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Abstract
Let
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where X, 1=i=n, are i.i.d. and uniformly distributed in [0, 1]*. It is proved
that M, ~cn'"?? ass. for 1= p <2. This result is motivated by recent develop-
ments in the theory of algorithms and the theory of subadditive processes as
well as by a well-known problem of H. Steinhaus.

LOCATION PROBLEM; k-MEDIAN PROBLEM; PROBABILISTIC ALGORITHM; SUBADDI-
TIVE PROCESS: SUBADDITIVE EUCLIDEAN FUNCTIONAL

1. Introduction

The work of Steinhaus (1956) was apparently the first explicit treatment of
the natural question ‘How should one choose n points from a mass distributed
in the plane so as to best represent the whole?’ The main objective of this
article is to treat a stochastic analogue of Steinhaus’s problem.

One principal motivation for this stochastic analogue comes from develop-
ments in the theory of algorithms. The first of these is the discovery by Karp
(1977) of an efficient probabilistic algorithm for solving the traveling salesman
problem. The second development was the proof of Papadimitriou (1981) of
the éonjecture of Fisher and Hochbaum (1980) that the ‘Buclidean k-median
location problem’ is NP-complete.

More will be said about these algorithmic considerations in a later section,
but we should first state our results. For any x; €R? and integers k and n we
define

(1.1) Mk; %1, X, * +, %) = min, i; min [lx, x|
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Steinhaus’s geometric location problem for random samples in the plane 57

(Here the minimum is over all $<{x;, x5, * " ', X,} such that S has cardinality
IS|=k)

In words, one views S as a set of k ‘centers’, and each ‘site’ x; is served by its
nearest center x €S8 at a cost equal to |x—xl. The quantity
M(k; x,, X5, * . x,,) is therefore the minimal cost attainable by an optimal
choice of k centers. This language is chosen in sympathy with the applications
which have been suggested in Bollobas (1973), Cornuejols, Fisher and
Nemhauser (1978), and Starret (1974).

Our main result i1s the following.

Theorem 1. If X, 1=i<, are independent and uniform on [0, 1]%, then for
any 0<<a <1 one has

(12) lim n‘l/zl\/[(["la]; Xl: XZ: T Xn) = ch
with probability 1 for some constant 0 <C, <<,

For reasons which will be discussed in the last section it will be useful to
generalize this result slightly. For any 1=p <o we define

. PN - 1 M ey llP
(1.3) M, (ks xq, X257+, X)) S{l‘lsllgki; min llx; = x;|IP-

Under the same hypotheses as in Theorem 1 we shall prove the following.

Theorem 2. For any 1=p <2 and 0<a <1 we have with probability 1
lim M, ([an]; X3, X5, - - - X,)/n' P2 =C,

«,p

for some constant 0<C, , <co.

Naturally, it will suffice to prove just Theorem 2, and this proof will occupy
the next three sections. In Section 2 we concentrate on the key combinatorial
observations which will make the theorem possible. Section 3 contains a
Tauberian argument which partially parallels that used in Steele (1981b), but
with the significant difference that the present problem lacks the monotonicity
previously relied on in the theory of sub-additive Euclidean functionals (Steele
(1981a,b)). The elementary Lemma 3.4 on the ‘differentiation’ of an asympto-
tic series is one of the devices introduced here which may prove useful in other
non-monotone problems.

The proof of Theorem 2 is completed in Section 4 with the help of the
Efron-Stein jackknife inequality teamed with the combinatorial lemmas of
Section 2 and classical arguments.

The last section briefly discusses the algorithmic application of this result.
We also discuss the extension of our results to non-uniformly distributed
random variables, and comment briefly on some open problems.
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2. Combinatorial and geometric lemmas

Most of the observations which are special to the location problem are
contained in this section, but one can find some hidden generality since most
subadditive Euclidean functionals have properties analogous to those that
follow.

Lemma 2.1. There is a constant 8 = §, such that for all x; [0, 1P 1si=n,
and k=2

(21) Mp(ky Xy, X257 " % xn)é Bnk‘p/?"
Proof. Let an integer s be chosen so that s?>=k = (s +1)?, and divide [0, 1]
into s2 cells of side s™*. For each occupied cell C; choose one element xie G

and set S'={x/:1=i=s%. Since each cell has diameter v2s™' and since
|S'| =k, we have the generous bound

M, (k; Xy, Xy " "+, X)) = n(¥2s NP =2°2n(kt—1)"°
which yields the lemma.

The next lemma will provide the combinatorial linchpin required in our
variance bounds.

Lemma 2.2. There is a constant B’'= 3, such that for all xeR? 1=i=n,
and k=2 the difference

Mp(k; X1y X2, " xn)-Mp(k.i_ 1; X1, X2, " " " xn)EAp
satisfies the bounds
(2.2) 0=A,=p'nk 7?2,

Proof. Without loss we can assume that all of the ||x; — x;||° are different. For
any set of optimal centers S associated with M, (k +1; x4, X, * * *, X, ) we define
for each i€ S the set

N@ ={j; % —xll <l — x|, VkeS, k#i}.

This gives the representation

M, (k+1;%, %, X ) = Z Z llx; “xi“p-
ieSjeN3)
We now note that

(2.3) #{ieS: Y ln—xlP>4M,(k+1;x;, x,, - - -, x)/(k + D}=(k +1)/4

jeN@)
and also that

2.4 #ieS: IN@|z4n/(k+1}=(k+1)/4.
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This implies that for H defined by
H= {i eS: Y x— x|P =4pn(k+1)7*/(k+1) and IN()|=4n/(k + 1)}.
jeN()
We have by (2.3), (2.4), and Lemma 2.1 that #H=(k +1)/2.

This time we choose s so that s2<(k+1)/2=(s+1)* and again divide [0, 1]’
into s> cells of side s~'. Some cell must contain two elements of H, say x;
and x,,.

We now define a suboptimal choice for the k centers by using S"= S\{x; }.
We continue to serve all ., {x;:j€ N(i)} as before but now serve the
elements of {x;:je N(iy)} by x,. The cost of serving {x;:j€ N(ip)} by x,, is

Z Hxi - Xizl\" = Z 2° (ij - xiJl" +\\xil “xiQH")
(2.5) jeNGy jeN(ip)
=2°{4Bn(k+1)""* 1+ (V2s )P (dn)/(k + 1)}

For k=2 the last expression can be bounded by p'nk™'"??; and, since (2.5)

majorizes A, this proves the second inequality in (2.2). The first inequality is
trivial, so the lemma is complete.

One often finds it useful to know that in an optimal allocation no site is very
far from a center.

Lemma 2.3. There is a constant B"”= B, with the property that for any S
with |S|=k which minimizes YI; min,s ||x; — x;||° we have
8, =8, (k; x1, X3, " * *, %,) = max min |x; —x|I* = Bznk ™",
=isn ie

Proof. If we take S'=SU{x} where x’ is the element of {x;, X5, " ", X,}
farthest from any element of S then we have

Mp(k+1;x1’ Xo, ** axn)-S-Mp(k;xl’ Xa, 0t 7xn)—.6p~

By Lemma 2.2 we then see that §, =B'nk™' ™2, so we can take B"=p'".

The next lemma will be useful in applying jackknife methods to obtain
variance bounds. By the notation % we mean that x; is to be omitted from
the sample, thus {x;, X, * =+, X - - -, X b ={Xy, Xay 7 * "5 Xiig, Xin1s * * * > Xu ). AlsO,
we let 1(y=28) be 1 or 0 accordingly as y =4 holds or not.

Lemma. Setting 8 =8, (k; xq, X3, * * * , X,,) and m; =min;.;; % — x]P, we have

Mp(k; X1, X2, "0 7, J%i: T xn)éMp(k; X1, X2, * " ¢y xn)

(2.6) n

+2°8 2, 1(lx -l =9)
=1

1
and

(27) Mp(k; X1, X2, ° ", xn)—<_—'-Mp(k; X1, X2, " ", 5&2‘9 Tt xn)+2p(mx+6)
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Proof. To prove the first inequality let S be an optimal choice of k centers
for {x,, X2, -+ +, X,}. If x;#¢ S the inequality is trivial, so suppose x; € S. We now
choose a sub-optimal set S’ of k centers for {x4, %o, =+, X+, X, ). First let

N={x: x5 —xl<lx—x. ¥i'e S, i # i}

If N+{x,}take any x'e N\{x;} andset §'= (S\{x,HU{x"}, but if N ={x;} just take
any x'e{x,, x5, *, %, x,} and define S’ as before.

We now serve {x, X», - * ", %, "+, X,} by " as follows. If N =1{x} then each
point is served by the same center as it was served by in S. If N# {x;} then the
elements of N\{x,} are served by x', and the others are served as before. The
cost of this sub-optimal choice is bounded by

Mp(ka X1, X2, "7 7 xn)+ i “xi ——xlup 1(xj € N\{x:})

j=1

= M, (k3 x0, %, * 5 %) +2°8 2, Ll —x [P =8).
i=1
The second inequality (2.7) is easier. Let S be an optimal choice of centers
for {xy, x2,° ", %m0 x,} and note that x; can be served by an element of S at
a cost less than

22 min 5P+ max mi x| ) 52°(m + 8).

3. Regular expectations

For brevity we set M, = M, ([an]; X;, X5, - - -, X,,). Our first objective is to
show that EM, ~ cn®?. The method begins as in the classical approach taken
by Beardwood, Halton, and Hammersley (1959) in the study of the traveling
salesman problem. As noted in the introduction, the main novelty here is due
to the necessity of overcoming the fact that M, fails to have the monotonicity
M, =M, . The impact of this non-monotonicity is even more strongly felt in
the next section. (The desire to understand a subadditive Fuclidean functional
which failed to be monotone provided the second principle motivating this
work.)

We now let I1 denote a Poisson point process on R*. For any Borel A <R3,
TI(A) will consist of a set of N, points uniformly distributed in A, where N, is
itself a Poisson random variable with mean A(A), the Lebesgue measure of A.

Lemma 3.1. Let A=[0, (P and set ¢(t)=EM,([aN,]; TI(A)), then for all
integers m =1 we have

3.1 A d(H=m2em).



Steinhaus’s geometric location problem for random samples in the plane 61
Proof. Let A be divided into m? cells Q, of side t/m, then by the suboptimal-
ity of local optimization we have
M,([eNAJ:THAD = 3, M, [N 1: THQ)).
i=1
On taking expectations and using the homogeneity of Il we obtain (3.1).

Lemma 3.2. If ¢(t) is any continuous function which satisfied (3.1) for all m
then

(3.2) lim (/2= lim inf d(/P=C,,.

Proof. By the continuity of ¢(t) and the definition C,, =lim, ... inf ¢(1)/ t?
we can choose an interval (a, b) such that

(3.3) dWIF=C,,+e¢

for all te(a, b). By (3.1) we can conclude that also we have (3.3) for all
te Uz ., (ma, mb). Since I,=(ma, mb) and I,,, intersect for all m=
a(b—a)™*, we see |, (ma, mb) contains (mga, <); and, therefore,

limsup ¢(1)/*=C,, +&,

which completes the proof.

Lemma 3.3. For 1=p<4 we have for x{1 that

(3.4) Y (EM)x" ~ C,,T(2—p/2)/(1—x)**?
ne=1
and
(3.5) Y. EM, ~C,,(2—p/2) n?"",
k=1

Proof. Calculating ¢(t) by conditioning and making a change of scale from
[0, tJ? to [0, 1P shows that (3.2) can be written out as

oo

(3.6) d(t)= Y. t°(EM,)e t*"n!~ C, 1>

n=1

By changing variables t*=u we see that

3.7

1D

(EM,)e “u"n!~ C, u'™".

1

Now by the Abelian theorem for Borel summability (e.g. Doetsch (1943), p.
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191) and the fact that 1—p/2>—1 we have as x — 1 that

(3.8) Y (EM, —EM, )x" ~ C,,,T@=p/2)/(1—x)' 2

ns=1

Multiplying by (1—x)"! then completes the proof of (3.4). Since EM, =0 we
get (3.5) from (3.4) by an immediate application of the Karamata Tauberian
theorem (Feller (1971), p. 447).

We should now like to ‘differentiate’ (3.5) in order to obtain the asymptotics
of EM,,. Fortunately, the next lemma shows that this is (just barely) legitimate.

Lemma 3.4. I Y5¢_, me ~cn” for y>1 and my =y -~ Bk*? for some B
and all k=1 then
(3.9) m, ~cyn” L.

Proof. Let y>1 be chosen and note that
yn

Y omz Y (mn—B{Zi”‘z)zn(y-—l)rm~B

n=k=yn n=k=yn j=n k=n

k
Lz
j=n

Dividing by n” and using the Euler-Maclaurin summation formula to handle
the double sum gives

(y* = De=(y— D limsup (m/n" )= (y =Dy 'y - D~y - DIB.
Next dividing by y—1 and letting y | 1 shows
ve = lim sup (m,/n”™).

In a completely analogous way one can show that lim sup (m/n"" )= vyc by
estimating the sum Y, <.=, M Where y<1.

The next lemma is the main consequence of this section.
Lemma 3.5. For 1=p<2 we have EM, ~C,,n' ™" as n—.

Proof. We already have Yi—, EM,~C,,(2—p/2)"'n*™ 2. By Lemma 3.4
with 1<y =2—p/2 it suffices to show

(3.10) EM,,,=EM,— Bl
for some B and all l. By Lemma 2.4 (with sample size n+1 and X, =X,,,) and
by Lemma 2.2 (if [(I+1)a]>[la]) we have

{+1
(.11 M=M-2°8 Y, 1(X, - X/ =8)— [+ Da]-[(a)]A,.
o)

1

Here by Lemma 2.3, 8§ = .l[la]'""?; and by Lemma 2.2, A, =B la] 72
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By elementary estimates we then see that

E 710X - X[ <)

1

—

is bounded, so taking expectations in (3.11) yields (3.10).

4. Completion of the proot

The results of the preceding sections will now be brought together to prove
Theorem 2. The only new tool required is the recent result of Efron and Stein
(1981) which says that the jackknife estimate of variance is positively biased.
Explicitly, we first suppose that S(x;, x,, * * *, X,—;) is any symmetric function
of n—1 vectors x,. For each i we set §; =S(x, x5, -, %, "+, x,) and also set
S =1/nYr,S. If X; are any independent and identically distributed random

vectors, the FEfron-Stein jackknife inequality says that
(4.1) Var (X, X5, X, ) =E 3, (S —S).
i=1

We shall now apply this inequality with the aid of the combinatorial bounds
of Section 2.

Lemma 4.1. ¥ X, 1=i<w are independent and uniformly distributed on
[0, 1T, then for a constant C not depending on n we have

(4.2) Var M, ([en]; Xy, Xa, -+, X, )=Var M, =Cn'"".

Proof. We first note that if S is replaced by any other variable, the right side
of (4.1) is only increased. Using (4.1) and Lemma 2.4 we now calculate (with
8 = 6p([na]; le X2> T XrH—l)):

n+1

VarM,=E Y, (M,([an]; Xy, Xa, -5 X+, K1)
i=1
”M ([an];X :X 7' * ':Xn+ ))2
(43) n+p1 n~1—11 : ' 2
=E'Y, (26% 10X~ Xl =8)+ 27 +2° min nxrxiup) :
i=1 JriFEL

i=1

Replacing 8 by Bgn[an]“l“’”: p, will by Lemma 2.3 only increase the right
side, so using Vinogradov’s symbol to ignore irrelevant constants we have

(4.4) VarM,<«nE (pﬁ (nf X - XlP = m))2 +p5+min |1 X; - X11|2")-
i=1 jrjl
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Now, since p><« n™?, it is an elementary calculation to show

E(T 10% - xr =0 ) < E(T 10x-xi=nh ) <1

i=1 i=1
and
E :H}ir} 126G — Xl < n7P.

These bounds and (4.4) imply (4.2) and complete the lemma.

We now note that Var (M, /n'""?)« 1/n and that this bound is not sharp
enough to automatically imply complete convergence. It is therefore necessary
to resort to a subsequence and maximal argument to prove Theorem 2.

By the bound (4.2), Lemma (3.5), the Borel-Cantelli lemma and
Chebyshev’s inequality one can easily show
(4.5) lim M, /n;??=C,

a,

a.s.

for the subsequence n, =[k"] for any y>1.
We now set

D= max |M/n*"""?-M,/n;"?

=N <mg

and note that to complete the proof of the theorem it suffices to show D, — 0
a.s. For this it certainly suffices to show E Yr_; Di <co.
We set a, =|M,.,/(n+1)'""?—M,/n"""?| and note
@y <My = M|/n 772+ M /n? 772,

By Lemma 2.1 we have M, « n*"?, and if [a(n +1)]=[an] the same estimates
used in (4.4) will show E(M,.,—M,)*«n"". If [a(n+1)]=[an]+1 we first
note M, . =M,.
Now we can also check that M, cannot be much bigger than M, ,,. Setting
k =[an] we have by Lemma 2.2 that
M, =Mk+1:X,,X,, -+, X,)+B'nk 17?2
and by Lemma (2.4) (and (2.3)) that

M(k+ 1: Xla X’Zr Y Xn)éM(k+17 Xla XZ: Y Xn: Xn+1)
+278 3, (L)X = X,lF =6)
i=1
where 8 = B(n+1)(k+1)7'"?2 Together these bounds and elementary calcu-

lations show in the case that [a(n+1)]=[an]+1 that one again has
E(M,.;—M,)?>«n"®, and hence EaZ< 1/n?
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The final calculation is that

2
ED%§E(Z an> = (Myar— nk)(z, Eaﬁ)« K1Y nTre k2,

where the three sums are each over the range n, S <rgy;.

This verifies E Y2_, D? <o and completes the proof of Theorem 2, except
for verifying that indeed C,,>0. To show this last fact we set

z-1 Y x-xl=pn

Nzizi=n

and note that easy calculations show

(4.6) EZ, — B*m/2 as n—x,
and
4.7 VarZ,—>0 as n-—>®.

Since M, is the sum of n—[na] elements of S ={|X; - X/|P:1=i <j=n} we
have

(4.8) M,z (Bn . 1(nZ, <(n—[nal)/2).(n—[nal)/2.
Taking expectations in (4.8) we have
(4.9) n?”?>'EM, = B*P(Z, <(1-a)/2).(1—a)/2.

For B?<(1-a)/m Equations (4.6), (4.7) and Chebyshev’s inequality will
suffice to show that the right side of (4.9) is bounded away from 0. This shows
C,, >0 and completes the proof.

5. Algorithmic implications

The fact that the K-median problem has been proved by Papadimitriou
' (1981) to be NP-hard means that it is extremely unlikely that there is an
efficient algorithm for calculating the optimal choice of an centers from n sites
(cf. Karp (1972)). Therefore, since the K-median problem occurs in a variety
of practical contexts, it seems quite desirable to find efficient algorithms which
are capable of providing approximate optimal center selections.

The results of this article take a step toward this by providing an estimate for
the value of an optimal selection. This value can be used in the construction of
approximately optimal probabilistic algorithms for the K-median in a manner
which is completely parallel to the way the asymptotic optimal value provided
by Beardwood, Halton, and Hammersley (1959) has been used by Karp (1977)
in the study of the traveling salesman problem. One algorithm of this type for



66 DORIT HOCHBAUM AND J. M. STEELE

the K-median problem (but with K <logn) has already been constructed in
Fisher and Hochbaum (1981).

6. Conclading remarks and open problems

One of the motives for investigating the functional

M,([an]; X,. Xo, -+, X,) = min 3, min|IX, - X[

S:1Slz[mx]i=1 i
for general p is the trite observation that as p —® we have

MY?— min max min|X - X|=H,.
S:iSl=[n«] 1=i=n jeS

The functional H, is of independent interest and it was hoped that the present

methods might throw some light on its probabilistic behavior. We now believe

that n*H, converges in distribution, but we have no idea how this might be

proved. Since our methods seem to require 1=p < 2 and are more pertinent to

strong laws, an entirely new technique may be needed.

There are also basic open problems directly concerning M, =
M,(an]; X;, X5, - - -, X,,). In particular, it seems almost certain that a result
analogous to our Theorem 2 must hold when the X; are independent, identi-
cally distributed, and bounded. The methods used in Steele (1981a,c) seem to
fail to help in the location problem because of the difficulty of establishing the
intermediate result for step densities.

Finally, there is the question of determining C,,. This is usually hopeless,
but perhaps not in this case. Fejes-Toth (1959) was able to determine the
analogous constant in the original Steinhaus problem, and McClure (1976) has
been able to extend the work of Fejes-T6th to other functionals and extremal
problems.
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