giving ¢; < 3.1

We now have the tools in place to prove the main result of this section.

LEMMA 2.4: There is a constant ¢, such that |G(x1,Xz, .. .,X,) — G(x1, X2,
. ,X,H.k)l = C4\/E.
Proor: First let e;,e;,...,e be a list of edges of the complete graph on

{X1,X2,...,X4x}, and suppose that the e; are listed in order of increasing
length. An algorithm which simultaneously and inductively constructs a greedy
matching A of {x{,X2,...,Xn,4x) and a greedy matching B of {x;,xz,... ,Xn}
can be given as follows: for i =1to s, do

(i) if ¢; has no endpoint in common with the edges of 4, add e; t0 A4,

(ii) if ; has no endpoint in common with the edges of B and no endpoint
in D= {Xp41,Xn42s- - - s Xnrk ), add ¢; to B.

We now need to recall some of the structure which comes with a union of
two matchings like A and B. In the first place, an edge can be placed in both
A and B (such edges will be called double edges of A U B). Also, the union
of A and B may have an important structure called an alternating path. Here,
an alternating path is a path whose edges are alternately in the matchings 4 and
B. For example, the path through the vertices 1,3, . . ., would be called an
alternating path in (v;,v:4,) € A for odd i and (»;,74,) € B for even i (or vice
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versa). By default, any path having only one edge will be considered as a bona
fide alternating path. (Alternating paths are a basic tool of matching theory,
see, e.g., Bondy and Murty ({5], pp. 70-79.)

In order to make the structure of 4 U B explicit, we will verify by induc-
tion the following hypothesis.

At iteration i, all non-double edges of A U B are either

(a) edges with an endpoint in D, or

(b) edges which belong to at least one alternating path terminating at a ver-
tex in D. Moreover, this alternating path has edges with monotone de-
creasing length as one traverses the path toward the edge which meets D.

We will now verify the induction process. The hypothesis is valid for [ =
1, so we assume the hypothesis is valid for i and consider edge e;,; which we
can assume without loss to be a non-double edge contained in 4 U B. If ¢,
has an endpoint in D, condition (a) holds and the induction hypothesis is ver-
ified for i + 1. We are left with two cases:

Case 1: Suppose e;,; € A but e;,, & B, and e, has no endpoint in D. Since
e;+; & B, one endpoint of e;,, must meet an edge e;, j < i, which is already
in B but which is not in A. Since j < i and the edges are ordered, we have
le;| = |e:|. Also, by the induction hypothesis, e; belongs to an alternating
path of 4 U B having monotone edge lengths and terminating with an edge
which has a vertex in D. Therefore, in this case, the induction hypothesis is ver-
ified.

Case 2: This concerns the possibility that e;,, € B but ¢, & A and e;;, does
not meet D. The induction step is identical to that of Case 1.

To complete the proof of the lemma, we have to bound the absolute value
of the difference », |e| — 2, |e|. Since the edges which are in both 4 and

ecA e€B
B will cancel, we only need to estimate the difference over those edges which
belong to an alternating chain (of length = 1) with termination in D. If C is any
such chain, we have that the difference

Ac= 2 lel= 2 el
e€ANC e€BNC
is bounded in absolute value by max {|e|: e € C}, since the edge lengths of
the edges in C are monotone. Moreover, each chain C must end in D and each
vertex of D is in at most one edge of A, so the total number of alternating
chains C is at most | D|. Since no two chains share an edge, we have that the
sum Y, |A¢| is bounded by the sum of M < |D| = k edges. If M, of these
c

edges belong to A and Mj belong to B, then we see by Lemma 2.2 that
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StlAc] = ex(MY* + ME?). @.1)
C

Since M, + Mz < k, we see that Eq. (2.1) completes the proof with ¢, = 2¢;.

With this basic lemma established, we are in a position to relate local prop-
erties of the greedy matching to global properties of the matching.

In the subsequent analysis, it will be essential to know how breaking the
unit square Q = [0,1]% into m? equal subsquares Q;, 1 =i = m?, changes a
greedy matching. For any set K C [0, 112, we let 9K denote the @oundary of

K, i.e., the points in the closure of K and K°€. Next we let F'= U a0; — 8Q,
i=1

i.e., Fis the interior grating of the partition of Q given by the Q,. For 6 > 0,
we will let F? denote the set of points of Q which are within & of F, i.e., F?°
is an interior grating thickened by é. Similarly, we let Qf = Q, — F°.

The same method used in Lemma 2.4 can be used to relate the greedy
matchings on the decomposition of Q. By simultaneously constructing all

m? + 1 matchings of the Qf, 1 =i =< m?, and Q, we obtain the following:

Lemma 2.5: Let A denote the greedy matching of {x;,Xz, . .. ,X,} C Q and let
B be the union of the m? greedy matchings of {X1,%z, - - . XN QY 1sis
m2. The union A U B consists of (a) double edges, i.e., edges belonging to
both A and B, and (b) edges which are part of a monotone alternating path
which contains an edge of A which either (i) has an endpoint in F® or (ii) has
endpoints in two different Q}.

Here, one should recall that some of the so-called alternating chains may
be of length one, i.e., chains consisting of a single edge are still regarded as
honest alternating chains.

The next lemma shows that despite the a priori global nature of the greedy
matching process, it can be approximately localized. To express this precisely,
we let G(S) denote length of the greedy matching of {X,,X5,....,X,} 0 S
and allow the dependence of G(S) on n to be implicit.

LEMMA 2.6: Given & > 0, let 7 denote the number of edges in the greedy ma;ch-
ing of Q which have either (i) an endpoint within 6 of F, or (ii) length at least
as great as 28. One then has the bound,

m@—gc@nsaﬂ? 2.2)

Proor: We let A and B denote the matchings given in Lemma 2.5, and we note
that by the same considerations detailed in Lemma 2.4 the absolute value of

the difference , |e| — 2, |e] is majorized by
ecA ech

> max{|e|: e € C}. 2.3)
C .
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The total number of distinct edges in the sum given above is bounded by 7, so
arguing as in Eq. (2.1) of Lemma 2.4, we can bound the sum given by Egs.
(2.3) by ¢,7%?, establishing the lemma with ¢5 = ¢». 2

3. UMIFORMLY DISTRIBUTED CASE

For any two sequences of random variables {A,} and {B,}, which are defined
on the same probability space, we say {4,} and {B,} are equivaleni and write

A, = B, provided that for any ¢ > 0, we have Y, P(|A, — B,| > ¢) < o.
n=1
This relation is a bona fide equivalence, and we will particularly make use of
transitivity, i.e., 4, = B, and B, = C, imply 4, = C,.
In this section, X, X, ..., will stand for independent and identically dis-
tributed random variables uniformly distributed in the unit square of R*.
The main result of this section can be stated quite succinctly.

THEOREM 3.1: There is a constant ¢, 0 < ¢ < oo, such that
G(X1,X5,...,X,) /Va=c.

The proof of Theorem 3.1 requires several lemmas. The first of these spells out
two simple properties of triangular arrays which prove to be very handy.

LeEmMa 3.1:
@) Let Yy, 1 sk < o, 1 i< ny, be atriangular array of random vari-
ables. For each k, we assume the n, random variables Y;, 1 < i < ny,
are independent and identically distributed. We let y, denote the mean

of Y. and set E(Yy; — i) = my. If we have liminf n,/k > 0 and
limsup my; < o, then

iy
Z Yii/ne = py-
j==1
) If Z,,Z,,..., is a sequence of Poisson random variables with any
Jjoint distribution, and if EZ; = ay, then lim sup a,/k < o implies
(Z, — ay)’k=0.

Proor: To check part (i), we first center the series W; = Y}; — u, and calcu-
late the fourth moment,

ny 4 ny
E[(Z I’I/k,) ] = ZEW;:, -+ 3nk(nk - I)EW]%Ilez.
i=1 i=1

By Schwartz’s inequality, the second summand is bounded by n,(n, — 1) my,
SO

ny 4
E[(Z VVki/nk> ] = 3”;2mk.
i=1
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Now for any € > 0
fl

and Y, mng? converges because liminf n,/k > 0 and limsup m, < co.
i=1

The second part of Lemma 3.1 follows from the first part by noting that
each of the Poisson random variables Z, can be represetned as the sum of k
independent Poisson variables Y};, each having expectation aq,/k. The { Y}
then form a triangular array to which Lemma 3.1(i) can be applied. B

i Wi/ 1y

i=1

1 4
> 6) = €w4E{( I/Vki/nk> jl = 6437’!;:277?;(,
1

j=

Returning to the proof of Theorem 3.1, we let T'(¢) be a Poisson ran-
dom variable with parameter ¢ which is independent of the sequence {X}.
By Lemma 2.4, we have the bound

1G(X1aX2’- .. ’Xn) - G(Xls- . ~’XI‘(n))l = C4ir(n) - nll/Z

so, for any € > 0, we have

ip(\G(XI:XZs“-an) _ G(XI"-°3XI'(n)) >6)
k=1 N N
< Z P( F..(_’i)_:._rl_ > 626‘[2) < oo,
k=1 n

where the last inequality comes from applying Lemma 3.1(ii). Thus, to prove
Theorem 3.1, it suffices to prove

G(XI,...,XF(”))/\[ET‘:C. (3.1)

Now, if R is any subregion of [0,1]%, and {X;,X;,...,Xx,] C [0,1]12, let
Gr(x1,X2,. ..,X,) be the greedy matching of the x; which are elements of R.
If S is a subsquare of [0,1]? of side length s, then the number of elements of
{X1,X2,....Xrn} N S is Poisson with parameter s%t, so by scaling we see
Gs(X,, .. -»Xr(y) is equal in distribution to sG(Xj, ... » X1(s2n)-

Now, if welet p(2) = EG(X\, . .., X1 () and 8(2) =E[(G(X,, .. ., Xrn) —
#(1))*], then from Lemma 2.4, we can see both ¢ and 6 are continuous and
hence bounded on compact intervals. Finally, we recall that if {S;}, 1 =i<N
are any subsets of [0,1]? such that S; N S; has measure zero for each i and j
with i # j, then for any variables Z;, 1 < i< N, such that Z; is a function of
the random point set {X;,X,,...,Xrm} N S;, then the variables {Z;} are
independent.

Next, let M be an integer, let 6 (n) be the largest integer satisfying n/6 (n)*>
M, and note that n/8(n)*> —» M as n — . When we divide [0,1]* into 6(n)?
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equal squares S;, S, ..., Spn?, We see by Lemma 3.1(1), the boundedness of
& on compact intervals, and the continuity of ¢, that we have
a(ny*

Gs (X1 ., Xrn)/0(n) = 6(n/B(n)?) = (M). (3.2)
=1

¢
We now need to relate this Poisson limit result to our original problem.

LeMMaA 3.2: Given € > O there exists My such that M = M, implies
g
n=1
(3.3

Proor; We first fix A > 0, and put 8(n) = N/28(n); so, in the notation of
Lemma 2.5, the area of F®"" does not exceed N. Next, let u(n) denote the
number of edges of the greedy matching of {X),...,Xr(y} which have length
as great as 28(n), and let »(n) denote the number of points lying in F°". By
Lemma 2.3, we have u(n) < ¢;(28(n))~2, so since ¢(n)* < n/M, we have
u(n) < c;n/M M. Also, v(n) is a Poisson random variable with mean not
exceeding 2\n, so by Lemma 3.1(ii), we have ZP(v(n) > 3An) < oo. Thus, if
M is chosen so large that ¢;/M N> < N, we have

9(n)2
GSi(Xl:' .. ,XI‘(n))/\/ﬁ— G(XlaXZs- .- an)/\[ﬁ
i

=

>e><00.

Mg

P{(u(n) + v(n)? > (4An)"?} < o.

i

LED!

In view of Lemma 2.6 and the definitions of # and v, we see the proof of
Lemma 3.2 is complete. u

We can now return to the completion of the proof of Theorem 3.1. By the
equivalence relation (3.2), Lemma 3.2, the continuity of ¢, and the fact that
n/0(n)> - M, we see that for any ¢ > 0 there is an M, such that M = M,
implies

P(|G(X1,X;,...,X%,) /A= 6(M)/VM| > €) < . (3.4
n=1
One final (and slippery) observation is that Eq. (3.4) implies that ¢ (M) / JM
converges to a limit as M — o. To check this, note that if o = liminf
é(M) /M # limsup ¢(M)/VM = 8 one could not have Eq. (3.4) for ¢ <
(B — «)/3. Therefore, lim M ~V2¢(M) = ¢ < = exists, and n~"*G, = ¢, com-
pleting thé proof of Theorem 3.1.

4. GENERAL EXTENSION

We now extend the results on uniform distributions to random variables with
compact support. The essence of the problem continues to be visible with d =
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2, so we will restrict attention to that case. This time we let X, X;5,..., bean
infinite sequence of independent, identically distributed random variables with
compact support in R? and denote the common distribution of the X; by ».

We can assume without loss of generality that » has support in [0,1]°, and
we claim there is also no loss of generality in assuming

v{{x,¥): x or y is rational} = 0. 4.1

To check this, first note that there is an uncountable set A C IR such that the
difference of any two elements of A4 is irrational. One way to build A4 is to let
the singleton {1} be extended to a basis B for R viewed as a vector space over
Q and take the required set 4 to be B — {1}.

The uncountability of 4 and the fact that any differences of elements of
A are irrational guarantees that there is an ¢ € A such that v{(x,y): x=a +r,
r rational} is zero and a b € A4 such that v{(x,y): ¥y = b + r, r rational} equals
zero. The translation of » by the pair (a, b) then satisfies Eq. (4.1). Moreover,
any further translation of » by rational numbers, or dilation of » by rational
numbers, still satisfies Eq. (4.1); in particular, any translation and dilation that
maps the support of » to [0,1]°.

We next denote the singular part of » by u. Let f stand for the density of
the absolutely continuous part of u, and define our target limit constant k by

k=c f fY2(x)dx,
[0,11%

where c is the constant of Theorem 3.1.
The main result of this section is the following.

TueoreM 4.1: G(X,,X,,...,X,) /A =k.
Proor: As before, it suffices to show that
G(X\,... ., Xrm) /0 = k. 4.2)

We begin the proof of Eq. (4.2) by decomposing the square just as was
done in Lemma 2.5. Next, we define a piecewise constant approximation to f

on Q = [0,1]? by letting f,,(x) = m?| f for x in the interior of Q; and let-
Qi
ting f,,(x) = 0 for any x not in the interior of some Q;. Also, for any finite set
S, we let #S denote the number of elements of S. .
Now, choose 0 < < 1 and pick an integer m (depending on ) which is
sufficiently large to guarantee the following four approximation conditions:

(i) There exists a sub-collection {Q;,i € E} of Q;,...,Q,2 such that
#E/m* < 7 and u([0,1]1%> — H) <1, where H= {J Q..

i€E
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< 7.

(i) \ J( fy? - f 172

[o,112 [0,11%—-H

(iif) f Lf = Sl <.
(0117
(iv) m> Uxy.

We let 7,, = 5 be the probability measure with singular part p and absolutely
continuous part f,,, and note that for any compact set K we have |5(K) —
v(K)| < 27. By the coupling lemma of Strassen [16], there will then exist a pair
of random vectors (Z;, W;) such that Z, has the distribution », W; has the dis-
tribution 7, and P(Z, # W) < 29. We next let (Z;, W}),.. ., be independent
copies of these vectors, and for each integer n, we let I'(#n) be a Poisson ran-
dom variable which is independent of the sequence {(Z;, W)}.

Finally, we can lay out notation for the variables of basic interest:

U,=1Z,,... )ZI'(n)}:

Vo= (Wi, .., Wrm ),

VE=V,NQ 1=k=m?
Wk = v¥ N {Q, — support u}, and

A, = U, AV, where A denotes the symmetric difference.

Since the Z; have the same distribution as the X;, the complete convergence of
n~'|T'(n) — n| to zero and Lemma 2.6 lead us to

G, /Vn= G(X1,X,,. .., Xn) /T, 4.3)

by the same path used in Section 3. Now, since A, has the Poisson distribu-
tion with parameter not greater than 2nn, we see from Lemma 2.4 and Lemma
3.1(ii) that there is a constant §, not depending on m such that

) P(|G(U,) /i — G(V,) /NA| > Bon) < . 4.4
1

n=

Next, we claim that there is a constant 8, not depending on m such that

2 P(\G(V,,)/Jﬁ - kz Gk /n
n=} =]

> Bm) < oo, 4.5)

To prove Eq. (4.5), we first note that by the assumption made in Eq. (4.1)
we can choose 8(n) = & to be so small that »(F, ®) < 7. The number of points
of V, in F2, then has the Poisson distribution with parameter nv(F8) < ny,
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and by Lemma 2.3 the number of edges in the greedy matching which have
fength exceeding 26 does not exceed ¢;(28)7%. The proof of Eq. (4.5) is thus
completed by applying Lemma 2.6 and arguing again just as in the proof of
Lemma 3.2.

We pext claim that there is a constant 3, not depending on 7 such that

5
n-

ip(%mwym_zcmmmzzmwﬂ<w .6)
n=1 k=1 k=1

To prove Eq. (4.6), we first note that #V¥ is a Poisson random variable
with mean n7(Q;) and for each fixed n the variables #vk 1 < k<= m?, form

an independent collection. By Lemma 2.2, scaling, and the elementary inequal-
ity VA, +- -+ VA, < VsVn, + -+ n,, we have,

3GV = com™t D) VH#VE

keE keE

< c,m™WEE | 3 #VE.

k€E

Now, L#V¥ is a Poisson random variable with parameter less than or equal to
n, and the approximation condition (i) says (#E )2/m < 4, so Lemma 3.1(i)
gives

S G

keE

5 p(
n=1
By a completely similar analysis, we also have
5 p(
n=0
Lemmas 2.2 and 2.4 show that

Y IGWE = GWH| = em™ 3 N#VE = W)

> 2c2n) < oo, “.7n

S G

k&€E

> 20,1m) < . 4.3

KEE KEE
< c4m"\/m2ﬁ H(VE— WE).
k&E
Now, since the sum Y, #(VX — WK) is a Poisson random variable with mean
KEE

bounded by ny, Lemma 3.1(ii) gives
5 p(
n=0

Together with Egs. (4.7) and (4.8), this last inequality completes the proof of
Eq. (4.6).

Y GWVh /- 3 GW) /I
k¢ E

kEE

> 2c4n‘/2> < oo,
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Finally, we note that

S GWhnTVr = cffm“2

=1
follows from

GWH = (¢/mH) e’ 4.9

where « is the value of f,, on Q. Given that X; € Ok, we know X, is uni-
formly distributed on Q, so the relation (4.9) follows from scaling, the fact
that #W [ has a Poisson distribution with parameter no,/m*, Theorem 3.1,
and Lemma 2.4. 2

5. OPEN PROBLEM AND RELATED WORK

The limit theory for greedy matchings has been established with most of the
generality and precision one might expect. Still, there are some tenacious open
problems.

It is not difficult to extend the restriction of Theorem 1.1 a little way
beyond compact support, but it does not seem easy to provide a broad suffi-
cient condition even if one restricts attention to absolutely continuous random
variables.

A second problem of interest concerns matching in one dimension. By the
natural one-dimensional analogue of Lemma 2.1, one can show that G, =
0(log(n)), and it is reasonable to conjecture that for X; independent and iden-
tically distributed on U[0,1], one has G, = ¢ log n with probability 1. The
tools used here are not sharp enough to deal with this question, and it is not
even known if EG, — ® and n — . For a related problem concerning optimal
triangulation, one may consult Steele [15].

These last two problems seem solvable, but there are other open issues asso-
ciated with G, which are less likely to be resolved. First, we do not know any
analytical method to determine (or even estimate) the value of the constant kg
which appears in our limit theorem, although one can get some idea of k,; by
Monte-Carlo experiments. Second, we strongly expect that the approximate rep-
resentation of G(Q) as a sum of independent and identically distributed ran-
dom variables G(Q;) should be strong enough to permit the development of
a central limit theorem. Still, it is not yet possible to extract the central theorem
from Lemma 2.6, and the central limit problem is likely to be much more dif-
ficult than that lemma suggests. For related problems for a number of differ-
ent functionals, one may consult Steele [14].
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