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Abstract. We survey the ways that martingales and the method of gambling

teams can be used to obtain otherwise hard-to-get information for the moments
and distributions of waiting times for the occurrence of simple or compound

patterns in an independent or a Markov sequence. We also survey how such

methods can be used to provide moments and distribution approximations for
a variety of scan statistics, including variable length scan statistics. Each of

the general problems considered here is accompanied by one or more concrete

examples that illustrate the computational tractability of the methods.
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1. Introduction

To illustrate the notion of a scan statistic in the simplest possible context, one
can begin with a sequence of independent identically distributed Bernoulli random
variables {Zn : 1 ≤ i ≤ T}. Now given a window size w with 1 ≤ w ≤ T and a
set {i : 1 ≤ i ≤ T − w + 1} of time indices one then considers any fixed function
of the observations within the moving windows defined by w and a time index i.
In the most classical case, one takes the function to the sum of the observations in
the window, and in this case one then has the window values

Yi,w =

i+w−1∑
j=i

Zj .

Finally, the scan statistic Sw,T is defined to be the maximum of the window values.
Thus, for the Bernoulli sequence and the sum function the scan statistic is given by

(1) Sw,T = max
1≤i≤T−w+1

Yi,w.

A key feature of the scan statistic is that the sliding windows overlap, so one must
deal with the maximum of a set of dependent random variables. As a consequence,
the distribution theory of the scan statistic can be analytically demanding even
in relatively simple contexts. Nevertheless, the scan statistic has a natural role
in many problems, and, despite its analytical challenges, it has seen a remarkably
extensive development since its introduction in Naus (1965).
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A Dual Interpretation and a Related Stopping Time

In the context of the Bernoulli sequence and the sum function, the distribution
of the scan statistic (1) has a dual interpretation that is often useful. Specifically,
if we take τk,w to be the first time that one observes at k or more occurrences of
the value 1 in a window of length w, then one has the identity

(2) P(Sw,T ≥ k) = P(τk,w ≤ T ).

The distribution theory of this scan statistic is therefore equivalent to the distri-
bution theory of the waiting time τA until the first occurrence of a pattern from
a certain special set A of patterns. For example, if k = 3 and w = 5, then the
associated set of patterns is given by A = {111, 1101, 1011, 11001, 10101, 10011}.
Such sets are also called compound patterns.

Analogous duality arguments apply much more broadly than this simple example
might suggest. In particular, duality can be used to analyze variable length window
scans (see e.g. Glaz and Zhang (2006) or Glaz et al. (2001)) or “double scans” (see
e.g. Naus and Wartenberg (1997), Naus and Stefanov (2002), or Glaz et al. (2001)).

Finally, one should note that the validity of the duality relation (2) does not
depend on the dependence structure of the underlying stochastic sequence. Still, in
practice, one almost always assumes that the generating process {Zn : n = 1, 2, . . .}
is independent, or at least Markovian.

Organization of the Survey

The main goal here is to give a unified review of the martingale techniques that
have been developed for the analysis of the first occurrence time of simple and
compound patterns. Li (1980) pioneered this development, and our first aim is to
use the language and logic of gambling teams to give a treatment of the theory
developed by Li (1980) and Gerber and Li (1981). We then focus on the devices
that can be used extend these martingale techniques so that they might deal with
the occurrence times of patterns in Markov sequences. Finally, we consider how
these moment calculations can be used to obtain effective approximations to the
distributions of a wide range of scan statistics.

2. Occurrence of a Pattern in an Independent Sequence

To begin we let {Zn : n = 1, 2, . . .} denote a sequence of i.i.d. random variables
with values in the finite set Ω = {1, 2, . . . ,M}, which we conventionally call the
alphabet. Without loss of generality, we assume that each letter in this alphabet
has non-zero probability of occurrence; moreover, we denote these probabilities by

p1 = P(Zn = 1) > 0, p2 = P(Zn = 2) > 0, . . . , pM = P(Zn = M) > 0.

By a pattern (or more explicitly, a simple pattern) we mean a finite ordered sequence
A = a1a2 · · · am of letters from the alphabet Ω.

The random variable of central interest here is the waiting time until one observes
the pattern A as a continuous run in the sequence {Zn : n = 1, 2, . . .}. This
waiting time τA is clearly a stopping time, and, with help of martingale theory,
one can derive explicit formulas for its expected value, its higher moments, and its
probability generating function.
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2.1. A gambling approach to the expected value. To put the construction
of Li (1980) and Gerber and Li (1981) in the language of gambling teams, we first
consider a casino game that generates the sequence {Zn : n ≥ 1}. Next, we consider
a team of gamblers that arrive one after another; in particular, the n’th gambler
on the team arrives just before n’th round of play when the random letter Zn is
generated.

More remarkably, we assume that this unusual casino plays fairly. Thus, a dollar
that is bet on an event that has probability p would pay 1/p dollars to a winner
(and zero dollars to a loser). In other words, on each round of play the net expected
return is zero for both the players and the casino.

We assume that each gambler on the team has an initial stake of one dollar.
Moreover, each gambler follows a fixed strategy that is determined by the pattern
A = a1a2 · · · am. The n’th gambler on the team arrives just before the n’th round
of play. At time n, when this gambler has his first opportunity to play, he bets his
stake of one dollar on the event that Zn = a1. If Zn is not a1 this gambler loses
his stake, and he stops playing. On the other hand, if Zn = a1, this gambler wins
1/P(Zn = a1) dollars, and this pleasingly enlarged amount becomes the gamblers
current stake. Having won, gambler number n continues to play in round n + 1,
and he bets his entire stake on the event Zn+1 = a2. This gambler continues in
this partially mad way until either he wins on all m bets in the pattern, or until he
loses one of his bets — and goes broke.

At the time τA when the pattern A = a1a2 · · · am is first observed, the team
decides to do a little bookkeeping. First, one should note that at time τA one has
seen exactly τA gamblers have come into the casino. Moreover, each gambler has
placed one or more bets.

At time τA he lucky gambler who came in at time τA − m + 1 has won all of
his bet, and he has substantial winnings. On the other hand, many of the other
gamblers are likely to have lost their stake, although a few modestly lucky gamblers
may still be winners at time τA.

For example, suppose that one has Ω = {1, 2, . . . , 10} and P (Zn = i) = 1/10 for
i = 1, 2, . . . , 10. Further suppose that A = 101 and τA = 20. The lucky gambler
who began to play time 18 will have won $1000 while the gambler who began at
time 20 will have won $10. All of the other gamblers will have lost their stake.

If we now let Xn denote the total net gain of the casino at the end of the n’th
round of play, then, since the game was fair at each round of play, the stochastic
process {Xn : n = 1, 2, . . . } is a martingale with respect to the sequence of σ-fields
Fn = σ{Z1, . . . , Zn} that are determined by sequence of observed letters. The
casino’s net gain at the time when the pattern A is first observed is XτA . Since the
stopping time τA is bounded by a geometrically distributed random variable and
since the martingale {Xn : n = 1, 2, . . . } has bounded increments, Doob’s stopping
theorem (e.g. Williams (1991, p. 100)), then tells us that

E(XτA) = 0.

Moreover, since each gambler enters with a stake of one dollar, we have

XτA = τA −W,

where W is the amount of money in the pocket of the gambling team at time τA.
The key observation here is that W is not random; its value is fully determined by
the structure of pattern A. Moreover, it is easy to calculate W .
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For a gambler to have any capital left time τA when the pattern A is first ob-
served, the gambler had to be gambling at time τA and he had to win at time τA.
In particular the gamblers who entered the game before τA −m+ 1 must have all
lost their stake. At time τA the lucky gambler who entered at time τA−m+ 1 will
have won all of his m bets. Among the gamblers who arrived after time τA−m+ 1
some may have lost everything and some may still have money in their pocket.

To describe more precisely the money W in the team’s hands, we need some
notation; specifically, for 0 ≤ i, j ≤ m we set

(3) δij =

{
1/P(Z1 = ai), if ai = aj ,
0, otherwise.

With this shorthand, one can check just by parsing the notation that we have the
explicit representation

(4) W = δ11δ22 · · · δmm + δ21δ32 · · · δm,m−1 + · · ·+ δm1.

From the earlier observation that E(XτA) = 0, we therefore find

(5) E(τA) = δ11δ22 · · · δmm + δ21δ32 · · · δm,m−1 + · · ·+ δm1.

The general formula (5) may not look so attractive at first, but it comes to life in
the context of concrete examples.

Example 1. Let Ω = {1, 2} and consider the two patterns A = 1121 and B = 1112
of length four. Formula (5) then gives us

E(τA) = (p1 × p1 × p2 × p1)−1 + (p1)−1,

and, somewhat paradoxically, it also gives us

E(τB) = (p1 × p1 × p1 × p2)−1.

Thus, for all choices of 0 < p1 < 1, the expected waiting time to see A is strictly
greater than the expected waiting time to see B, despite the fact that the probability
of observing A in any given 4-block is the exactly the same as observing B in that
4-block. Phenomena of this kind seem to have been first observed by Solov’ev
(1966).

In fact, there are many non-intuitive phenomena in the occurrence times of
patterns. One of the most curious of these arises in Penney’s Game, cf. Guibas and
Odlyzko (1981) or Graham et. al. (1994, pp. 401–410). In this game, each of two
players, Alice and Bob, picks one of the patterns

A = HHTHH, B = HTHHT, C = THHTH,

and the player whose pattern comes up first in a sequence of fair coin tosses is the
winner of the game.

It turns out that if Alice chooses first Bob chooses second, then Bob always
has a choice that will give him a probability of winning that is strictly larger than
50%. In fact, the general formulas of Pozdnyakov and Kulldorff (2006) tell us more
precisely that

P(A occurs before B) = 0.58 · · · > 0.50

and
P(B occurs before C) = 0.59 · · · > 0.50

but also
P(C occurs before A) = 0.62 · · · > 0.50.
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On might have expected such “non-transitive” triples to be hard to find, but in-
stances of this phenomenon are rather common.

2.2. Gambling on a generating function. A simple modification of the gam-
bling team method also leads to a useful formula for the probability generating
function of τA. The trick is to change the initial bet for each gambler. Specifically,
we fix an α ∈ (0, 1) and we instruct the n’th gambler to start his betting by plac-
ing a bet of size αn on the first letter of the pattern A. He would then continue
gambling as before — betting his entire stake on the successive letters of A until
he either has seen A or has lost one of his bets.

If we let Xn denote the casino’s net gain at the end of the n’th round, then as
before, the process {Xn : n = 1, 2, . . . } is a martingale with bounded increments.
Now, if we let ατAW (α) denote the money in the hands of the team when the
pattern A is first observed, then the casino’s net gain XτA can be written as the
paid in amount minus the team’s current cash holdings,

XτA = α1 + α2 + · · ·+ ατA − ατAW (α)

= α
ατA − 1

α− 1
− ατAW (α)

= ατA
(

α

α− 1
−W (α)

)
− α

α− 1
.

The key here is that W (α) is again deterministic, even though ατAW (α) does de-
pend on chance. Fortunately, ατAW (α) depends on chance in a controlled way that
leads to pleasant cancelations.

Bookkeeping like that used before gives a formula for ατAW (α), and, after can-
celation of ατA from each side of that formula, one finds

(6) W (α) = δ11δ22 · · · δm,m−1/α
m−1 + δ21δ32 · · · δm,m−1/α

m−2 + · · ·+ δm1/1.

Here the factors δij , 1 ≤ i, j ≤ m, are given by the deterministic combinatorial
formula (3), so (6) confirms that W (α) does not depend on chance.

Finally, by Doob’s stopping time theorem, we then find

0 = E(XτA) = E(ατA)

(
α

α− 1
−W (α)

)
− α

α− 1
,

from which we get the probability generating function,

(7) E(ατA) =

(
1 +

1− α
α

W (α)

)−1

.

As before, the usefulness of this formula depends on our ability to evaluate the
formula (6) for W (α). This is often an easy calculation.

Example 2. If we again take Ω = {1, 2} and consider the pattern 1121, then we
have

W (α) =
α−3

p3
1p2

+
1

p1
so we have E(ατA) =

p3
1p2α

4

1− α+ α3(1− p2α)p2
1p2

.

By expansion one finds

E(ατA) = p3
1p2α

4 + p3
1p2α

5 + p3
1p1α

6 + p3
1p2(1− p2

1p2)α7 + · · · .
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The first term of this expansion is obviously correct, but, for a more serious check
of our formula for E(ατA), one can use it to compute the first moment

∂E(ατA)

∂α

∣∣∣
α=1

=
1

p3
1p2

+
1

p1
,

and this does recover what we found earlier for E(τA).

2.3. Second and higher moments. In theory, the probability generating func-
tion E(ατA) can always be used to calculate the second and higher moments of τA.
Still, such calculations can be awkward, and it is useful to know that the higher
moments of τA can also be found by a direct modification of the method of gambling
teams. This is most nicely illustrated by the calculation of E(τ2

A).
This time the gambler who joins the game just before the n’th round will bet n

dollars on the first letter of the pattern A. If Xn denotes the casino’s net gain after
n rounds of play, then {Xn : n = 1, 2, . . . } is again a martingale. Moreover, at the
stopping time τA we have

XτA = 1 + 2 + · · ·+ τA

−(τA −m+ 1)δ11δ22 · · · δmm
−(τA −m+ 2)δ21δ32 · · · δm,m−1

· · · − (τA −m+m)δm1

= 1 + 2 + · · ·+ τA − τAW −N

where, as in (4), we have the deterministic sum

W = δ11δ22 · · · δmm + δ21δ32 · · · δm,m−1 + · · ·+ δm1,

and now we also have a second deterministic term

N = −δ11δ22 · · · δmm × (m− 1)− δ21δ32 · · · δm,m−1 × (m− 2)− · · · − δm1 × (0).

One wants to apply an optional stopping theorem here, but in this case the
increments of {Xn : n = 1, 2, . . . } are no longer uniformly bounded, so one needs a
more refined version of Doob’s stopping time theorem. Nevertheless, the martingale
differences satisfy Xn+1 −Xn = O(n) and the probabilities P(τA > n) decay at an
exponential rate, so the stopping time theorem of Shiryaev (1995, p. 485) gives us

0 = E(XτA) = E

(
1

2
τA(τA − 1)

)
−WE(τA)−N.

Now, when we solve for E(τ2
A) and use our earlier formula E(τA) = W , we get

E(τ2
A) = (2W − 1)E(τA) + 2N = 2W 2 −W + 2N,

and, as an immediate corollary, we also have

Var(τA) = W 2 −W + 2N.

At this point the formula for Var(τA) may seem abstract, but in many cases the
deterministic terms W and N are easy to compute.

Example 3. For the traditional sample space Ω = {1, 2} and the pattern 1121, we
now find from our formula for N that

N = − 3

p1 × p1 × p2 × p1
.
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Thus, in the end, we have a reasonably simple formula for the variance.

Var(τA) =

(
1

p1
+

1

p3
1 p2

)2

− 1

p1
− 7

p3
1 p2

.

Remarks. First, one should note that when either p1 → 0 or p2 → 0 one has the
limit relation

(8)
E(τA)

Var(τA)1/2
→ 1.

In fact, this relation could have been anticipated without explicit knowledge of
the formulas for E(τA) and Var(τA). When either p1 → 0 or p2 → 0, the occur-
rence of the pattern 1121 becomes a rare event. As a consequence, the clumping
heuristic of Aldous (1989), suggests that the distribution of the random variable
τA should be approximately exponential and the ratio E(τA)/Var(τA)1/2 should be
approximately one.

Second, one should also note that method used to calculate E(τ2
A) can be modi-

fied in a natural way to calculate E(τ3
A). The obvious idea is to have n’th gambler’s

begin his bets with a bet of size n2 on the first letter of A. Everything then proceeds
just as before, although the calculations do become more demanding and one must
first calculate the values of both E(τA) and E(τ2

A).

3. Compound Patterns and Gambling Teams

By the duality relation (2), the analytical understanding the scan statistic (1)
depends in a direct way on the waiting time τA until one observes a pattern from a
specified finite set A = {A1,A2, · · · ,AK} of patterns. If we write τAi for the first
time that one observes the simple pattern Ai ∈ A, then we have

(9) τA = min{τA1
, . . . , τAK

},

and τA is called the waiting time until the occurrence of the compound pattern A.
Now, given any simple patterns A and B, we say that A = a1a2 · · · aj is a

subpattern of B if the letters a1a2 · · · aj appear consecutively in the pattern B.
What makes this notion particularly useful here is that if A is a subpattern of B
then

(10) min(τA, τB) = τA.

Thus, in the specification of the waiting time τA for the compound pattern A, one
can always assume without loss of generality that no pattern in A is a subpattern
of any other pattern in A.

Gerber and Li (1981) used Markov chain embedding in their seminal study of the
waiting time for a compound patterns, but here we will use martingale methods.
This approach has several benefits. In particular, martingale methods suggest more
clearly how one should proceed when the i.i.d. process {Zj : j = 1, 2, . . . } is replaced
by a Markov chain. Moreover, the martingale method also deals more efficiently
the waiting times for certain highly regular patterns, such as those associated with
scan statistics.
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3.1. Expected time. To calculate the expected value of the waiting time τA for
compound pattern A = {A1,A2, · · · ,AK} we use K different gambling teams, and,
for each 1 ≤ j ≤ K, the gamblers from the j’th team place their bets according
to the successive letters of the pattern Aj . For the moment, the initial bet for a
player from the j’th team will just be denoted by yj , and later we will find that a
wise choice of these bet sizes can greatly aid our calculations.

At time τA the gambling is stopped, and we calculate the casino’s net winnings
XτA . If Ai is the first pattern in A that is observed, then we have τA = τAi . In
this case, we say that the game has ended in the i’th scenario, and we denote this
event by Ei. We also let Wijyj denote the cash in hand of the j’th team when the
game ends by the i’th scenario.

As usual the casino’s net win determines a martingale {Xn : n = 1, 2, . . . } and
at the stopping time τA, the casino’s net win is XτA . Moreover, by our usual
bookkeeping of paid in capital minus cash on hand, we have

(11) XτA =

K∑
j=1

yjτA −
K∑
i=1

K∑
j=1

Wijyj1Ei
,

where 1Ei
is the indicator of the event that the game is ended by the i’th scenario.

The crucial trick here is that one can choose the initial bet sizes yj , 1 ≤ j ≤ K
in way that greatly simplifies this sum. One first needs to note that each of the
factors Wij is purely deterministic; in fact we will shortly give a simple formula for
Wij . Next, we consider bet sizes {yj : 1 ≤ j ≤ K} that solve the linear system

(12)

K∑
j=1

Wijyj = 1, 1 ≤ i ≤ K.

Here one should note that we do not insist upon a non-negative solution for (12),
and bets of negative amounts are given the natural interpretation, viz. if in a given
game the winning of a bet of one dollar would return w dollars, then for any real
value y a corresponding winning bet of y dollars would return wy dollars.

Now, since the sum of the indicators 1Ei
is equal to one, the representation (11)

reduces to the much simpler sum,

XτA =

K∑
j=1

yjτA − 1.

Doob’s stopping theorem gives us EXτA = 0, so, in the end, have a formula for
E(τA) that is simple and computationally effective.

Theorem 1. If the real values {yj : 1 ≤ j ≤ K} solve the linear system (12), then
expected value of τA is given by

(13) E(τA) =
1∑K
j=1 yj

.

Remark. The system (12) may have a solution even when the matrix {Wij} is
singular. Still, it is useful to note that Gerber and Li (1981) proved that the matrix
{Wij} is always nonsingular provided that no pattern from A is a subpattern of
another pattern in A. Moreover, as noted earlier in this section, one can always
assume that A satisfies this condition. The solvability of (12) and related systems
has also been further investigated by Zajkowski (2014).
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More Explicit Calculations

To make good use of the formula (13) one needs a tractable formula for Wij , and
such a formula is easier to give than one might guess. First, given any two patterns

A = a1a2 · · · am and B = b1b2 · · · bl,

we set

(14) δt(A,B) =


1∏t

s=1 P(Z1 = bs)
if b1 = am−t+1, b2 = am−t+2, . . . , bt = am,

0 otherwise.

In terms of this shorthand, one then finds without difficulty that

(15) Wij =

min(m,l)∑
t=1

δt(Ai, Aj).

3.2. The generating function and compound patterns. The method of gam-
bling teams can also be used to get the probability generating function E(ατA) for
compound pattern A = {A1,A2, . . . ,AK}. A small but familiar modification of the
preceding method will do the trick.

We again use K gambling teams, and the bets of the members of the j’th team
are determined by the successive letters of Aj . The only novelty is that members
of the j’th team begin their gambling with a bet of size yjα

n where 0 < α < 1 is
fixed and the real values {yj : 1 ≤ j ≤ K} will be determined later.

By analogy with our previous calculation, we let Wij(α)yjα
τA denote the cash

in hand of the j’th gambling team at time τA if the play stops in the i’th ending
scenario. If {Xn : n = 1, 2, . . . } denotes the martingale that gives us the casino’s
net gain at times n = 1, 2, . . ., then at the stopping time τA we have

(16) XτA = α
ατA − 1

α− 1

K∑
j=1

yj −
K∑
i=1

K∑
j=1

Wij(α)yjα
τA1Ei

,

where, as before, 1Ei
is the indicator of the event Ei = {ω : τA = τAi

}.
AgainWij(α) is a deterministic quantity. Moreover, if we take δt(A,B) as defined

by (14), then our now familiar calculations give us

(17) Wij(α) =

min(m,l)∑
t=1

δt(Ai, Aj)α
1−t.

Now, if we choose real weights {yj(α) : 1 ≤ j ≤ K} so that

(18)

K∑
j=1

Wij (α)yj(α) = 1, for 1 ≤ i ≤ K,

then our formula (16) for XτA simplifies to

XτA = α
ατA − 1

α− 1

K∑
j=1

yj(α)− ατA ,

and from EXτA = 0 one quickly gets the probability generating function for τA.
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Theorem 2. If the real values {yj(α) : 1 ≤ j ≤ K} solve the linear system (18),
then one has

(19) E(ατA) = 1− 1

1 +
∑K
j=1 yj(α)α/(1− α)

.

3.3. Second moments and compound patterns. One can use the probability
generating function (19) to compute the second moment of τA, but this may not
always be so pleasant. Alternatively, one can appeal more directly the method
of gambling teams. In this instance, there is even an instructive twist. If we use
affinely sized bets initial bets, then we put two weight vectors at our disposal.

More specifically, we ask the n’th gambler from the j’th team to place an initial
bet of size nyj+zj on the first letter of Aj . Team gambling now continues as before,
and we just need to understand the amount of cash held by the teams at time τA
when we first observe a pattern from A = {A1,A2, . . . ,AK}.

After some calculation Pozdnyakov et al. (2005), showed that at time τA the
cash held by the j’th team in the i’th ending scenario is given by

Wij(τAyj + zj) +Nijyj

where Wij is again defined as in (15) and where now Nij is given by

(20) Nij =

min(m,l)∑
t=1

δt(Ai, Aj)(1− t).

After another, more sustained, calculation one also finds that the casino’s net
gain XτA at time τA is given by

K∑
j=1

yj
τA(τA + 1)

2
+

K∑
j=1

zjτA −
K∑
i=1

 K∑
j=1

WijyjτA +

K∑
j=1

Nijyj +

K∑
j=1

Wijzj

 1Ei
.

Now, if we now choose real weights {yj}1≤j≤K and {zj}1≤j≤K such that

(21)

K∑
j=1

Wijyj = 1, and

K∑
j=1

(Nijyj +Wijzj) = 1,

for all 1 ≤ i ≤ K, then we get a much tidier formula for XτA . Specifically we have

XτA =

K∑
j=1

yj
τA(τA + 1)

2
+

K∑
j=1

zjτA − τA − 1,

so the usual invocation of Doob’s stopping theorem gives us a formula for the second
moment in terms of the first.

Theorem 3. If {yj}1≤j≤K and {zj}1≤j≤K solve the linear system (21), then

E(τ2
A) =

1 + (1−
∑K
j=1 zj −

∑K
j=1 yj/2)E(τA)∑K

j=1 yj/2
.

Example 4. As usual we take Ω = {1, 2}, but this time we consider the compound
pattern A = {11, 121}. If we further assume that

P(Z1 = 1) = P(Z1 = 2) = 1/2,

then we find
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Wij =

(
6 2
2 10

)
and Nij =

(
−4 0
0 −16

)
.

Theorems 2 and 3 then give us

E(τA) =
8

3
, and Var(τA) = 10,

together with an explicit formula for formula for the probability generating function,

E(ατA) =
α2(α+ 2)

8− 4α− α3
=
α2

4
+
α3

4
+
α4

8
+

3α5

32
+

5α6

64
+

7α7

128
+ · · · .

4. Occurrence of Patterns in Markov Dependent Trials

The method of gambling teams extends in a natural way to problems where the
driving sequence {Zn : n = 1, 2, . . .} is a Markov chain. In fact teams are even more
critical in the theory of waiting times for patterns in a Markov chain. In particular,
one needs teams even for the analysis of the waiting time until a simple pattern.

4.1. Two-state Markov chains and a single pattern. Before we deal with
more general Markov chains, but it is useful to first consider the special case of two
state chains. For specificity, we take the state space Ω = {1, 2}, initial distribution
P(Z1 = 1) = p1, P(Z1 = 2) = p2, and transition matrix {pij}Ω×Ω where, as usual,
pij = P(Zn+1 = j |Zn = i).

Naturally we want our gambles on the Markov chain to be fair. Thus, a dollar
bet on j ∈ Ω in the first round must pay 1/pj to a winning gambler, and a dollar
bet on j ∈ Ω on the n+ 1’st round must pay a winner 1/pij if Zn = i.

A pattern A is just a sequence a1a2 · · · am with ai ∈ Ω for each 1 ≤ i ≤ m,
and there are three scenarios under which the pattern A can be observed. In
the first scenario the pattern A is observed at the very beginning of the process
{Zn : n = 1, 2, . . .}. In the second scenario the pattern 1A first occurs at time τA,
and in the third scenario the pattern 2A first occurs at time τA.

We now consider two gambling teams, one team of straightforward gamblers and
one team of smart gamblers. Just before the n’th round a new gambler from each
team enters the game. Both gamblers observe the n’th round but they only start
betting on the n+1’th round. The straightforward gamblers and the smart gamblers
use different strategies, though it turns out that neither team bets any money on
the first round. For n = 1, 2, . . . we have the following situation for the newly
arriving gamblers:

• The straightforward gambler observes the n’th round, but he does not use
this information. On the n+1’th round he bets y1 dollars on the first letter
of the sequence A, and he continues to bet his accumulated winnings on
the successive letters of A until he either loses or until he observes the full
pattern.

• The smart gambler observes the n’th round, and he uses this information.
If Zn 6= a1 he bets y2 dollars on the round n + 1 on the first letter of the
pattern A, and he then continues to “let his fortune roll” until he either
loses or until he observes A. On the other hand, if Zn = a1, then on round
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n + 1 the smart gambler bets y2 dollars on a2. He then continues to bet
on the successive letters of the pattern a3 · · · am until he loses or until the
pattern A is observed.

Now, we let Wijyj , i = 1, 2, 3, j = 1, 2 be cash on hand of the j’th team wins
when the game ends in the i’th scenario. Just as before, the quantities Wij are
deterministic, and they are easy to compute. For the casino’s net gain XτA at time
τA is given by

(22) XτA = (y1 + y2)(τA − 1)−
3∑
i=1

2∑
j=1

Wijyj1Ei
,

where 1Ei
is the indicator of i’th ending scenario. To see why we have the factor

(τA − 1) in (22) one should note that no money was bet on the first round and
exactly y1 + y2 was bet by each of the first time bettors at each of the subsequent
rounds.

If we now assume that we can choose (y1, y2) such that

(23)

2∑
j=1

Wijyj = 1, for i = 2 and 3,

then (22) reduces to the much simpler formula,

XτA = (y1 + y2)(τA − 1)− (W11y1 +W12y2)1E1 − 1Ec
1
,

where 1Ec
1

is the indicator of the complement of the 1st ending scenario. If π1

denotes the probability of the first scenario, Doob’s stopping theorem gives us

0 = (y1 + y2)(E(τA)− 1)− π1(W11y1 +W12y2)− (1− π1),

so solving for the expected value we find

(24) E(τA) = 1 +
π1(W11y1 +W12y2) + (1− π1)

y1 + y2
.

Here one should further note that the computation of π1 is always trivial.

Example 5. Consider the pattern A = 121. In this case, we have the three possible
scenarios to consider: (1) we observe 121 right at the beginning, i.e. we have τA = 3
or (2) the game stops with 2121 at the end of some random number of rounds, or
(3) the game stops with 1121 at the end of some random number of rounds.

A straightforward calculation then gives us our 3× 2 (scenario by team) matrix
{Wij}, 

1
p21

1
p12p21

+ 1
p21

1
p21p12p21

+ 1
p21

1
p21p12p21

+ 1
p12p21

+ 1
p21

1
p11p12p21

+ 1
p21

1
p12p21

+ 1
p21

 .

The linear system (23) for initial bet sizes y1 and y2 is then given by

y1

( 1

p21p12p21
+

1

p21

)
+ y2

( 1

p21p12p21
+

1

p12p21
+

1

p21

)
= 1,

y1

( 1

p11p12p21
+

1

p21

)
+ y2

( 1

p12p21
+

1

p21

)
= 1,
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from which we find

y1 =
p11p12p21

p12 + p21 + p12p21
and y2 =

p12p21(p21 − p11)

p12 + p21 + p12p21
.

The probability π1 of the first scenario is obviously p1p12p21, so, after substitutions
are made into (24), simplification gives us

E(τA) = 1 +
p2

p21
+

1

p2
21

+
1

p12p21
.

4.2. Two-state chains and compound patterns. If A is a compound pattern
with the alphabet {1, 2}, then one can compute the expected value of τA with the
method of gambling teams, but some substantial modifications are required. In
particular, one needs to split the ending scenarios into two classes that we call
initial-ending scenarios and later-ending scenarios.

More precisely, if A = {A1,A2, . . . ,AK} we need to consider a set of K different
initial-ending scenarios where in the i’th initial-ending scenario the pattern Ai

occurs at the beginning of the sequence {Zn : n ≥ 1}. We also need to consider a
candidate set of 2K later-ending scenarios; in K of these there is an 1 ≤ i ≤ K such
that pattern 1Ai occurs at time τA and in K more of these there is an 1 ≤ i ≤ K
such that the pattern 2Ai occurs at time τA.

The process that passes from A to the set of 2K later-ending scenarios is called
the doubling step, and it is important to note that some of these potential ending
scenarios may not really be possible. For example, if A = {212, 22}, then the
doubling step suggest the possibility of four later-ending scenarios which we can
write as ∗1212, ∗2212, ∗122 and ∗222 where the wild-card symbol ∗ stands for an
arbitrary (possibly empty) string of 1’s and 2’s. By the definition of τA as the first
occurrence time of a pattern from A = {212, 22}, we see that neither of the strings
221 and 222 can occur as a substring of the string Z1, Z2, . . . , ZτA ; thus, the only
later-ending scenarios for A = {212, 22} that are actually observable are ∗1212 and
∗122. Similarly, one can check that if A = {21, 111}, then the only observable
later-ending scenarios are ∗121 and ∗221.

These observations permit us to do some useful cleaning of our initial list of
2K candidates for later-ending scenarios. If some candidate scenario cannot be
observed in a sequence that ends at time τA, then we simply delete that scenario
from the candidate list. The remaining list of later-ending scenarios is called the
final list, and we denote its cardinality by of N . If Ai ∈ A then the final list could
contain just one of the candidates ∗1Ai and ∗2Ai or it could contain both of these
candidates. In the first case we say Ai has type one and in the second case we say
Ai has type two. It is even possible that Ai is neither of type one nor type two, but
this case will not figure into our calculations.

We now consider the instructions for a set of N gambling teams, one for each of
the later-ending scenarios on the final list. If Ai is of type two, then we associate
two gambling teams with Ai. One team bets on Ai in the straightforward way
of subsection 4.1, and one team bets on Ai in the smart way of that subsection.
Finally, if Ai is of type one, then we just associate a single gambling team with Ai.
This team places then places its bets on Ai in the straightforward way.

We now order union of the set of K initial-ending scenarios and the final set
of N later-ending scenarios. We also let the initial-ending scenarios lead this list,
and for i ∈ {1, 2, . . . ,K +N} we let Ei denote the event that at time τA we are in
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the i’th ending scenario of this ordered list. Finally, for j ∈ {1, 2, . . . , N} we let yj
denote the initial bet size of the j’the team. These real values will be determined
by the solution of a linear system.

For i ∈ {1, 2, . . . ,K +N} we let Wijyj be the cash in hand of the j’th gambling
team at time τA in the case of the i’th ending scenario. For i ∈ {1, 2, . . . ,K} this
is an initial-ending scenario, and for i ∈ {K + 1,K + 2, . . . ,K + N} this is one of
the later-ending scenarios on the final list.

If Xn denotes the casino’s net gain at time n, then at time τA the usual cash
flow calculation tells us

XτA =

N∑
j=1

yj(τA − 1)−
K∑
i=1

N∑
j=1

Wijyj1Ei
−

K+N∑
i=K+1

N∑
j=1

Wijyj1Ei
,

where Ei is the event that the i’th scenario occurs. Again, the Wij terms are not
random, and we assume that there are real values {yj}1≤j≤N that solve the N ×N
system

(25)

N∑
j=1

Wijyj = 1, for all i ∈ {K + 1,K + 2, . . . ,K +N}.

For such initial bet sizes, we then have the representation

XτA =

N∑
j=1

yj(τA − 1)−
K∑
i=1

N∑
j=1

Wijyj1Ei
−

K+N∑
i=K+1

1Ei
.

Next, for 1 ≤ i ≤ K we let πi = P(Ei) denote the probability that the i’th initial-
ending scenario occurs, so by Doob’s stopping theorem we have

0 = E(XτA) =

N∑
j=1

yj(E(τA)− 1)−
K∑
i=1

N∑
j=1

Wijyjπi − (1−
K∑
i=1

πi),

which one again solves for E(τA).

Theorem 4. If the real values {yj}1≤j≤N solve the linear system (25), then

(26) E(τA) = 1 +
(1−

∑K
i=1 πi) +

∑K
i=1 πi

∑N
j=1 yjWij∑N

j=1 yj
.

Example 6. For the compound pattern A = {11, 212} we find after the doubling
and cleaning steps that the final list of later-ending scenarios is {∗211, ∗1212, ∗2212}.
Together with our initial-ending scenarios 11 and 212, we then have a total of five
ending scenarios that order and write simply as

{11, 212, 211, 1212, 2212}.

The 5× 3 scenario-by-team matrix {Wij} is then given by
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

1
p11

0 0

0 1
p12

1
p21p12

+ 1
p12

1
p21p11

+ 1
p11

0 0

0 1
p12p21p12

+ 1
p12

1
p12p21p12

+ 1
p21p12

+ 1
p12

0 1
p22p21p12

+ 1
p12

1
p21p12

+ 1
p12


.

When we solve the corresponding linear system (25), we find that the initial team
bets are given by

y1 =
p21p11

1 + p21
, y2 =

p22p21p12

p21 + p12 + p21p12
, y3 =

p21p12(p12 − p22)

p21 + p12 + p21p12
.

Here π1 = p1p11 and π2 = p2p21p12 are the respective probabilities that 11 and 212
are the initial segments of the process {Zn : n ≥ 1}, so the general formula (26)
simply gives one

E(τA) = 2 + p1p12 +
1− p1p11

p21
.

Remark. We should note here that whenever one finds a martingale method that
gives the expected value of a waiting time, it is reasonable to expect that the method
can be extended to obtain formulas for higher moments or the generating function.
We have already reviewed how such extensions can be done for the independent
model, and Glaz et al. (2006) give a more detailed explanation of how for the
two-state Markov chains one can also obtain the higher moments and generating
function for the waiting time until one observes a compound pattern A. In a similar
vein, Gava and Salotti (2014) also show how one can use the method of gambling
teams to calculate the scenario probabilities P(τA = τAi

).

4.3. General finite state Markov chains. Now we consider a homogeneous
Markov chain {Zn : n ≥ 1} with a finite state space S = {1, 2, . . . ,M}. We take the
initial distribution to be P(Z1 = m) = pm, 1 ≤ m ≤M , and we take the transition
matrix to be P = {pij}1≤i,j≤M , where, as always, pij = P(Zn+1 = j|Zn = i).

In this situation, the analysis of the waiting time τA until the occurrence of
compound pattern A = {A1,A2, . . . ,AK} requires us to places some restrictions on
A that were not needed either for independent sequences or for two-state chains.
Specifically, we confine our attention to compound patterns that satisfy three as-
sumptions:

• We assume that no pattern B ∈ A contains any A ∈ A as a subpattern. As
we noted before, we can make this assumption without any loss of generality
since by the reasoning of (10) one can drop B from the compound pattern
A and not change the distribution of τA.

• We assume that P(τA = τAi
) > 0 for all 1 ≤ i ≤ K. If to the contrary we

were to have P(τ = τAi) = 0 for some i, then we could just drop Ai from
A without changing the distribution of τA. Here we should note that for
independent sequences one can never have P(τ = τAi

) = 0, but for Markov
sequences one must explicitly exclude this possibility. For example, if Ai
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contains the subpattern km and one has pkm = 0, then Ai can not occur
in {Zn : n ≥ 1}.
• We assume that P(τA < ∞) = 1. For example, if each simple patterns of
A contains a transient state one can have P(τA =∞) > 0 even for a finite
Markov chain, and we must exclude this possibility. Here one should also
recall that for a finite Markov chain the condition of pointwise finiteness
P(τA <∞) = 1 already implies the formally stronger condition E[τA] <∞.

The Multi-state Chain Martingale Construction

For chains with more than two states, one also needs to take a more refined view
of the ending scenarios for the occurrence of a simple pattern. Specifically, one
decomposes the occurrence of the simple pattern Ai into an initial list of 1+M+M2

feasible ending scenarios:

• either the sequence Ai occurs as an initial segment of {Zn : n ≥ 1}, or
• for some state k ∈ S, the pattern kAi occurs as an initial segment of the

sequence {Zn : n ≥ 1}, or
• for some ordered pair of states (k,m), k ∈ S,m ∈ S, the pattern kmAi

occurs after some indeterminant number of rounds.

The first 1 + M ending scenarios are called initial-ending scenarios. The last M2

scenarios are called later-ending scenarios. Since A = {A1,A2, . . . ,AK} contains K
simple patterns, we have an a priori candidate list of (1+M+M2)K feasible ending
scenarios — (1+M)K of the initial-ending kind and M2K of the later-ending kind.

As before, some of these ending scenarios simply cannot occur in the sequence
Z1, Z2, . . . , ZτA . Some are impossible because of the definition of τA and some are
impossible because of the structure of the transition matrix {pij}. We need to clean
up this candidate list.

We let I be the set of feasible initial-ending scenarios that can actually occur,
and we let N be the set of feasible later-ending scenarios that can actually occur.
We then take I and N to be the respective cardinalities. Next, we form an ordered
list of the I +N elements of I ∪N . For specificity, we assume that the elements of
I lead this list of observable ending scenarios.

Now, for each of the N elements in the sublist N we now introduce a gambling
team with team members who gamble in a way that is reminiscent of the smart
gamblers of subsection 4.1. More specifically, for each simple pattern kmAi ∈ N
we introduce a team of gamblers that we call the kmAi-gambling team. For each
such team we also introduce an initial stake which we call the team stake.

The n+ 1’st gamble from the kmAi-gambling team arrives before round n+ 1,
and he observes the value Zn of the n’th round. If Zn = k he bets an amount equal
to the team stake on the pattern mAi. On the other hand, if Zn 6= k he bets the
team stake on Ai. Here by “betting the team stake on the pattern A = a1a2 · · · am,
when Zn = a0” we mean that one follows two rules:

• After observing Zn the gambler bets the team stake that the next trial yields
a1. If Zn+1 6= a1 he loses his money and leaves the game. If Zn+1 = a1, he
wins 1/pa0a1 times his bet since the odds are fair. If he wins he continues
his betting.

• He now bets his entire capital that the n+ 2 round yields a2. If it is a2 he
increases his capital by factor 1/pa1a2 , otherwise he leaves the game with
nothing. He continues to bet his total capital on the successive letters of
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the pattern A until either the pattern A is observed, or until he loses an
amount equal to his team stake.

Having fixed the ordering of the set N of later-ending scenarios that can occur,
we let yj denote the team stake size. Here again yj is a real number and if yj is
negative then ones winnings are given the natural interpretation. The values {yj}
will be determined later by the solution of a linear system. Now for 1 ≤ i ≤ I +N
and 1 ≤ j ≤ N we let yjWij be the amount of money that the j’th team wins in
the i’th ending scenario. As before, the values Wij are non-random. We also take
Xn to be the casino’s net gain at time n, By the usual bookkeeping, one finds that
at time τA we have

XτA =

N∑
j=1

yj(τA − 1)−
I∑
i=1

N∑
j=1

Wijyj1Ei
−

I+N∑
i=I+1

N∑
j=1

Wijyj1Ei
,

where Ei is the event that the i’th scenario occurs.
If the real values {yj}1≤j≤N satisfy the system

(27)

N∑
j=1

Wijyj = 1, for all I + 1 ≤ i ≤ I +N,

then XτA has the more tractable representation

XτA =

N∑
j=1

yj(τA − 1)−
I∑
i=1

N∑
j=1

Wijyj1Ei −
I+N∑
i=I+1

1Ei .

Again, {Xn}n≥1 has bounded increments and E[τA] <∞, so if we write πi for the
probability P(Ei) that the i’th initial-ending scenario occurs, then Doob’s stopping
theorem gives us

0 = E(XτA) =

N∑
j=1

yj(E(τA)− 1)−
I∑
i=1

N∑
j=1

Wijyjπi − (1−
I∑
i=1

πi).

One then solves for E(τA) to obtain the main result of this section.

Theorem 5. If the real values {yj}1≤j≤N solve the linear system (27), then

(28) E(τA) = 1 +
(1−

∑I
i=1 πi) +

∑I
i=1 πi

∑N
j=1 yjWij∑N

j=1 yj
.

Example 7. Take S = {1, 2, 3} and A = {323, 313, 33}. Let the initial distribution
be given by

p1 = 1/3, p2 = 1/3, p3 = 1/3,

and let the transition matrix P be given by

P =

 3/4 0 1/4
0 3/4 1/4

1/4 1/4 1/2

 .
After the eliminating the scenarios that cannot occur, our set I observable initial-
ending scenarios is given by

I = {323, 313, 33, 1323, 2323, 1313, 2313, 133, 233}.
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Also, because the transitions 1→ 2 and 2→ 1 are impossible, only six of the later-
ending scenarios are observable. Again using the symbol ∗ for a wild-card string
(which may be the empty string) we order the observable later-ending scenarios as

N = {∗11323, ∗22323, ∗11313, ∗22313, ∗1133, ∗2233}.
We now need the entries of the matrix {Wij}, and for this example it is easy to

compute these directly. For instance, the 11323-gambling team in the initial-ending
scenario 323 would win 1/p23 = 4. On the other hand, in the later-ending scenario
∗11323 this team would win

1/(p11p13p32p23) + 1/p23 = 268/3,

and in the later-ending scenario ∗22323 it would win 1/(p23p32p23) + 1/p23 = 68.
One can continue with such direct computations, or one can appeal to the general
formula for Wij given by Pozdnyakov (2008). In either case, one finds that the
payoffs for all the later-ending scenarios — the ones that are needed for linear
system (27) — are given by the matrix

268/3 64 4 0 4 0

68 256/3 4 0 4 0

0 4 256/3 68 0 4

0 4 64 268/3 0 4

2 2 2 2 38/3 10

2 2 2 2 10 38/3


.

When we use these values in the general formula (28) we find at last that

E(τA) = 8 +
7

15
.

Remarks. In parallel with our earlier examples, one can use the initial bets sizes
nyj+zj to get the second moment of τA, or one can use the initial bets sizes yjα

n to
get the corresponding generating function of τA, cf. Pozdnyakov (2008). Moreover,
Fisher and Cui (2010) combined the martingale method with the occupation mea-
sure method of Benevento (1984) to get corresponding formulas for higher-order
Markov chains.

One should note that the method of this subsection is also applicable to two-state
Markov chains, but it would inefficient compared to the method of subsection 4.2.
If one applies the method of this subsection to a two-state Markov chains, then one
needs 4K ending scenarios but the method of subsection 4.2 only needs 2K ending
scenarios.

There are also computational differences between the martingale method and
the Markov chain embedding method. To compute E(τA) by the Markov chain
embedding of Fu and Chang (2002, p. 73) one needs to solve a linear system that
depends on the cardinality K of the compound pattern A and lengths of the single
patterns in A. Here one solves a system that just depends on K and cardinality M
of the alphabet, and in some situations this is a much smaller system. For a simple
but important example, one can take A = {A1} where the pattern A1 is very long.
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5. Applications to Scans

5.1. Second moments and distribution approximations. Martingales give us
highly effective methods for the computation of the moments of the waiting time τA,
and it is natural to ask if these computations might also lead to effective approxima-
tions of the distribution of τA. This is true, but the path to good approximations
is not as direct as one might expect.

Since the clumping heuristic typically applies to the stopping time τA associated
with a scan statistic, one certainly expects the tail probabilities P(τA > n) to be
close to those of the exponential distribution. Still, the exponential approximation
faces natural competition from several other families of distributions, including
the gamma, the Weibull, and even the shifted exponentials. The main finding of
Pozdnyakov et al. (2005) is that in a wide range of situations the shifted exponential
family provides the most appropriate approximation to the distribution of τA.

To make this assertion explicit, we first recall that X ′ has the shifted exponential
distribution if one can write X ′ = X + c where X has an exponential distribution
and c is a constant. To approximate τA we then choose c and X so that two
moments match:

E(X + c) = E(τA), Var(X + c) = Var(X) = Var(τA).

If we set µ = E(τA) and σ2 = Var(τA), we then the shifted exponential approxi-
mation for the tail probabilities of τA is given by

(29) P(τA > n) ≈ exp(−(n+ 1/2 + σ − µ))/σ),

where the 1/2 term may be viewed as a kind of “continuity correction.”
This approximation seems to work remarkably well, and Fu and Lou (2006,

p. 307) suggest one explanation for its efficacy. There is also further discussion
Pozdnyakov and Steele (2009, p. 311), but neither of these explanations captures
the full force of the numerical examples.

Example 8. (Fixed Window Scans). Here we take {Zn : n ≥ 1} to be a sequence
of Bernoulli trials, and we consider two kinds of scans: Table 1 reports on the
at-least-3-out-of-10 scan and Table 2 reports on the at-least-4-out-of-20 scan.

For the fixed window scan statistics, Glaz and Naus (1991) developed tight lower
and upper bounds which are provided in Tables 1 and 2 along with the approxima-
tions based on the exponential, shifted exponential, and gamma distributions. From
these tables one sees that the shifted exponential approximation does consistently
well.

In the easy case when µ is large and σ is close to µ, the differences between
the various approximations are marginal, and all of the estimates are close to the
true probability. On the other hand, if µ is relatively small and σ differs substan-
tially from µ, then the approximations for the distribution that are based on the
exponential and gamma distributions do not perform nearly as well as those based
on the shifted exponential approximation. In these tables (and the ones that fol-
low) we omit the approximations based on the Weibull distribution because these
approximations are so much worse than those given by the other methods.

Example 9. (Variable Window Scans). Again we let {Zn : n ≥ 1} be a sequence of
Bernoulli trials, but this time we scan for the occurrence of either of two situations:
either we observe at least 2 failures in 10 consecutive trials, or we observe at least
3 failures in 50 consecutive trials. Here are interested in the approximation for the
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Table 1. Approximate values of P(τA ≤ n) for the fixed window
scan for least 3 failures out of 10 consecutive trials. Here we have
P(Zn = Failure) = .01, µ = 30822, and σ = 30815.

shifted upper lower
n exponential exponential gamma bound bound

500 0.01600 0.01589 0.01597 0.01588 0.01589
1000 0.03183 0.03173 0.03179 0.03171 0.03174
1500 0.04741 0.04731 0.04736 0.04729 0.04733
2000 0.06274 0.06265 0.06267 0.06262 0.06267
2500 0.07782 0.07773 0.07775 0.07770 0.07776
3000 0.09266 0.09258 0.09258 0.09254 0.09261
4000 0.12162 0.12155 0.12154 0.12150 0.12169
5000 0.14966 0.14960 0.14957 0.14954 0.14965

Table 2. Approximate values of P(τA ≤ n) for the fixed window
scan for at least 4 failures out of 20 consecutive trials. Here we
have P(Zn = Failure) = .05, µ = 481.59, and σ = 469.35.

shifted upper lower
n exponential exponential gamma bound bound

50 0.09110 0.07827 0.08268 0.07713 0.07940
60 0.10977 0.09770 0.10059 0.09543 0.09989
70 0.12807 0.11672 0.11828 0.11337 0.11991
80 0.14599 0.13534 0.13573 0.13095 0.13949
90 0.16354 0.15357 0.15292 0.14819 0.15864
100 0.18073 0.17141 0.16985 0.16508 0.17736

distribution of the waiting time τ until one of these two situations occurs. Here
in order for τ and the waiting time τA to have the same distribution we need a
compound pattern A that contains 224 simple patterns.

The corresponding approximations are summarized in Table 3. Here analytical
bounds are not available, so the approximations are judged by comparison with
estimated probabilities based on 100, 000 replications. Again, we find superior
performance of the approximation that is determined by a shifted exponential and
calibration by two moments.

Example 10. (Double Scans). Here we take {Zn : n ≥ 1} to be an i.i.d. sequence
of random variables with the three-valued distribution given by

P(Zn = 1) = .04, P(Zn = 2) = .01, and P(Zn = 0) = 0.95.

We then consider two types of “failures”: a type I failure corresponds to observing
a 1 and a type II failure corresponds to observing a 2. Next, we take a scan window
with length 10. Finally, we let τ denote the first time until we either observe at least
2 failures of type II within the window, or we observe a total of least 3 failures of any
combination either of the two types of failures within the window. Table 4 shows
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Table 3. Approximate values of P(τA ≤ n) for the variable win-
dow scan for at least 2 failures out of 10 trials or at least 3 failures
out of 50 trials. Here P(Zn = Failure) = .01, µ = 795.33, and
σ = 785.85.

shifted simulated
n exponential exponential gamma N=100000

50 0.05857 0.05085 0.05542 0.05029
60 0.07033 0.06285 0.06685 0.06187
70 0.08195 0.07470 0.07817 0.07404
80 0.09342 0.08640 0.08939 0.08623
90 0.10474 0.09796 0.10050 0.09718
100 0.11593 0.10936 0.11150 0.11058

that the shifted exponential approximation again works well even in the challenging
case when µ and σ are both relatively small and substantially different.

Table 4. Approximate values of P(τA ≤ n) for “double” scans
for at least 2 type II failures out of 10 trials or at least 3 failures of
any kind out of 10 trials. Here P(Zn = 1) = .04, P(Zn = 2) = .01,
µ = 324.09, and σ = 318.34.

shifted simulated
n exponential exponential gamma N=100000

10 0.02438 0.01480 0.02175 0.01401
15 0.03932 0.03015 0.03568 0.03084
20 0.05403 0.04527 0.04959 0.04508
25 0.06851 0.06015 0.06342 0.06169
30 0.08277 0.07479 0.07714 0.07590
35 0.09681 0.08921 0.09074 0.09134
40 0.11064 0.10340 0.10419 0.10529
45 0.12425 0.11738 0.11749 0.11878
50 0.13766 0.13113 0.13063 0.13342

6. Summary and Concluding Observations

The duality relation P(Sw,T ≥ k) = P(τk,w ≤ T ) creates a fundamental link
between the scan statistic Sw,T and the pattern-based stopping time τk,w. By
Doob’s theorem, this stopping time, and more general stopping times, are tightly
bound with the theory of martingales. Still, to exploit these connections, one
needs a rich class of pattern-based martingales. Over time it has been found that



22 POZDNYAKOV AND STEELE

the search for such martingales is powerfully served by the metaphor of gambling
teams.

When one considers the waiting time τA until occurrence of a single pattern A,
there is a striking observation that contributes in an essential way to the solution of
the problem. Namely, we observe that at time τA the cash on hand of the gambling
team is a simple deterministic function of just the pattern A and the probability
distribution of the independent observations {Zn : n = 1, 2, . . .}. Much of the
subsequent theory is then guided by the desire to find more refined refections of
this invariance property.

When we looked at the time τA until the first occurrence of a pattern from a
list A = {A1, A2, . . . , AK} we needed to consider K gambling teams. Moreover, we
distinguished these teams by having the members of the j’th teams begin betting
with a stake of size yj with −∞ < yj < ∞. In this case, the invariance property
was reflected by the fact that if we define yjWij to be the cash on hand of the
j’th team “in the i’th winning scenario,” then Wij is deterministic. Some craft was
needed to define these ending scenarios, and, in more complicated problems, the
need can become substantial.

Finally, once methods for computing E(τA) and Var(τA) are in hand for both
independent and Markov sequences, they help materially with the approximation of
the distribution of τA. In particular, moment matching within the family of shifted
exponential distributions turns out to give surprisingly good approximations to the
distribution of τA, though here much of the evidence is numerical.
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