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Abstract. We consider selection processes that can provide either a multi-
plicative relaxation or a multiplicative constriction of the classical process of

selected records in a sequence of independent observations. In the relaxed
case, we find that the number of selections satisfies a CLT with a different
normalization than Rényi’s classical CLT for records, and in the constricted

case we find convergence to an unbounded random variable with all moments.
We also find refinements of some classical facts for the number of records in
an independent sample, including an exact formula for the expected number
of records given a specified level for the zero’th record. Further we note that a

Markov chain central to our analysis has a stationary distribution that satisfies
a non-autonomous pantographic equation.
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1. Relaxed or Constrained Sequential Selection Processes

Let Xi, i = 1, 2, . . . be a sequence of independent random variables with a
common continuous distribution F with support in [0,∞), and let ρ denote a non-
negative constant. If we then set τ1 = 1 and define a sequence of stopping times by
taking

(1) τk = min{j : Xj ≥ ρXτk−1
} for k > 1,

then the random variables of main interest here are then given by

(2) Rn(ρ) = max{k : τk ≤ n}.
When ρ = 1 the times τk, k = 1, 2, . . . are precisely the times at which new record
values are observed, and Rn(1) is the total number of records that are observed in
the time interval [1 : n] = {1, 2, . . . , n}.

The random variable Rn(1) has been well understood for a long time. In
particular, Rényi (1962) found among other things that E[Rn(1)] ∼ log n and
Var[Rn(1)] ∼ log n; moreover, he found that one has

(3)
Rn(1)− logn√

log n
⇒ N(0, 1),
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where, as usual, the symbol ⇒ denotes convergence in distribution and N(0, 1)
denotes the standard Gaussian distribution.

The cases ρ ∈ (0, 1) and ρ ∈ (1,∞) seem not to have been considered previously,
and they lead to some novel phenomena. First, the distribution of Rn(ρ) depends
on F while in Rényi’s case it does not. Moreover, one finds that in both of the
new cases the asymptotic behavior is unlike the behavior that one finds for Rényi’s
classical record process {Rn(1) : n ≥ 1}.

The most interesting case is when ρ ∈ (0, 1) where, in comparison to the clas-
sical record process, one has relaxed the condition that is imposed on sequential
selections. In this case, one again has a central limit theorem, but the underlying
process differs notably from Rényi’s. In particular, the mean and variance grow
linearly when ρ ∈ (0, 1), and the summands are no longer independent.

Here, for the sake of brevity, we say a distribution function is in the selection class
SL if there is an L ∈ (0,∞) such that F (0) = 0, F (L) = 1, and F is continuous and
strictly monotone on (0, L). For example, the uniform distribution on [0, 1] is in S1,
and for any L > 0 the truncated exponential distribution F (x) = (1−e−x)/(1−e−L)
is in SL. For these examples, one has a density, but, in general, a distribution in
SL need not have a density.

Theorem 1 (Mean, Variance, and CLT when 0 < ρ < 1). If Xi, i = 1, 2, . . . are
independent and if F ∈ SL, then there are constants µρ(F ) > 0 and σρ(F ) > 0
such that

(4) E[Rn(ρ)] ∼ nµρ(F ) and Var[Rn(ρ)] ∼ nσ2
ρ(F ),

and one has a central limit theorem

(5)
Rn(ρ)− nµρ(F )

σρ(F )
√
n

⇒ N(0, 1).

After we develop some useful connections with the theory of Markov chains in
Sections 2 and 3, the proof of Theorem 1 is given in Section 4. The main issues
are the proofs of the relations (4) and the proof of σ2

ρ(F ) > 0. Once these facts
are in hand, the convergence (5) then follows from general theory; for example,
one can obtain (5) directly from Arlotto and Steele (2016) Theorem 1, Corollary
2. Alternatively, with a page or two of extra work, one can obtain (5) by first
generalizing other known central limit theorems for additive functionals of Markov
processes. In either case, the proof that σ2

ρ(F ) > 0 presents itself as the make-or-
break step.

For a general F ∈ SL, the task of determining the constants µρ(F ) and σρ(F )
seems intractable. Nevertheless, in leading case when F is the uniform distribution
U on [0, 1], there is an explicit series formula for the mean.

Theorem 2 (Moments for Uniform Distribution). If ρ ∈ (0, 1) and if the random
variables Xi, i = 1, 2, . . . have the uniform distribution U on [0, 1], then we have

µρ(U) = 1− ρ

2
− ρ

3
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2

)
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)(
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· · ·

The proof of Theorem 2 is given in Section 5 and 6 where we also develop an
equation of the pantograph type for the stationary distribution of the Markov chain
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given by the selected values. We do not solve this equation, but we use it to derive
the Mellin transform for the stationary distribution. This is used in turn to get
our formula (6) for µρ(U). There is little hope of finding a correspondingly explicit
representation for σ2

ρ(F ) even for F = U . Nevertheless, we do find in Section 4 that

there is a more abstract series representation (26) for σ2
ρ(F ).

When ρ > 1, one no longer has a central limit theorem. Instead one has almost
sure convergence to an unbounded non-negative random variable that has a well-
behaved moment generating function.

Theorem 3 (Distributional Limit when ρ > 1). If F ∈ SL and if F (x) = O(x)
in the neighbourhood of 0, then for each ρ > 1 there exists an unbounded random
variable Nρ with moment generating function

(7) E[exp(sNρ)] < ∞ for |s| < log ρ,

such that with probability one Rn(ρ) ↗ Nρ as n → ∞.

Sequential selection with ρ > 1 is notably less interesting than the cases with
ρ = 1 or ρ ∈ (0, 1) where one finds central limit theorems of two different kinds.
Nevertheless, completeness calls for the consideration of ρ > 1, and we give a brief
analysis of this case in Section 7.

Section 8 then develops several refinements of Rényi’s classic formula for the
expected number of records. For example, consider the number Rx

n(1) of records
that are larger than x. When F is the uniform distribution on [0, 1], we find

(8) E[Rx
n(1)] =

n∑
k=1

1− xk

k
= Hn −

n∑
k=1

xk

k
.

This formula recaptures Rényi’s classic harmonic sum when we set x = 0, yet the
proof of (8) has nothing in common with the classic arguments of Rényi (1962).
Moreover, the methods that lead one to (8) yield further generalizations for the
quantities E[Rx

n(ρ)] and limn{E[Rx
n(ρ)]− E[Ry

n(ρ)]}.
In Section 9 we examine more fully the senses in which the values chosen by

the selection process (1) can be viewed as relaxed records, constrained records, or
creatures of another breed. In particular, we note that in the relaxed case ρ ∈ (0, 1),
the selected values can differ greatly from any notion of approximate record, even
though our sequential selection processes and various approximate record processes
both contain the record process as a limiting cases when the time horizon is finite.
Finally, in Section 10, we make brief note of three further connections between the
theory of relative sequential selections and Rényi’s theory of records.

2. Representation as a Markov Additive Functional

For k = 1, 2, . . . we take Yk to be the last value that has been accepted by the
selection process during the time interval [1 : k]; that is, we set

Yk = Xτj where j = max{m : τm ≤ k}.

The values Yk, k = 1, 2, . . . determine a Markov chain where if one is in state x
then one stays in state x with probability F (ρx) and with probability 1−F (ρx) one
moves to a point y in the set [ρx, 1]\{x} that is chosen according to the probability
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measure dF (y)/(1− F (ρx)). In other words, if we also set Y0 = 0 then the process
{Yk : k ∈ [0 : ∞)}, has the transition kernel

(9) Kρ,F (x,A) = F (ρx)1(x ∈ A) +

∫ L

ρx

1(y ∈ A) dF (y).

Now, in terms of the Markov chain {Yk : 0 = 1, 2, . . .} we have the representation

(10) Rn(ρ) =
n∑

k=1

1[Yk ̸= Yk−1],

since we accept a new value precisely at the times when the state of the chain {Yn}
changes. Most of Theorem 1 follows from this representation after we establish a
few analytic properties of the Markov chain {Yn}.

Remark 4. Here one should note that by definition Rn(ρ) is a function of the
independent random variables {X1, X2, . . . Xn}, and we simply write E[Rn(ρ)] and
Var[Rn(ρ)] when Rn(ρ) is viewed in this way. On the other hand, by the repre-
sentation (10), we can also view Rn(ρ) as a function of {Y1, Y2, . . . , Yn} and the
distribution of this sequence depends on the initial distribution of the Markov
chain. When we take the second point of view it is natural (and necessary) to write
Eµ[Rn(ρ)] and Varµ[Rn(ρ)] whenever Y0 has the distribution µ. By construction,
we always have Var[Rn(ρ)] = Var0[Rn(ρ)] and E[Rn(ρ)] = E0[Rn(ρ)].

3. The Dobrushin Coefficient and Its Consequences

There are several ways one can investigate the Markov chain defined by (9), but
here it is especially efficient to first estimate its Dobrushin coefficient.

Definition 5 (Dobrushin Coefficient). If K is a Markov transition function on a
Borel state space X and if B(X ) denotes the collection of Borel subsets of X , then
the Dobrushin coefficient δ(K) of the kernel K is defined by

δ(K) = sup
x1,x2∈X , A∈B(X )

|K(x1, A)−K(x2, A)|.

Lemma 6 (Dobrushin Coefficient forKρ,F ). If F ∈ SL and if Kρ,F is the transition
kernel given by (9), then one has

(11) δ(Kρ,F ) ≤ F (ρL) < 1.

Proof. If we assume x1 < x2, then for any Borel set A ⊂ [0, L] we have from (9)
that

∆
def
= Kρ,F (x1, A)−Kρ,F (x2, A)

= F (ρx1)1(x1 ∈ A) +

∫ 1

ρx1

1(y ∈ A) dF (y)− F (ρx2)1(x2 ∈ A)−
∫ 1

ρx2

1(y ∈ A) dF (y)

= F (ρx1)1(x1 ∈ A)− F (ρx2)1(x2 ∈ A) +

∫ ρx2

ρx1

1(y ∈ A) dF (y).

After majorizing the positive terms, we see from monotonicity of F that

∆ ≤ F (ρx1) + {F (ρx2)− F (ρx1)} = F (ρx2) ≤ F (ρL).

On the other hand, if we keep just the one negative term in the sum for ∆, then
we have

∆ ≥ −F (ρx2) ≥ −F (ρL),
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and these two bounds on ∆ complete the proof of (11). �

Nagaev (2015) proved that for any Markov chain with kernel K and Dobrushin
coefficient δ(K) < 1, there is a probability measure ν on the state space X that is
stationary under K, and, most notably, if K(n) denotes the n step transition kernel,
then one has the total variation bound

(12) |K(n)(x,A)− ν(A)| ≤ 2[δ(K)]n for all x ∈ X and A ∈ B(X ).

Now, we let {Zn : n = 0, 1, 2, . . .} be the Markov chain associated with the
kernel K, and we write Ex and Eν for the corresponding expectation operators
where accordingly as Z0 = x ∈ X or Z0 ∼ ν. By the total variation bound (12)
and approximation by step functions, one can then check that for any bounded
measurable g : D = X 4 → R, one has for any fixed 0 ≤ i ≤ j ≤ k and n → ∞ that

(13) Ex[g(Zn, Zn+i, Zn+j , Zn+k)]− Eν [g(Z0, Zi, Zj , Zk)] = O(||g||∞[δ(K)]n),

where here we set ||g||∞ = supv∈D |g(v)|.
The implied constant in (13) is absolute; in fact, it can be taken to be 4. Nat-

urally, we also have analogous relations for functions of fewer than four variables
or more than four variables. Here we only need (13) and its analog for functions of
two variables.

4. When ρ < 1: Proof of Theorem 1

We now restrict attention to the Markov chain with transition kernel Kρ,F (·, ·)
given by (9). By the bound (11) we have δ ≡ δ(Kρ,F ) < 1, so the stationary
distribution exists. We consider two initial distributions: in the first case we take
Y0 ≡ 0; and in the second case we assume that Y0 has the stationary distribution
ν. By the two variable analog of (13) for g(Yn, Yn+1) = 1(Yn ̸= Yn+1) we have

E0[1(Yk−1 ̸= Yk)] = Eν [1(Y0 ̸= Y1)] +O(δk).(14)

From (14) and the representation (10), we see by geometric summation that

E0[Rn(ρ)] =

n∑
k=1

E0[1(Yk−1 ̸= Yk)] = nEν [1(Y0 ̸= Y1)] +O(1)(15)

= n

∫
X

∫
X
1[s ̸= t]Kρ,F (s, dt) dν(s) +O(1),

where the double integral is just Eν [1(Y0 ̸= Y1)] written in longhand. This gives
us the first assertion (4) of Theorem 1 in a form that is a bit more explicit; in
particular, (15) tells us that in (4) we have

(16) µρ(F ) =

∫
X

∫
X
1[s ̸= t]Kρ,F (s, dt) dν(s).

To find the asymptotic variance of Rn(ρ), we introduce two sequences of random
variables:

Uk = 1[Yk−1 ̸= Yk]− E0(1[Yk−1 ̸= Yk]) and Vk = 1[Yk−1 ̸= Yk]− Eν(1[Yk−1 ̸= Yk]).

Both Uk and Vk are functions of the Markov process {Yk : k = 0, 1, . . .}, so in
particular, both {Un} and {Vn} depend on the initial value Y0. For clarity one
should note that Uk has mean zero when Y0 ≡ 0 and Vk has mean zero when Y0

follows the stationary distribution ν.
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The random variables Uk and Vk differ by a constant that depends on k, and by
(14) the constant is not larger than O(δk). Thus, by the representation (10), we
have

Var[Rn(ρ)] = Var0[Rn(ρ)] = E0

[( n∑
k=1

Uk

)2]
= E0

[( n∑
k=1

Vk

)2]
+O(1).(17)

Now, we expand the sum in (17) and write

E0

[( n∑
k=1

Vk

)2]
=

n∑
k=1

E0[V
2
k ] + 2

n−1∑
i=1

n−i∑
j=1

E0[ViVi+j ]
def
= An +Bn.(18)

To estimate the first sum An of (18), we apply (13) just as we did in the derivation
of (14), and this time we find

E0[V
2
k ] = Eν [V

2
k ] +O(δk) = Eν [V

2
1 ] +O(δk).

Summation then gives us

An = nEν [V
2
1 ] +O(1).(19)

To deal with the double sum Bn, we first need a lemma to help us estimate some
of the summands of Bn.

Lemma 7. For any initial distribution µ one has

(20) Eµ[ViVi+j ] = O(δj) for all i, j ≥ 0.

Proof. To exploit the Markov property for the chain {Yn : n = 0, 1, . . .}, we first
condition on Yi−1 and Yi and note that

(21) Eµ[ViVi+j ] = Eµ[ViEµ[Vi+j |Yi−1, Yi]] = Eµ[ViEµ[Vi+j |Yi]] = Eµ[ViEYi [Vj ]].

If we use (13) as before, then we see that for all x ∈ X we have

Ex[Vn] = Eν [Vn] +O(δn),

and the implied constant does not depend on x. When we insert this into (21)
and recall that the definition of Vn gives us Eν [Vn] = 0, the proof of the lemma is
complete. �

Lemma 7 helps us deal with cross terms with large j, but we also need a relation
that deals with arbitrary j. Here, we again use (13) to get for all j ≥ 0 that

(22) E0[ViVi+j ] = Eν [ViVi+j ] +O(δi) = Eν [V1V1+j ] +O(δi).

Now, to calculate Bn, we first apply Lemma 7 to the cross terms E0[ViVi+j ] where
i ≤ j and then apply (22) to the rest to obtain

Bn = 2
n−1∑
j=1

j∑
i=1

O(δj) + 2

⌊(n−1)/2⌋∑
j=1

n−1∑
i=j+1

{
Eν [V1V1+j ] +O(δi)

}
.(23)

We have the sums

n−1∑
j=1

j∑
i=1

O(δj) =
n−1∑
j=1

O(jδj) = O(1),

⌊(n−1)/2⌋∑
j=1

n−1∑
i=j+1

O(δi) =
n−1∑
j=2

O(jδj) = O(1)
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and we have the sum

⌊(n−1)/2⌋∑
j=1

n−1∑
i=j+1

Eν [V1V1+j ] =

⌊(n−1)/2⌋∑
j=1

(n− j − 1)Eν [V1V1+j ],

so (23) becomes

Bn = 2

⌊(n−1)/2⌋∑
j=1

(n− j − 1)Eν [V1V1+j ] +O(1).(24)

In summary, (17), (18), (19) and (24) give us the key relation

(25)
1

n
Var[Rn(ρ)] = Eν [V

2
1 ] + 2

⌊(n−1)/2⌋∑
j=1

(
1− j + 1

n

)
Eν [V1V1+j ] +O(1/n),

and by Lemma 7 the summands are absolutely convergent, so we can take the limit
in (25) to get

(26) lim
n→∞

1

n
Var[Rn(ρ)] = Eν [V

2
1 ] + 2

∞∑
j=1

Eν [V1V1+j ]
def
= σ2

ρ(F ).

This completes the proof of the asymptotic relations for the mean and variance of
Rn(ρ).

When these relations are coupled with the bound (11) on the Dobrushin coeffi-
cient, the rest of the proof of the central limit theorem of Theorem 1 is almost on
automatic pilot. The key remaining step is the proof that the constant σ2

ρ(F ) de-
fined by (26) is strictly positive. Once this is done, the CLT (5) follows immediately
from Theorem 1 of Arlotto and Steele (2016).

To work toward a lower bound for σ2
ρ(F ), we let Fe be the σ-field generated by

the evenly indexed terms Y0, Y2, Y4, . . ., and, in order to facilitate calculations that
are conditional on the “even σ-field” Fe, we write

R2n(ρ) =
n−1∑
j=0

Wj where Wj = 1(Y2j+1 ̸= Y2j) + 1(Y2j+2 ̸= Y2j+1).

We already know by (26) that Var[Rn(ρ)] = Var0[Rn(ρ)] ∼ nσ2
ρ(F ), and we have

also shown that Var0[Rn(ρ)] ∼ Varν [Rn(ρ)]. Thus, to show σ2
ρ(F ) > 0, it suffices to

show that there is a constant α > 0 such that Varν [R2n(ρ)] ≥ nα for all n ≥ 1. We
begin by studying the conditional variances of the individual summands of R2n(ρ).

For specificity, we should also note that for each j the distribution of Wj given
Fe does not depend on the initial distribution of the Markov chain; accordingly we
simply write Var[Wj |Fe] for the corresponding conditional variance. On the other
hand, the distribution of the random variable Var[Wj |Fe] depends on the distribu-
tion of Y0, so, for its expectation when Y0 ∼ ν, we need to write Eν [Var[Wj |Fe]].

Lemma 8. For all ρ ∈ (0, 1) and F ∈ SL, there exists a constant αF (ρ) > 0 for
which one has

Eν [Var[Wj |Fe]] = Eν [Var[Wj |Y2j , Y2j+2]] ≥ αF (ρ) for all j ≥ 0.

Proof. When we condition on Fe = σ{Y0, Y2, . . .}, the distribution of Wj requires
the consideration of two cases. First, if we have Y2j = Y2j+2, then with probability
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one we have Y2j = Y2j+1 = Y2j+2 and hence Wj = 0. Second, given Fe with
Y2j ̸= Y2j+2, then we have

Wj =

 0, with probability 0,
1, with probability F (ρY2j),
2, with probability 1− F (ρY2j).

(27)

From the representation (27) and the strict monotonicity of F ∈ SL, we see there
is a constant CF (ρ) > 0 such that for all j ≥ 0,

(28) Var[Wj |Y2j , Y2j+2] ≥ CF (ρ)1[Y2j ̸= Y2j+2, ρL ≤ Y2j , Y2j+2 ≤ L].

If we set Z = 1[Y2j ̸= Y2j+2, ρL ≤ Y2j , Y2j+2 ≤ L] and

A = {Y2j ∈ [ρL,L]}, B = {Y2j+1 ∈ [ρL,L], Y2j+1 ̸= Y2j}, C = {Y2j+2 ∈ [ρL,L]}.

Then Z ≥ 1(A ∩B ∩ C) and

Eν [Z] ≥ Pν(A ∩B ∩ C) = Pν(A)Pν(B|A)Pν(C|A,B).

Each term on the right hand side is at least 1 − F (ρL) because any upcoming
observation that falls within [ρL,L] will be accepted. This gives us

Eν [Z] ≥ (1− F (ρL))3,

so by (28) one can take αF (ρ) ≡ CF (ρ)(1 − F (ρL))3 > 0 to complete the proof of
the lemma. �

This is last of the tools we need to get a non-trivial lower bound for σ2
ρ(F ). By

the law of total variance and by Lemma 8, we have

Var[R2n(ρ)] = E[Var[R2n(ρ)|Fe]] + Var[E[R2n(ρ)]|Fe]]

≥ E[Var[R2n(ρ)|Fe]] = E
[ n∑
j=1

Var[Wj |Fe]
]
≥ nαF (ρ)(29)

where the last equality is due to the independence between Wi and Wj given Fe

when i ̸= j.
Finally, given Lemma 8 and our earlier observations, the proof of Theorem 1 is

complete.

5. Proof of Theorem 2

Before we take up the proof of Theorem 2 in earnest, it will be useful to know that
when F is the uniform distribution we can work with the density of the stationary
distribution of Kρ,F . To get the required absolute continuity we begin with a
general inequality.

Proposition 9. If F ∈ SL and if ν is the stationary measure for the transition
kernel Kρ,F given by (9), then for all Borel A ⊂ X one has

(30) ν(A) ≤ 1

1− F (ρL)

∫ L

0

1(y ∈ A)F (dy).
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Proof. Stationarity of ν and the definition of Kρ,F give us

ν(A) =

∫
X
Kρ,F (x,A)ν(dx)

=

∫
X
1(x ∈ A)F (ρx)ν(dx) +

∫ L

0

∫
X
1(y ∈ A)1(ρx ≤ y ≤ L)ν(dx)F (dy)

≤ ν(A)F (ρL) +

∫ L

0

1(y ∈ A)F (dy),

from which we get (30). �

From (30) we see that ν is always absolutely continuous with respect to F .
Consequently, if F is absolutely continuous with respect to Lebesgue measure dx,
then both ν and F have densities with respect to dx.

Now we take F to be the uniform distribution on [0, 1], and we simply write Kρ,
Mρ and mρ for the corresponding transition kernel, stationary distribution function
and density function. The definition of Kρ and equation of stationarity now tell us

mρ(y) =

∫ 1

0

mρ(x)Kρ(x, y) dx = ρymρ(y) +

∫ 1

0

mρ(x)1(ρx ≤ y) dx,

or, in other words,

(31) mρ(y)− ρymρ(y) = Mρ(y/ρ) for all y ∈ [0, 1].

Perhaps the quickest way to extract what we need from this key identity is to
first introduce the Mellin transform of m(·):

ϕ(s, ρ)
def
=

∫ 1

0

xsmρ(x) dx.

From (31) and the fact that Mρ(x) = 1 for x ≥ 1 we then find

ϕ(s, ρ)− ρϕ(s+ 1, ρ) =

∫ 1

0

xsMρ(x/ρ) dx =

∫ ρ

0

xsMρ(x/ρ) dx+
1− ρs+1

s+ 1
.(32)

A change of variables and integration by parts give us∫ ρ

0

xsMρ(x/ρ) dx = ρs+1

∫ 1

0

usMρ(u) du = ρs+1 1− ϕ(s+ 1, ρ)

s+ 1
,

so (32) becomes

(33) ϕ(s, ρ)− ρϕ(s+ 1, ρ) =
1− ρs+1ϕ(s+ 1, ρ)

s+ 1
,

which we can rewrite as a recursion,

(34) ϕ(s, ρ) =
1

1 + s
+

(
ρ− ρs+1

s+ 1

)
ϕ(s+ 1, ρ).

Proposition 10 (Mellin Transform of the Stationary Density). We have

(35) ϕ(s, ρ) =
∞∑
k=0

ak(s) where a0(s) =
1

1 + s
and

ak(s) =
1

s+ k + 1

k∏
i=1

(
ρ− ρs+i

s+ i

)
for k ≥ 1.
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Proof. We just need to check that (35) satisfies the recursion (34). In fact we have(
ρ− ρs+1

s+ 1

)
ak(s+ 1) =

1

s+ k + 2

(
ρ− ρs+1

s+ 1

) k∏
i=1

(
ρ− ρs+1+i

s+ 1 + i

)

=
1

s+ k + 2

k+1∏
i=1

(
ρ− ρs+i

s+ i

)
= ak+1(s),

so summing from k = 0 to ∞ gives us(
ρ− ρs+1

s+ 1

)
ϕ(s+ 1, ρ) =

∞∑
k=0

ak+1(s) =
∞∑
k=1

ak(s).

Since a0(s) = 1/(1 + s), we have proved(
ρ− ρs+1

s+ 1

)
ϕ(s+ 1, ρ) =

∞∑
k=1

ak(s) = ϕ(s, ρ)− 1

1 + s
,

giving us the required recursion (34). �

For the first moment of mρ(·) we therefore find∫ 1

0

xmρ(x) dx = ϕ(1, ρ) =
1

2
+

1

3

(
ρ− ρ2

2

)
+

1

4

(
ρ− ρ2

2

)(
ρ− ρ3

3

)
+ · · · ,

and this is just what we need to complete the calculation of µρ(U). Specifically, if
we specialize the general formula (16) for µρ(F ) to the uniform distribution function
U , we get some substantial simplification. Specifically, we have

µρ(U) = Eν [1(Y0 ̸= Y1)] =

∫ 1

0

∫ 1

0

Kρ(x, y)1(x ≠ y)mρ(x) dx dy

=

∫ 1

0

∫ 1

0

1(ρx ≤ y)mρ(x)dxdy =

∫ 1

0

(1− ρx)mρ(x) dx = 1− ρϕ(1, ρ),

and, together with the expansion for ϕ(1, ρ), this completes the proof of the first
assertion (6) of Theorem 2.

We will see in Section 6 that (31) is from an interesting class of equations with
a long history and a rich theory. Nevertheless, there are situations where one can
make use of (31) without knowing its solution and without appealing to the wider
theory. Specifically, the next proposition illustrates the qualitative use of (31) and
gives some properties that will be used in Section 10.

Proposition 11 (Features of the Stationary Density). The probability density
mρ(·) on [0, 1] that satisfies the equation of stationarity (31) is a continuous, strictly
increasing function on (0, 1). Moreover, it is strictly convex on (0, ρ) and strictly
convex on (ρ, 1], but it is not convex in any neighborhood of ρ. In particular, m′

ρ(·)
has a jump discontinuity at ρ.

Proof. If we write (31) as mρ(y) = (1 − ρy)−1Mρ(y/ρ), then from the fact that
y 7→ Mρ(y/ρ) is non-decreasing and (1 − ρy)−1 is strictly increasing, we see that
mρ(·) is strictly increasing. Also, from the continuity of Mρ(·) we see that mρ(·) is
continuous, and, since Mρ(·) is the integral of mρ(·), we see that Mρ(·) is continu-
ously differentiable. From Mρ(0) = 0 and (31) we have mρ(0) = 0 from which we
also find M ′

ρ(0) = mρ(0) = 0.
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For all x ∈ [1,∞) we have Mρ(x) = 1, so (31) gives us an explicit formula

(36) mρ(y) =
1

1− ρy
for y ∈ [ρ, 1].

On the other hand, for y ∈ [0, ρ) the relation (31) is an integral equation which by
differentiation gives us

(37) m′
ρ(y) =

mρ(y/ρ)

ρ(1− ρy)
+

ρMρ(y/ρ)

(1− ρy)2
for y ∈ [0, ρ).

From (37) and the fact that mρ(·) and Mρ(·) are both monotone non-decreasing,
we find that mρ(·) is strictly convex on (0, ρ), while from (36) we see immediately
that mρ(·) is strictly convex on [ρ, 1].

To check that mρ(·) fails to be convex on [0, 1], we first recall that we have
mρ(1) = 1/(1− ρ) and Mρ(1) = 1, so by (31) and (37) the one-sided derivatives at
ρ are given by

m′
ρ(ρ

+) =
ρ

(1− ρ2)2
<

1

ρ(1− ρ)(1− ρ2)
+

ρ

(1− ρ2)2
= m′

ρ(ρ
−).

This tells us that mρ(·) is not differentiable at ρ, and, moreover, since m′
ρ(·) has a

negative jump discontinuity at ρ, we see that mρ(·) is not convex on [0, 1]. �

As an application of the proposition, one should note that the jump discontinuity
of m′

ρ(·) tells us that some plausible solution methods for (37) cannot work. For
example, there can be no solution of (37) on [0, 1] that is given by a power series
(or a Frobenius series), even though we have the nice power series representation
(35) for the Mellin transform of mρ(·).

6. The Stationary Measure and the Pantograph Equation

The first-order non-autonomous pantograph equation for λ ∈ (0,∞) is the func-
tional differential equation

(38) H ′(t) = a(t)H(t) + b(t)H(λt) t ≥ 0.

The connection to the problems considered here is that for 0 < ρ < 1 the equation
(31) for the distribution function Mρ of the stationary measure of the transition
kernel Kρ,U (·, ·) ≡ Kρ(·, ·) can be written as

(39) M ′
ρ(t) =

1

1− ρt
Mρ(t/ρ) for 0 ≤ t < 1.

Thus, on the interval [0, 1], the distribution function Mρ satisfies the pantograph
equation (38) with a(t) = 0, b(t) = 1/(1− ρt), and λ = 1/ρ > 1.

The pantograph equation occurs in many contexts, perhaps the earliest of which
was a number of theoretic investigations of Mahler (1940) that exploited the equa-
tion H ′(t) = bH(λt), H(0) = 1 and its solution

(40) H(t) =
∞∑
j=0

1

j!
λj(j−1)/2bjtj ,

which is an elegant — and useful — generalization of the exponential function.
The two-term pantograph equation (38) has mostly commonly occurred in the

autonomous case where a(t) and b(t) are constant, and the equation got its name
from Fox et al. (1971) where the autonomous equation was used to model the
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collection of current by the pantograph (or flat pan connection head) of a tram.
The subsequent investigation of Kato and McLeod (1971) showed the full richness
of the equation, and, ever since, the pantograph equation has been regularly studied
and applied, see e.g. Iserles (1993), Derfel and Iserles (1997), Guglielmi and Zennaro
(2003), Saadatmandi and Dehghan (2009), Yusufoğlu (2010), and Hsiao (2015), all
of which contain many references.

In the non-autonomous case, essentially all work on (38) has been asymptotic
or numerical. Moreover, all of the recent work focuses on the case when λ ∈ (0, 1),
and there is a sound scientific reason for this. Specifically, for (38) to be useful in
an engineering or scientific context, it seems natural to assume that it is a causal
equation; that is, the current rate of change H ′(t) is required to be determined by
information that is available at time t.

A noteworthy feature of the stationarity equation (39) is that it is not a causal
equation; one has λ = 1/ρ > 1. The other interesting feature of (39) is that it
was essentially solved in Section 5, at least in the sense that Proposition 10 gives
explicit series expansion of its Mellin transform.

Mellin transforms have rarely been used in the theory of the pantograph equa-
tion; we know of only one other case. Specifically, van Brunt and Wake (2011) used
Mellin transforms to study a second order non-autonomous pantograph equation.
Intriguingly, their equation was also acausal, and it also had a probabilistic origin.
Specifically, it arose as the Fokker-Plank equation in a diffusion model for a pop-
ulation of cells, and the acausal parameter came from a splitting constant for cell
division.

We do not make further use the pantograph equation here, but, given the richness
of its theory, the connection seems worth noting. Benefits may even flow both ways.
For example, calculations like those of Section 5 provide explicit Mellin transforms
for the solutions of some other pantograph equations in addition to (39).

7. When ρ > 1: The Proof of Theorem 3

We now consider an infinite sequenceX1, X2, . . . of independent random variables
with distribution F ∈ SL. We then fix ρ > 1, and we again use the recursive
definition (1) to specify the set of selection times {τk : k = 1, 2, . . .}. If we then set

Nρ = min{k : Xτk ∈ (L/ρ, L]} and Mρ = min{τk : Xτk ∈ (L/ρ, L]}

then the number of selections one makes from {X1, X2, . . . , Xn} is simply given by
Rn(ρ) = Rmin(n,Mρ)(ρ), since, after a selection larger than L/ρ has been made, no
further selections are possible. Also, for each ω ∈ {ω : Mρ(ω) < ∞}, we have

Rn(ρ) = Rmin(n,Mρ)(ρ) ↗ RMρ(ρ) = Nρ as n → ∞,

so the main task is to prove the moment generating function bound (7).
Since each value accepted by the selection process with ρ > 1 must be at least a

factor of ρ greater than the preceding selection we have the bounds

Nρ ≤ max{k : ρk−1X1 ≤ L} ≤ 1 + logL/ log ρ− logX1/ log ρ,

so for the moment generating function we find

E[exp(sNρ)] ≤ exp(s)Ls/ log ρE[X−s/ log ρ
1 ] = exp(s)Ls/ log ρ

∫ L

0

x−s/ log ρdF.
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We know the integral is finite when F (x) = O(x) near 0 and |s| < log ρ, and this
gives us (7).

To show Nρ is unbounded, we first fix an integer M > 1, and we consider the
disjoint subintervals {I1, I2, . . . , IM} of [0, L] that are defined by setting

Ik = [ak, bk] =

[
(ρ− 1)L

ρM − 1

k−1∑
i=1

ρi,
(ρ− 1)L

ρM − 1

k−1∑
i=0

ρi

]
, 1 ≤ k ≤ M.

The main feature here is that one has ak+1/bk = ρ > 1 for all 1 ≤ k < M . If we
have Xi ∈ Ii for i = 1, 2, . . .M , then all of the observations X1, X2, ..., XM are
selected, so we always have the inequality

M∏
k=1

1(Xk ∈ Ik) ≤ 1(Nρ ≥ M).

Finally, by the independence of the variables Xk, 1 ≤ k ≤ M and the strict mono-
tonicity of F , we see that the expectation of the product is strictly positive. This
gives us P (Nρ ≥ M) > 0 for all M ≥ 1. Since M is arbitrary, we see that Nρ is
unbounded, and the proof of the theorem is complete.

8. Complements to Classical Record Theory

Here we consider the calculation of the expected number of selections where we
assume that there was a selection made at “time zero” that had value x ∈ [0, 1].
Formally, we modify the definition (2) by first setting τ1 = min{j : Xj ≥ ρx}.
Next, for k ≥ 2 we define τk as before by setting τk = min{j : Xj ≥ ρXτk−1

}, and
finally we set

(41) Rx
n(ρ) = max{k : τk ≤ n}.

In this notation, Rényi’s classical formula for the expected number of records is

(42) E[R0
n(1)] =

n∑
k=1

1

k

def
= Hn,

and the main goal of this section is to generalize this result in two ways. The
immediate goal is to show that

(43) E[Rx
n(1)] = Hn −

n∑
k=1

xk

k
,

and then in Theorem 12 we will get a closely related formula for E[Rx
n(ρ)].

We begin by using first step analysis to get a useful recursion for the quantities

gn,ρ(x)
def
= E[Rx

n(ρ)] and gn(x)
def
= gn,1(x).

Specifically, if we consider the first observation y = X1, then X1 is not accepted if
y ≤ ρx, and this happens with probability ρx. On the other hand if y = X1 ∈ [ρx, 1]
we do accept X1, and accordingly we find the basic recurrence relation

(44) gn+1,ρ(x) = ρxgn,ρ(x) +

∫ 1

ρx

[1 + gn,ρ(y)] dy.

For general ρ ∈ (0, 1), this equation offers considerable resistance; in essence, it is a
linearized non-autonomous pantograph equation in integrated form. Nevertheless,
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one can use (44) to extract some interesting information, including refinements of
some classical facts.

For example, if we take ρ = 1 in (44), then we can make some quick progress.
Specifically, if we write gn(x) for gn,1(x) then differentiation and a nice cancellation
give us

(45) g′n+1(x) = xg′n(x)− 1.

We have g1(x) = 1− x, so g′1(x) = −1 and repeated applications of (45) give us

g′2(x) = −x− 1, g′3(x) = −x2 − x− 1, and g′4(x) = −x3 − x2 − x− 1.

In general, one has

(46) g′n(x) = −xn−1 − xn−2 − · · · − 1 = −1− xn

1− x
,

so integration over [0, x] gives us

(47) gn(x) = gn(0)− x− x2

2
− · · · − xn

n
.

Now if we use the basic recursion (44) with x = 0 and ρ = 1 we have from (47) that

gn+1(0) = 1 +

∫ 1

0

gn(y) dy = gn(0) + 1− 1

1 · 2
− 1

2 · 3
− · · · − 1

n · (n+ 1)

= gn(0) +
1

n+ 1
.

By telescoping we then recover Rényi’s formula gn(0) = Hn, but from (47) we now
also find our refinement of Rényi’s formula (and its approximation):

(48) E[Rx
n(1)] = Hn −

n∑
k=1

xk

k
= log n−

n∑
k=1

xk

k
+ γ +

1

2n
+O(1/n2),

where γ = 0.577 · · · is Euler’s constant.
For any 0 < ρ < 1, one can derive a representation of E[Rx

n(ρ)] that is only a little
less explicit than (43). The correcting term is again a truncated power series, but,
in the general case, the principal term gn,ρ(0) is no longer a well-known quantity.

Theorem 12. For all 0 < ρ ≤ 1 and 0 ≤ x ≤ 1 we have

(49) gn,ρ(x) = gn,ρ(0)−
n∑

i=1

aix
i,

where a1 = ρ, a2 = ρ(ρ− ρ2/2), and ai = (ρ− ρi/i)ai−1 for all i ≥ 2.

Proof. To argue by induction, we first recall that g1,ρ(x) = ρx for all 0 ≤ x ≤ 1,
and this gives us by direct evaluation that (49) holds for n = 1. Next, from the
basic recursion (44) we have

gn+1,ρ(0) =

∫ 1

0

[1 + gn,ρ(y)]dy and gn+1,ρ(x) = ρxgn,ρ(x) +

∫ 1

ρx

[1 + gn,ρ(y)]dy,

so taking the difference gives us

(50) gk+1,ρ(0)− gk+1,ρ(x) = ρx+

∫ ρx

0

[gn,ρ(y)− gn,ρ(x)]dy.
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By the induction hypothesis we can expand the last integrand as

(51) gn,ρ(y)− gn,ρ(x) =
n∑

i=1

ai(x
i − yi),

so from (50) and the defining relation ai+1 = (ρ− ρi+1/(i+ 1))ai we have

(52)

∫ ρx

0

n∑
i=1

ai(x
i − yi)dy =

n∑
i=1

ai

(
ρ− ρi+1

i+ 1

)
xi+1 =

n∑
i=1

ai+1x
i+1.

Finally, from (50) and (52) we then get

gn+1,ρ(0)− gn+1,ρ(x) =
n+1∑
i=1

aix
i,

which completes the induction step. �

Since 0 < ai ≤ ρi, the identity (49) has an immediate corollary that underscores
an informative difference between the case when ρ ∈ (0, 1) and the case when ρ = 1.
Specifically, for ρ = 1 we see from (43) that the influence of x is unbounded, while
the next corollary tells us that for 0 < ρ < 1 the influence of the initial value x has
only a bounded influence.

Corollary 13 (Insensitivity of the Initial Constraint). For all ρ ∈ (0, 1), n ≥ 0,
and all 0 ≤ x ≤ y ≤ 1, one has

(53) 0 ≤ gn,ρ(x)− gn,ρ(y) ≤
ρ

1− ρ
.

The bounds (53) suggest that we should take limits, and from the geometric con-
vergence in (51), we can define a continuous anti-symmetric function B : [0, 1]2 → R
by setting

(54)
∞∑
i=1

ai(y
i − xi) = lim

n→∞
{gn,ρ(x)− gn,ρ(y)}

def
= B(x, y).

A useful feature of this function is that it leads to an alternative characterization
of µρ(U), and it gives second proof of the series representation (6).

To derive the characterization, we subtract gn,ρ(x) from both sides of the basic
recursion (44), and we simplify to get the identity

gn+1,ρ(x)− gn,ρ(x) = (1− ρx) +

∫ 1

ρx

{gn,ρ(y)− gn,ρ(x)} dy.

Now, if we set x = 0 in the defining relation (54) and apply antisymmetry of B(·, ·),
then we see that as n → ∞ one has

gn+1,ρ(0)− gn,ρ(0) = 1 +

∫ 1

0

Bρ(y, 0) dy + o(1) = 1−
∫ 1

0

Bρ(0, y) dy + o(1).

We now sum over n ∈ [0 : N ]. By telescoping, division by N + 1, and taking limits
we get a new formula for the mean µρ(U) given by Theorem 2:

(55) µρ(U) = 1−
∫ 1

0

Bρ(0, y) dy.

Finally, if we substitute the series expansion (54) for Bρ(0, y) into (55), we see
that term-by-term integration of (55) gives us a second derivation of the original
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formula (6) for µρ(U). In a sense, this integration also explains the presence of the
harmonic factors 1/2, 1/3, 1/4, . . . in (6).

9. More Records: Relaxed or Constrained

For any ρ ∈ (0,∞) and any F ∈ SL, we can consider the set of selected values
A(ρ) = {Xτ1 , Xτ2 , . . .}; these are formally defined by the stopping time recursion
(1). The set A(1) is exactly the set of record values, and more generally we have
the relations

ρ ∈ (0, 1) ⇒ A(1) ⊂ A(ρ) and ρ ∈ (1,∞) ⇒ A(ρ) ⊂ A(1),(56)

which give us a more explicit sense in which ρ ∈ (0, 1) relaxes the record condition
and ρ ∈ (1,∞) further constrains the record condition.

The first relation of (56) is obvious since whenever Xk is a record, then we have
Xk ≥ Xτi ≥ ρXτi for all τi < k. It is rather less obvious that for ρ > 1 one has the
complementary relation A(ρ) ⊂ A(1). To prove this by induction, we first note that
Xτ1 = X1 ∈ A(ρ), and by definition X1 is a record. Now we suppose by induction
that the first n elements {Xτ1 , Xτ2 , . . . , Xτn} of A(ρ) are also all records.

There are two cases to consider. First, if τn+1 < ∞ and Xτn = x, then we have
τn+1 = min{k : Xk ≥ ρx}. This tells us that τn+1 is the first entrance time of the
process X1, X2, . . . into the interval [ρx, L]. Since all such first entrance times are
also record times, we see thatXτn+1 is a record, and induction gives usA(ρ) ⊂ A(1).
In the second case we have τn+1 = ∞, and A(ρ) = {Xτ1 , Xτ2 , . . . , Xτn}. We already
have from our induction hypothesis that {Xτ1 , Xτ2 , . . . , Xτn} ⊂ A(1), so again we
get A(ρ) ⊂ A(1).

Despite the first relation of (56), it is generally inappropriate to think of the
values A(ρ) = {Xτj : j = 1, 2, . . .} are anything like “approximate records” when
0 < ρ < 1. To make this distinction explicit, fix 0 < ϵ < 1 and consider the events

(57) Ak =
{
Xk is selected and Xk ≤ ϵmax{Xi : i ≤ k}

}
,

where the random variables Xi, i = 1, 2 . . . are independent and uniformly dis-
tributed on [0, 1].

When Ak occurs, the selected value Xk is only a small fraction of the current
maximum, so it is not an approximate record (or a near-record) in any reasonable
sense. Nevertheless, with probability one, infinitely many of the events A1, A2, . . .
will occur, so infinitely often the selected values are quite unlike records.

To see this, we first note by Proposition 11 that for any ϵ > 0 both of the sets
[0, ϵ/2] and [1/2, 1] have positive probability under the stationary measure ν for
the associated Markov chain {Yn : n = 1, 2, . . .} of Section 2. Thus, they are also
both recurrent sets for the chain. Now, if at time k the chain enters [0, ϵ/2] after
having entered [1/2, 1] at some time previous to k, then the event Ak also occurs.
The positive recurrence of the respective sets then tells us that infinitely many of
the events {Ak : k = 1, 2, . . .} will occur with probability one.

This construction shows that there is a disconnection between the theory of
the selection process with 0 < ρ < 1 and the theory of the near records such as
studied in Balakrishnan et al. (2005), Gouet et al. (2007) or Gouet et al. (2012),
but this construction does not tell the whole story. In Section 8 we saw several
instances where the technology of selection processes could inform us about the
classical record process. Still, it is reasonable to expect that one has at least some
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analogous carry forward to the theory of near-records, but here we cannot pursue
that point except to acknowledge the possibility.

10. Connections and Directions

The theory of relative sequential selections lets one embed Rényi’s record process
into a parametric family of processes with a parameter ρ ∈ (0,∞) where the se-
quential selections are made easier when ρ ∈ (0, 1) and where they are made harder
when ρ ∈ (1,∞). If the horizon is finite, then the parametric processes have imme-
diate contiguity relations; specifically, the finite dimensional distributions depend
continuously on the parameter ρ. Still, as the table below reminds us, the processes
show singular differences when ρ is fixed and n tends to infinity.

Expectation Variance CLT

ρ < 1 ∼ nµρ(F ) ∼ nσ2
ρ(F ) Yes

ρ = 1 ∼ log n ∼ log n Yes

ρ > 1 Convergence to random variable a.s.

There are several natural directions that have not been explored here. First,
there are the issues of rates of convergence. In Rényi’s case this is relatively easy,
since one has access to the full theory of sums of independent random variables.
On the other hand, it would be quite difficult to obtain a rate result when ρ ∈ (0, 1)
since even the basic CLT depends on the theory of functions of non-homogenous
Markov chains.

Second, there is the possibility of related Poisson laws. Thus, for example, in
Rényi’s framework one can easily show that the number of records between time
n and time 2n is approximately Poisson with mean λ = ln 2. On the other hand,
when ρ ∈ (0, 1) the linear growth rate of the mean and variance tells us that as far
as this example goes there is no directly analogous Poisson law. Naturally, there
can be — and probably are — Poisson laws that are more distantly related.

Finally, one can consider the theory of selection processes where one does not
require F to have compact support. Such extensions are feasible and interesting.
Nevertheless, they are also intrinsically more complicated. For example, to guaran-
tee good asymptotic behavior of the mean and variance of the number of selections
when ρ ∈ (0, 1), one probably needs to assume that the tail map x 7→ 1−F (x) has
regular variation. Still, even with such an assumption, proper analogs of Theorems
1 and 3 are not easily formulated — or proved.
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