A RANDOMIZED DATA STRUCTURE
FOR ORDERED SETS

Jon L. Bentley, F. Thomson Leighton, Margaret Lepley,
Donald F. Stanat, and J. Michael Steele

ABSTRACT

In this chapter, we consider a simple randomized data structure for
representing ordered sets, and give a precise combinatorial analysis
of the time required to perform various operations. In addition to a
practical data structure, this work provides new and nontrivial prob-
abilistic lower bounds and an instance of a practical problem whose
randomized complexity is provably less than its deterministic
complexity.

1. INTRODUCTION

In this chapter, we consider the probiem of maintaining a set from
a totally ordered domain under the operations Member, Insert,

Advances in Computing Research, Volume 5, pages 413-428.
Copyright © 1989 by JAI Press Inc.

All rights of reproduction in any form reserved.

ISBN: 0-89232-896-7

413

414 J. L. BENTLEY et al.

Delete, Predecessor, Successor, Maximum, and Minimum. The
basic data structure that we use to represent such a set of size at
most N is a sorted linked list implemented by the two arrays
Link[C...N]and Value[l... N]. The value in Link [0] points to the
first element in the list, Link [Link[0]] points to the next element,
etc. We call such a data structure a J-/ist after Janko [J1, J2] who
first studied the structure in a randomized setting. Among other
things, we will show that Member, Insert, Predecessor, Successor,
and Maximum can all be accomplished in 2./N — ¢ expected steps
where ¢ is a small constant, and that this bound is optimal under a
plausible model of constraints imposed by the data structure. We
also show that Delete requires just 4./N — 2¢ expected steps and
that Minimum requires just one step (Link [0] points to the minimum
element). All of these bounds (except for Minimum) are dramatically
better than the worst case bound of N steps.

Although quite simple, the J-list data structure is surprisingly
efficient. In fact, it is superior to all of those described by Knuth [K]
for certain applications. The salient attributes of such applications
are as follows:

e« Space is important. This structure uses only one extra word
of storage per element, while binary search trees use at least
two extra words, and various hashing schemes use varying
amounts of extra storage. However, the storage for this struc-
ture must be available in a single contiguous block.

e The “orderedness” operations of Successor, Predecessor,
Minimum, and Maximum are frequent; these are not possible
in most hashing schemes.

¢ Insertions and deletions are frequent. If the data structure
changes rarely, binary search in a sorted array is very efficient.

e Program simplicity is important. Each operation on this
structure requires only about a dozen lines of code, while
some operations on balanced binary search trees require over
100 lines of code.

e Run time is important for problems of medium size (where
medium means that N is between, say, 100 and 10,000). If N
is below that range, simple sequential strategies are probably
efficient enough. If N is above that range, then the logarithmic
search time of binary search will be necessary for many
applications. When N is in the medium range, though, the low
constant factors of this structure will make it competitive with
binary search trees.

A Randomized Data Structure for Ordered Sets 415

Of course, the simple linked list is one of the most basic and well-
known data structures, and has arisen in countless contexts. Most
relevant to this chapter is the prior work of Janko [J1, J2] who studied
randomized algorithms for sorting using linked lists and obtained
an O(N*?*) bound on the expected time needed to sort N items.

The remainder of the chapter is divided into sections as follows.
In Section 2, we define the problem more precisely and observe that
the worst-case complexity of performing a Member Search is linear
in N. For the most part, we concentrate our efforts on the analysis
of a simple algorithm for Member Search. This is because the
algorithm for Member Search can be easily transformed into an
efficient algorithm for each of the other operations. In Section 3, we
describe the J-list structure and explain its relationship to a simple
Guess-Decrement game. We also describe an optimal randomized
algorithm for Member Search and show how it can be extended to
form efficient algorithms for Insert, Delete, and the other oper-
ations. Section 4 considers some natural extensions of the basic
model and contains some additional probabilistic analysis.

2. THE PROBLEM AND ITS DETERMINISTIC
COMPLEXITY

The J-list is implemented in contiguous storage by the two arrays
Link[0...N]and Value[l ... N]. The pointer Link [0] points to the
first element of the list, Value[Link[0]]. The next element can be
found in Value[Link[Link[0]]], and so forth. The end of the list is
denoted by an element whose Link field contains — 1. Furthermore,
we will insist that the array is dense: Value[l ... N] must contain N
elements of the represented set. The sortedness of the linked list
implies that if Link [/] is not — 1, then Value[I] < Value[Link[/]].
We will often refer to Value[/] and Link[/] together as node I.
Figure 1 illustrates the array representation of the sorted linked list
(2.6,3.1,4.1,5.3,5.8, 5.9,9.7>.

It i1s clear that performing a Member Search in such an array
requires accessing at most N elements of the array (either by follow-
ing Link fields through the list or simply by iterating through Value
fields of the array). We will now show that in the worst case, this

Figure I. An array representation of the sorted linked list (2.6,3.1,
4.1,5.3,5.8,5.9,9.7>.

I 0] 2 3 4 5 6 7
Value[I] 31 [a1 [59 26 [53 [se |37
Link[1] (4 2 5 1 1 6 .13 —1

416 J. L. BENTLEY et al.

much time is necessary to decide whether a given element is in the
list. We will assume that a {deterministic) search algorithm 1is
composed of operations of the following types, each with unit cost.

1. Determine the index of the node at the head of the list (by
accessing Link [0]). There is one operation of this type.

2. Determine the successor of node I for | < 7 < N (by access-
ing Link[/]). There are N cperations of this type.

3. Determine the Value of node 7, for I < 1< N (by accessing
Value[I]). There are N operations of this type.

(Note that if operations of type 2 have no cost; then binary searct
can be used to solve the problem in logarithmic time.)

Our mode] assumes that a protagonist specifies a sequence of the
above operations whiie an adversary ensures that N operations wil
be required. We will assume that the adversary knows the value o:
the key the protagonist seeks, which we will call V/, and that othe:
key values may be assigned arbitrarily by the adversary. We wil
describe a strategy that enables the adversary to delay returning ¥
until the protagonist has specified a sequence of N operations
Without loss of generality, we will assume that whenever one o
Value[I] or Link[/] is asked, both of Value[/] and Link{/] ar
provided at a cost of a single step (1 < I < N). The value of V' wil
be the maximum element in the list. There are two cases depending
on whether or not the protagonist asks the type 1 question.

Case 1: The type 1 question is not asked.

The adversary always answers questions so that the protagonis
has queried a coritiguous subset of the ordered list. In particular
assume that the protagonist asks about node 7 where I has not ye
been queried. (Remember that Value[/] and Link[/] are alway
provided together, at a total cost of one.) If / = Link[J] where .
is the node at the head of the continuous subset of previousl
queried nodes, ther. the adversary assigns the largest value yet givei
(but less than V, of course) to Value[/] and assigns an as ye
unqueried node to Link[/]. If I # Link[J], then the adversar
assigns the smallest value yet given to Value[/] and sets Link [/] = {
where X is the smailest node in the contiguous subset of previousl
queried nodes. In either case, the set of queried nodes continues t«
form a contiguous subset of ordered list, with all values less than V

A Randomized Data Structure for Ordered Sets 417

The argument continues in this fashion until N — 1 nodes have been
queried. At this point, the remaining unqueried node is / = Link[J]
where J is the largest queried node. In order to resolve Member
Search for V, the protagonist must still ask the value of node 1,
making for a total of N queries overall.

Case 2: The type 1 question is asked.

In this case, we will show that N — 1 nodes must be queried,
making for a total of N steps. The argument proceeds as before
until the protagonist asks the type 1 question. In response, the
adversary reveals that Link [0] = K where K'is the smallest node in
the contiguous subset of previously queried nodes. From this point
on, the adversary will answer questions so that the queried nodes
form at most two contiguous subsets of the ordered list, one of them
beginning with Link[0]. The subset beginning with Link[0] will
always have values smaller than the other contiguous subset, and all
values will be less than V. The details of the adversary’s responses
are similar to before until a total of N — 2 node queries have been
made. At this point the protagonist must still query the value of
node I where I = Link[J] and J is the node with the largest value
seen so far. Hence N — 1 queries need to be made, accounting for
N operations overall.

3. RANDOMIZED ALGORITHMS

In what follows, we focus on algorithms that allow probabilistic
access to nodes in addition to deterministic and Link access.
Although the worst case performance of such randomized
algorithms is no different than that for deterministic algorithms, we
will find that the average case performance is much better.

The section is divided into subsections as follows. In Section 3.1,
we define a class of simple randomized algorithms for Member
Search. We model the performance of algorithms in this class with
a Guess-Decrement game in Section 3.2. In Section 3.3, we use the
game model to show that the expected running time for the optimal
Member Search Algorithm is 2./N — ¢, where ¢ is a small constant.
We extend the algorithm for Member Search to other operations
in Section 3.4.

418]. L. BENTLEY et al.

3.1. A Class of Randomized Algorithms for Member Search

By combining probabilistic access with access by predecessor
link, a wide range of algorithms can be considered. For example,
the following pseudo-Pascal program searches for the element E,
using the order of operations specified by the array Step. When
Step[J] is zero, a random sample occurs. Otherwise the program
follows the next link in the list. Note that when a random sample
is chosen, the position in the list is updated only if the random
position is closer to (but not at or beyond) the location of E.
This strategy ensures that the updated position in the list never
worsens and that when E is eventually found, its predecessor will
also have been found (since E will have been reached via a link).
(This particular code assumes that Value [0] is — co and Value [— 1]
1s 00.)

P:=0
J:=0
do until exit
Ji=J+1
if Step[J] = 0 then do
R = Random(1, NV)
if Value [R] < E and Value[R] > Value[P] then P := R
else do
if Value[Link [P]] = E then exit (*E is at Link[P]*)
if Value[Link[P]] > E then exit (*E is not in the list*)
if Value[Link[P]] < E then P := Link[P]

For any specified Step array, the expected performance of ihe
associated algorithm will depend on the value of E being searched.
For example, if Eis less than or equal to the smallest item in the list,
then the algorithm will terminate on or before the first Link access.
For the time being, we will focus on the more interesting case when
E is bigger than the largest item in the list. This is, in fact, the worst
case for any step array in terms of expected running time, and
is representative of the case when E has a random rank. For
expediency, we will defer the proof of these assertions to Section 4,
where we consider search values with an arbitrary index. We also
consider more sophisticated algorithms in Section 4, including
procedures that decide whether to step forward or move randomly
pased on whether or not previous random moves were successful,

A Randomized Data Structure for Ordered Sets 419

3.2. Modeling Algorithms as Strategies

Before proceeding to construct an optimal algorithm from the class
described in Section 3.1, it is useful to associate algorithms in the
class with strategies for a simple probabilistic “Guessing-Decrement”
game. The G-D Game involves two integers, i and N. The value of
N remains fixed throughout the game, and the value of i is originally
N. The goal of the player is to reduce the value of i to zero in the
minimum expected number of steps. A step consists of performing
one of the following two operations:

¢ D (for Decrement): If i > 0, then replace i by i — 1.

¢ G (for Guess): Choose j to be an integer uniform from 1... N
and replace i by j if j < i. The value of i is unknown to the
player, except at the beginning of the game when i = N, and
at the end when he is notified that i has reached zero.

The value of i represents the distance from the current element in
the linked list—denoted by P in the above algorithm—to the end of
the list. The value N is the number of items in the list. We start with
i = N because we assume that we are searching for the largest
element in the list. In the general case, we would start with i equal
to the rank of E, if known.

Each Guess corresponds to a random access in the above code,
whereas each Decrement corresponds to a link access. A strategy or
sequence of operations will be denoted by a character string o
composed of G’s and D’s to be performed in order from left to
right. A sequence of G’s and D’s corresponds naturally to a Step
array. A sequence is said to be complete if it contains at least N D’s.
Note that operations written after the first N D’s are superfluous
and need not appear. For convenience, however, we will often end
complete sequences with DV,

A complete sequence will always reach i = 0 and terminate the
game after some number of steps ¢. The expected termination point
for a complete sequence o is denoted by

B@) = 3Pl = /1 = ¥ Q@)

where Q; () = Pr[t > j]. The object is to minimize E(o) over all
complete sequences . We denote the minimum by S(N).

420 J. L. BENTLEY et al.

Note that E(o) also denotes the expected running time of the
Member Search algorithm for the corresponding Step array.
Hence, determining the optimal ¢ is equivalent to determining the
optimal algorithm from the class described in Section 3.1. For
simplicity, we will use the G-D notation henceforth.

3.3, An Optimal Strategy

The task of finding an optimal strategy for the G-D game will
proceed in two steps. The first step consists of finding the best
strategy from among those of the form G*D" for some k. The
second, and more difficult, step consists of showing that there is an
optimal strategy having this form.

We will start by analyzing strategies of the form G*D". Within
this restricted class, it is easy to determine the best values of k and
the minimum of E(G*D").

THEOREM 1. Let Ak(N) be the value of k that minimizes
E(G*D"). Then k(N) = /N — 1 — 1/(24/N) + O(1/N).

Proof. From the definition,
k+ N

E(G*DY) = go Q,(G*D").

Since the first k operations are Guesses the game cannot end there,
so Q; (G*D") = 1forj = 0,..., k. The probability of not terminat-
ing during the first d Decrements is (N — d)*N %, since all the
Guesses must be larger than d in order not to terminate. Therefore

1

N—
E(G'DY) = k+ 1+ ¥ (N—d)N*
d=1

N-—1

=k+1+N* Y d*
d=1
=k+ 14+ Nj(k+1)—=1/2+k/(12N) + O(K*/N?).
The minimum occurs when

1 — N/(k+ 1)+ 1/(12N) + O(k/N?) = 0

A Randomized Data Structure for Ordered Sets 421

and thus when

k = JN—1-1/24/N) + O(1/N). O

Theorem 1 provides an upper bound of S(N) < 2\/W —1/2 +
1/(12{/N) + O(1/N) expected operations for the G-D game. Of
course, the optimal value of k = JN—1-— 1/24/N) + O(1/N)
may have to be rounded to a neighboring integer, so we should
conclude only that S(N) < 2\/N — ¢ where ¢ is a small constant
that tends to 1/2 as N grows large. In what follows, we will show
that this bound is tight by proving that there is an optimal strategy
of the form G*D". We commence with some definitions and
lemmas.

When a sequence o is not complete, the value of i after the
operations in w have been performed may remain undetermined.
Instead of knowing the exact value of i we define a probability
vector

P, (w) = Pr[i > j after executing the sequence w].

We can see from the definition that P;(w) > P, (w). Moreover the
vector can be computed for any sequence .

LEMMA 1. For any sequence w = G“D"...G*D", with b =
b+--+banda = a + -+ a

(N—j—b)"(N—j—b+b)"
P(w) = -+ (N—j—=by)*N™“ forj< N—b
0 forj>= N —b.

Proof. During each block of Guesses, G™, the value i must
remain above j plus the number of D’s that are still to be performed,
b, + -+ + b,. The probability that all the Guesses in the block are
betweenj + b, + -+ b,+ land Nis(N —j — b,, — - — b)N~ ™.

]

These probabilities are important in determining the optimal
strategy. The following lemma states one of the most useful proper-
ties of this vector.

422 J. L. BENTLEY et al.

Lemma 2. For any sequence o, P, (wD)/Py{wD) < P(w)/Py(w)
Jor 0 <j < N.

Proof. Each ratio is a product of terms of the form
(N —j = b= = BN = b, — = = b))]".

The sequence wD has one more D in the last block than m, so b,
increases by one in wD. When Py(wD) > 0, a comparison of these
terms, letting K = N — h, — -+~ — b, reveals that

[(K“_/ — 1)/(K— 1)]"’ < [(K_]‘)/’K]a,

and thus that P,(wD)/P(@wD) < P,(w)/Py(w). If Py(wD) = 0, we
define the ratio to be zero and the inequality still holds. O

Remember that our goal is to prove that the optimal strategy has
the form G*D". To do this, we next analyze the effect of minor
variations in strategy on the expected number of operations. Then
we will show that if a small variation improves the strategy, then a
larger change could mean even more improvement. The two
sequences which we will compare first are ¢ = oDG*D" and
o* = oG"D". The only difference between ¢ and ¢* is the position
of the block G*. The following lemma gives a method for compar-
ing these two strings.

Lemma 3. E(wDG*DY) < E(wG*D") if and only if V,(w) < 1,
where

d=1

{ P (@)/Py(@) + ¥ P, ()/Py ()

Vi(w) =) X[(N—d+ 1)) = (N—d)'Ik"'N~* if Py(w) > 0

Lo if Py(w) = 0.

Proof. Leto and o* be defined as above. We would like to know
when E(s) — E{c*) < 0. The following values for Q,(¢) and
Q,,(6*) can be easily verified.

(Qm(o-*) lf m < la)l
P,(w) ifjo] + 1< m
Q,(0) = <o +k+1
Pm —|w|—k ((D)

\ X(N—m+|o|+k+ DN ifm>|o +k+ 1

A Randomized Data Structure for Ordered Sets 423

[Q,(0) if m <o
P,(w) if o +1<m
Q, (c*) = < <ol + k
P -k ()

. x(N—m+ o +kN* if m>|ol+k.

Thus E(6) — E(6*) = Ln_o [Qn(0) — Q,(6™)] < 01s equivalent to

1

(k + DP,(w) — kPy(w) + Ni P, (w)[(N —d + 1)
d=1
— (N = d)]N*=P,(w) <0.

Rearranging terms slightly gives

1

P @)+ T P @)V —d+ 1 — (N — dFIN 4k < Py(o).
]

Combining Lemmas 2 and 3 enables us to extend a minor vari-
ation of the string into a more radical change. Specifically, if the last
block of G’s is more efficient when it is moved to the right one place,
then it is best to remove the block of Guesses altogether.

LemMa 4. For all o, if E(@DGDY) < E(@G*D"), then E(wD") <
E(wDG*D").

Proof. If E(wD’G*D") < E(wD’/~'G*D") for some j=>1,
then V,(wD’~') < 1 by Lemma 3. By Lemma 2 and the defini-
tion of V,(w), we know that V,(wD’) < V;(0wD’™'), and thus
that V,(wD’) < 1. Thus, we can conclude by Lemma 3 that
E(wD’*'G*D") < E(wD’/G*D"). The proof of the lemma is
completed by applying this process inductively. O

It is now a simple matter to prove our main result.
THEOREM 2. For every starting sequence w, there exists an integer
r > 0 such that E(wG D") < E(wo) for every completed sequence

wao.

Proof. Let o denote the shortest (in length) sequence for which
wo is complete and E(ws) = min, E(wy). If ¢ is of the form G’ D",

424 J. L. BENTLEY et al.

then we are done. Otherwise ¢ = w*DG* D/, where G* is the last
block of Guesses and j > 0. By the optimality of o, we know
that E(ww*DG*D’) < E(ww*G*D’*'). Thus by Lemma 4, we
know that E(ww*D’"") < E(ww*DG*D’) which contradicts the
minimality of o. O

Thus the best way to finish any initial sequence is by a block of
Guesses followed by Decrements. By letting w be the empty string,
we find that the optimal strategy for the game is G*D". Recalling
Theorem 1, we find that the optimal value is near JN -1 —
1/(24\/N) + O(1/N) and thus S(N) = 2y/N — ¢ where ¢ is a
constant that tends to 1/2 as N gets large. Hence the expected
number of steps for Member Search is at most 2\/N. As a conse-
quence, it 18 not difficult to show that this is within one or two steps
of optimal whenever we are searching for an item that is bigger than
the median. Searches for items less than the maximum are discussed
more thoroughly in Section 4.

3.4. Algorithms for the Other Operations

Thus far we have considered only the problem of searching the
linked list to determine if it contains a given element. It is easy to
perform many other set operations on this structure. The following
list summarizes those operations, and describes their costs in terms
of the number of Value elements accessed.

e Member: The previous sections studied the problem of
searching to determine whether a given element is a member
of the set represented by the linked list. Cost: 2,/N.

o Insert: A new element can be inserted in the list by using
Member Search. Cost: 2,/N.

o Delete: The first step in deleting an element is to find that
element by a search algorithm, and then modify the Link field
of its predecessor to point to its successor. This takes 2/N
references to the Value array. The next step must patch the
“hole” created in the dense array by moving the last element
of the array to the vacant position. Searching for the last
element requires 2,/N references. Cost: 4,/N.

o Predecessor: The element immediately preceding a given
element can be found by a simple modification to the
Member Search algorithm. Cost: 2,/N.

A Randomized Data Structure for Ordered Sets 425

e Succcessor: The element immediately succeeding a given
element can be found by a simple modification to the
Member Search algorithm. Cost: 2\/N.

e Minimum: The minimum element in the set is pointed to by
Link[0]. Cost: 1.

e Maximum: The maximum element in the set can be found by
searching for infinity. Cost: 2\/N.

Each of the above operations is straightforward to implement
given the Member Search algorithm and basic techniques for
dealing with data structures for searching (described, for example,
by Knuth [K]). Furthermore, the simplicity of the algorithm implies
that the constant factors in the running time of the program will be
relatively small. The only deviation that a programmer should
make from the Member Search algorithm deals with the random
number generation: since some random number generators are very
slow, it might be preferable to use some other approach to sample
the k elements.

4. EXTENSIONS AND REMARKS

At first glance, it might appear that our proof technique depends on
the fact that Guesses do not yield zero. This is not the case. When
a Guess returns an integer uniform on [0 N], the optimal strategy
differs from the above strategy by only O(1 /\/N) Guesses.

Our analysis of the G-D game was for the worst case task of
searching for the final element in the list. We will now consider
searches for a random element. The value i can be interpreted as the
number of links between our present position in the list and the
position of the element we are searching for. When searching for the
last element we start at i = N. Suppose a Member search seeks an
element whose position is unknown and randomly distributed. We
should then start at an unknown, random i, or equivalently start at
i = N and do one Guess to randomize i before counting oper-
ations. By Theorem 2 the optimum strategy is then G'~'D" as
opposed to G'D" when searching for the last element.

Sometimes it is useful to find the jth element given j. When j is
small it is easy to follow links and when j = N we can use the G-D
strategy. Between these two extremes, the strategies used thus
far are not necessarily valid since the value of the jth element is

426 J. L. BENTLEY et al.

Figure 2. Graph of ¢(j) and S(N,j)/\/7\7 where S(N, j) is the optimal
expected number of operations when searching for the jth element.

SINAN

unknown. But if we know the value as well as the position of the
element for which we are searching, then we can apply the above
techniques to find an optimal G-D search time. Searching for an
element at position j means starting the G-D game at i = ;. This is
equivalent to starting at / = N and doing N — j Decrements. By
Theorem 2 the best way to continue from this point is G*D" for
some k. Thus it is only necessary to compute the optimal number
of Guesses, k = r(j). By modifying Theorem 1 it can be shown

that r(j) = ¢(j)/N where

(0 if j < 2N

. < (j— 1)—1\/ﬁ{e(1~l>vuw
D eGPI - 1)~ 0UWF) i V3N <) < O(T)
\ 1 — O(1/{/N) if j > QG/N).

It is easy to determine ¢(j) numerically and a graph of the function
(e.g., see Figure 2) shows that (once nonzero) ¢(j) approaches 1
exponentially fast.

The G-D game can be modified in other ways. One particularly
interesting modification allows the player to use the information
about when a random sample is successful (i.e., closer to the target).
For example, suppose the value i is contained in a black box that
is connected to a light that turns on every time i is decreased. At first
glance, it appears as though such information could be quite useful
in planning when to stop Guessing and start Decrementing. For
instance, if the light flashed on for a series of early Guesses, then the
player might be led to believe that the early Guesses were very good
and thus that i had become very small. Hence, the player might

A Randomized Data Structure for Ordered Sets 427

think it wise to start Decrementing early. This is not the case,
however, since if all the Guesses are required to be distinct, then it
can be shown that the light does not add any useful information at
all. It is worth remarking that the likelihood of two Guesses being
identical is small and thus the constraint that all the Guesses be
different has a negligible effect on the final result.

Such a counterintuitive result requires some justification. First
notice that when all the Guesses are distinct, the sequence of Guesses
is just a permutation of a subset R of {1, ..., N }. Every sequence of
Guesses produces a unique light sequence, f3, but one light sequence
can be produced by many different Guess sequences. In particular:

LEMMA 5. For every light sequence B of length k there exists an
integer m, such that for any set of Guesses R < {1,..., N} of size k-
there are exactly m permutations of R that have light sequence p.

Proof. LetK = {l,...,k} and set m to be the number of permu-
tations of X that produces the light sequence ;. Now consider any
other subset R of length k. Thereisa 1 — 1 order-preserving mapping
between K and R, so there is also a 1 — 1| mapping between the
permutations of the two sets that preserves light sequences. This
means that there are also m permutations of R that fit 5. |

We can now prove

THEOREM 3. When all the Guesses in the G-D game are distinct,
then the light sequence adds no extra information about the value of
[after a sequence of Guesses.

Proof. 1t is sufficient to show that the probability Pr[i = j|f]
thati = jafter k guesses given a light sequence f, is the same as the
probability Pr[i = j]thati = j after k guesses (with no knowledge
of the light sequence). From the definitions and Lemma 5,

Pr[i = j|B] = (3 of sequences of Guesses that fit f for which i = j)/
(# of sequences of Guesses that fit f§)

= (# of R for which i = j)m/(# of R)m
= (# of R for which i = j)k!/(3# of R)k!

= (# of sequences of Guesses for which i = j)/
(# of sequences of Guesses)

= Pr[i = j] |

428 J. L. BENTLEY et al.

The G-D game might also be played with two different operations
O, and O,. It would be interesting to know what properties of
O, and O, give an optimal sequence of the form 0¥, for some
k and m. In addition to operators that act directly on i, we might
also consider comparison operations that compare i to a given
input #, and answer the question, ‘i < n?” If the compare operation
| < /2N is added to G-D, then the optimal strategy is O(N'*)
Guesses followed by a Compare, repeated until i < V2N, ending
with Decrements. This strategy uses \/2N + O(N'"*) expected steps.

ACKNOWLEDGMENTS

We would like to thank Gary Miller, Ron Rivest, Jim Saxe, and Mike
sipser for helpful discussions.

This research was supported in part by ONR Contract N00014-76-
C-0370, NSF Grant MCS-78-07736, and an NSF Presidential Young
[nvestigator Award with matching funds from Xerox and IBM. Parts of
‘his chapter were presented at the 19th and 20th Annual Allerton Con-
‘erences on Communication, Control and Computing [BSS, LL].

REFERENCES

AHU] A. V. Aho, J. E. Hopcroft, and J. D. Ullman, The Design and Analysis of
Computer Algorithms. Addison-Wesley, Reading, MA, 1974.

BSS]J. L. Bentley, D. F. Stanat, and J. M. Steele, “Analysis of a randomized data
structure for representing ordered sets,” Proc. 19th Annu. Allerton Conference
on Communication, Control, and Computing 364-372 (1981).

J1] W. Janko, “A list insertion sort for keys with arbitrary key distribution,”
ACM Transact. Math. Software 2: 143-153 (1976).

J2] W. Janko, “An insertion sort for uniformly distributed keys based on stopping
theory,” Int. Comp. Symp. April 1977, pp. 373-379. North-Holland Publish-
ing, Amsterdam, 1977.

K]D. E. Knuth, The Art of Computer Programming. Vol. 3: Sorting and Search-
ing. Addison-Wesley, Reading, MA, 1973.

LL] T. Leighton and M. Lepley, “Probabilistic searching in sorted linked lists,”
Proc. 20th Annu. Allerton Conference on Communication, Control and Com-
puting 500-506 (1982).

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

