M.O. Ball et al., Eds., Handbooks in OR & MS, Vol. 7
© 1995 Elsevier Science B.V. All rights reserved

Chapter 6

Probabilistic Networks and Network Algorithms

Timothy Law Snyder

Department of Computer Science, Georgetown University, Washington, DC 20057, U.S.A.

J. Michael Steele

Department of Statistics, The Wharton School, University of Pennsylvania, Philadelphia, PA
19104, U.S.A.

1. Introduction

The uses of probability in the theory of networks are extensive, and new
applications emerge at an increasing rate. Still, when compared with the purely
deterministic aspects of network theory, the part that calls upon probability theory
is in its infancy. Certainly there are areas where the uses of probability have
developed into a reasonably complete theory, but in many instances the results
that have been obtained have to be regarded as fragmented and incomplete. This
situation presents considerable opportunity for researchers, and the purpose of
this chapter is to highlight aspects of the current state of the theory with an eye
toward the developments and the tools that seem most likely to be of value in
further investigations.

Probability enters into the theory of networks and network algorithms in several
different ways. The most direct way is through probabilistic modeling of some
aspect of the network. For example, in some freight management models the cost
of transportation along the arcs of the network are modeled by random variables.
In models such as these probability helps us grasp a little better a world that
comes with its own physical randomness.

A second important way probability enters is through more stylized stochastic
models where the aim is to provide deeper insight into our technical understanding
of the methods of operations research. Here there is considerably less emphasis
on building detailed models that hope to capture aspects of randomness that
live in a specific application context; rather, the aim is to provide mathematically
tractable models of reasonable generality that can be used to explore a variety
of different computational or estimation methods. Among the types of issues that
have been studied in such models are the efficacies of deterministic algorithms
and of deterministic heuristic methods. Many of the ‘average case’ analyses of
algorithms would fit into this second role for probability.
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The third path by which probability enters into network theory is through
randomized algorithms. This is the newest of the roles for probability, but it is
a role that is of increasing importance. To make certain of the distinction that
makes an algorithm ‘randomized,” consider a version of depth-first search where
one chooses the next vertex to be explored by selecting it at random from a set of
candidates. Here one does not call on any modeling of the network, which may in
fact be specified in a way that is completely deterministic. The use of probability
here is purely technical in the sense that it is employed to serve our computations,
not to model some external physical randomness, or even to capture the notion of
an ‘average case.’

In the material that follows, one does well to keep these differing uses of
probability in clear sight. Still, the distinctions may not always be pristine, mostly
because two or more roles for probability can be present in the same problem. As
an example, consider the computation or estimation of the reliability polynomial
R(p) of a network. Here one begins with a simple, physically motivated stochastic
model. Given a specific graph intended to represent a communication network,
one models the possibility of degraded communication in the network by allowing
edges to ‘fail’ with probability p. The key problem is the determination of the
probability R(p) that for each pair of vertices @ and b in the graph there exists a
path from a to b that consists only of edges that have not failed. As the problem
sits, it offers a simple but useful stochastic model, and one can go about the
calculation or estimation of R(p) by whatever tools are at one’s disposal. The
multiplicity of roles for probability enters exactly when one starts to notice that
there are randomized algorithms for the estimation of R(p). This is just one
example where there are several roles for probability in the context of a single
problem.

There are even dicier instances where the role of probability in the design
and analysis of algorithms starts to offer some ambiguity. For example, close
cousins of the randomized algorithms are the algorithms that (a) assume that
the input follows some stochastic model and (b) exploit that assumption in the
computational choices that it makes. A natural example of this design is Karp’s
algorithm for the Euclidean traveling salesman problem which we take up in
Section 4. Such algorithms are fairly called probabilistic algorithms, but in the
absence of internally generated random choices the best practice is to preserve the
distinction made above and to avoid calling them randomized algorithms; though,
admittedly, there is no reason to press for a rigid nomenclature.

The central aim of this chapter is to engage at least some aspect of each of
the major roles for probability in the theory of network algorithms. When choices
must be made, an emphasis is placed on those ideas one can expect to continue
to be used and developed in the future. In Section 2 we engage the probability
theory of network characteristics, where one mainly sees probability in either of
the first two roles described above, as elements of either a physical or an idealized
stochastic model. The section first develops the background for several inequalities
that have evolved in the area of percolation theory. The FKG inequality is the best
known and most widely used of these; but, as applications in percolation theory
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have shown, the much newer BK inequality is also an instrument that belongs
in every tool kit. The second part of Section 2 then looks at the computational
problems of associated with more physical models of networks. In Section 3 we
engage randomized algorithms in the context of several problems of concern to the
basic themes of network theory. The first paradigm discussed there is one initiated
in Karp & Luby [1985], which remains essential to the current technology of
randomized algorithms. In Section 4 we focus on problems of geometric network
theory. This is the area of network theory that seems to have progressed most
extensively from the viewpoint of probability theory, but it also offers practical
algorithmic insights on issues that have been of interest and concern even before
there evolved an extensive theory of algorithms. The classic problems here include
the behavior of traveling salesman tours, minimum spanning and Steiner minimum
trees, and matchings.

2. Probability theory of network characteristics

There are three substantial probabilistic theories with lives of their own, yet
which are intimately intertwined with the probability theory of networks. The
most immediate of these is network reliability. This subject provides extensive
investigation of the problem of calculating and bounding the probability of the
existence of (s, #)-paths. Because network reliability is dealt with in a separate
chapter of this volume and because the book of Colbourn [1987] provides an
extensive treatment, we do not give many details of the subject. Still, in many
probabilistic investigations of networks, one needs to keep in mind the existence
and highlights of the large body of results provided by reliability theory, and
several of the results reviewed here owe their motivation to the concerns of
network reliability theory. A second theory that is closely connected to the theory
of random networks is the theory of random graphs, which deals extensively
with questions like the existence of long paths, connectedness, the existence of
cycles, and many other issues that are of importance to the theory of networks.
Since Bollobas [1985] provides an extensive treatment of the theory of random
graphs, we do not go deeply into that subject here. A third closely-related field is
percolation theory, and in many ways this subject has a claim on being the deepest
of the three related fields. It certainly has been pursued extensively by a large
number of mathematicians and physicists over a number of years.

2.1. Tools from percolation theory

In this section, we first recall what the aims of percolation theory have been
over the years of its development. We then suggest some ways in which the theory
may help researchers who are concerned with questions that are more at the
heart of network theory. We will develop three elementary but central tools of
percolation theory: the FKG inequality, the BK inequality, and Russo’s formula.
These powerful tools are the workhorses of percolation theory, yet they seem not
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to be well known to researchers in the more general areas of stochastic network
theory.

Percolation theory evolved from questions in physics that are themselves of
many different flavors, including the magnetization of materials, the formation
of crystals, the transport of electrons in special materials, sustenance of chemical
reactions, and the flow of fluids. The latter offers perhaps the least compelling
physics, but it provides the easiest metaphor and is often called upon for illustra-
tion.

We consider the classical d-dimensional rectangular lattice, Z¢, and for each
vertex v of the lattice we join v by an edge to each of its 2d nearest neighbors
(in the sense of the usual Euclidean metric). If we use the traditional language
of percolation theory, these edges are called ‘bonds’. Bonds are viewed as being
either ‘open’ or ‘closed’, and it is here where the probability modeling appears.
To each bond e is associated an independent Bernoulli random variable X, such
that P(X, = 1) = p for some fixed 0 < p < 1. The bonds for which X, = 1
are regarded as being open, and the fundamental questions of the theory concern
the components of lattice vertices connected by open edges. Among the main
features that distinguish percolation theory from the theory of random graphs are
the attention that is focused on subgraphs of the lattice and the interest that is
focused on graphs with infinitely many edges.

A central quantity of interest in percolation theory is the percolation probability
6(p), defined as the probability that the origin is contained in an infinitely large
connected component. One reason that 8(p) receives considerable attention is
that it exhibits interesting critical phenomena that have close analogies with
physical phenomena like the freezing of fluids. In particular, one can prove,
for each dimension d, that there is a critical constant p. = p.(d) depending
on the dimension d such that (p) > 0 if p > p. but 6(p) = 0 if p < p,.
The work of Kesten [1980] culminated the efforts of a great many investigations
and established the long conjectured result that p.(2) = 1/2. This deep result
required the development of techniques that would seem to offer useful insights
for researchers in the theory of networks, and a well motivated exposition of
Kesten’s theorem can be found in Chapter 9 of Grimmett [1989].

The FKG inequality

The first tool we consider is named the FKG inequality, in respect of the work
of Fortuin, Kasteleyn & Ginibre [1971]. Even though we will not call on the
full generality of their result, it is worth noting that the FKG inequality has a
beautiful generalization due to Ahlswede & Daykin [1978], and the full-fledged
FKG inequality has already found elegant applications to problems of interest in
network theory. In particular, one should note the articles by Shepp [1982] and
Graham [1983].

The version of the inequality that we develop is actually a precursor of the FKG
inequality due to Harris [1960], but Harris’s inequality has the benefit of having
very low overhead while still being able to convey the qualitative essence of its
more sophisticated relatives. To provide a framework for Harris’s inequality, we
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suppose that G is any graph and {X,} are identically distributed Bernoulli random
variables associated with the edges of G. We think of the variables X, as labels
marking the edges of G that would be regarded in percolation theory as open
edges. The random variables of interest in Harris’s inequality are those that can
be obtained as monotone non-decreasing functions of the variables {X.}. In detail,
if in a realization of the {X,.} we change some of the {X,} that have value zero
to have a value of one, then we require that the value of the function does not
decrease. The classic example of such a variable is the indicator of an (s, #)-path
of edges marked with ones. Harris’s inequality confirms the intuitive fact that any
pair X and Y of such monotone variables are positively correlated. Specifically,
if X and Y are any non-decreasing random variables defined as functions of the
edge variables X, of G, then one has

E(XY)=> E(X)E(Y).

This inequality is most often applied in the case of indicator functions. Since we
will refer to this case later, we note that we can write Harris’s inequality as

P(ANB) > P(A)P(B)

for all events A and B that are non-decreasing functions of the edge variables.

One can prove Harris’s inequality rather easily by induction. If we write
X=f(m,m,...,nyand Y = g(n1,n2,...,nn), where f and g are monotonic
and the {n;} are independent Bernoulli random variables, then by conditioning on
na, we see that it suffices to prove Harris’s inequality just in the case of n = 1. In
this case we see that, forg =1 — p,

EXY —EX-EY =
SWgp+ fFOg0qg - (fDp+ f(O)g)(gd)p + g(0)q)

and since this factors as

pa{f () — f(OHg) — g} =0,

we obtain Harris’s inequality.

One of the nice consequences of Harris’s inequality is the fact that if m
non-decreasing events Ap, Az, ..., A, with equal probability have a union with
large probability, then, all the events A; must have fairly large probability. This
so-called ‘square root trick’ noted in Cox & Durrett [1988] formally says that for
each 1l <i < m, we have

P(A) = 1—{1—- P A

The proof of this inequality requires just one line where Harris’s inequality
provides the central step:

1- P(UJLA) = PO AD = T PAD) = A = P(A))™.
j=1
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To appreciate the value of this inequality, one should note that without the
assumption that the {A;} are monotone, one could take the {A;} to be a partition
of the entire sample space, making the left side equal to 1/m, while the right
side equals one. We see therefore that the FKG inequality helps us extract an
important feature of monotone events. As a point of comparison with a more
combinatorial result, one should note that the square root trick and the local LYM
inequality of Bollobas and Thomason [cf. Bollobas, 1986} both address the way
in which probabilities of non-decreasing sets (and their ideals) can evolve. For
further results that call on the FKG and Harris inequalities one should consult
Graham [1983] and Spencer [1993].

The BK inequality

The insights provided by the FKG and its sibling inequalities are valuable,
but they are limited. The inequalities often just provide rigorous confirmation of
intuitive results that one can justify by several means. A much deeper problem
arises when one needs an inequality that goes in a direction opposite that of the
FKG inequality. For this problem, the progress is much more recent and less well
known.

As one can show by considering any dependent, non-decreasing events A and
B, there is no hope of simply reversing the FKG inequality. In fact, the same
examples can show that additional assumptions on A and B that fall short of
independence are of no help, so some sort of additional structure, or some
modification is needed for A N B. Van den Berg & Kesten [1985] discovered that
the key to a useful reversal of the FKG inequality rests on a strengthening of the
notion of A N B. The essence of their idea is that the event of A and B both
occurring needs to be replaced with that of ‘A and B both occurring, but for
different reasons’ or, as we will shortly define, A and B occurring disjointly.

The technical definition of disjoint occurrence takes some work, but it is guided
by a canonical example. If A corresponds to the existence of an (s, t)-path and B
corresponds to the existence of an (s', t')-path, then A N B needs to be replaced
by the event corresponding to the existence of (s, 1)- and (s’, t')-paths that have
no edge in common. To make this precise in a generally applicable way, we have to
be explicit about the underlying probability space. To keep ourselves from straying
too far from network applications, we let 2 denote the set of (0, 1)-vectors
(x1, %2, ..., Xxm), where m is the number of elements in a set S of edges that
are sufficient to determine the occurrence of A. In many problems m cannot be
bounded by anything sharper than the number of edges of G, but the bound can
be useful even in such cases.

We define a measure on 2 via the Bernoulli edge variables X, taken in
some fixed order, so Q2 taken with our probability measure P give us a product
measure space {2, P}. We now define the set A o B, the disjoint occurrence of
non-decreasing events A and B, as follows:

AoB ={w:thereexistsw, € Aandwp € B
such that w, - wp =0, and w > w, and w > wp }.
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Here, we use w, - wp to denote the usual inner product between vectors, so the
combinatorial meaning of the last condition is that w, and wj, share no 1’s in their
representation. In other words, for non-decreasing events A and B, w, and wy
are able to bear respective witness that A and B occur, but they can base their
testimony on disjoint sets of edges.

The BK Inequality. If A and B are non-decreasing events in {2, P}, then
P(AoB) < P(A)P(B).

The systematic use of the BK inequality is just now becoming widespread even
in percolation theory proper. In Grimmett [1989] one finds many proofs of older
results of percolation theory that are rendered much simpler via the BK inequality.

Russo’s formula

The last of the percolation theory tools that we will review is a formula due
to Russo [1981] that tells how the probability of a non-decreasing event changes
as one changes the probability of the events {X., = 1}. To state the formula,
we suppose as before that we have a graph G with edges that are ‘open’ with
probability p in such a way that the indicator variables X, are independent and
identically distributed. In this context we will require that G is finite, and, to
emphasize the use of p as a parameter, we will denote the governing probability
measure by P.

Now, if A is any non-decreasing event, we introduce a new random variable
N, that we call ‘the number of edges that are pivotal for A. Formally, we define
Na(w) as follows: (a) If w ¢ A, then Na(w) is zero, and (b) if w € A, then
Na(w) equals the number of edges e such that, in the representation of w as a
(0, 1)-vector of edge indicators w = (x1, x2, ..., X;y), we have x, = 1, but, if we
change x. to 0 to get a new vector ', then w’ ¢ A. In the latter case, we say that e
is pivotal for A.

Russo’s formula. If A is any non-decreasing event defined on the Bernoulli process
associated with a finite graph G, and if N4 denotes the number of edges that are
pivotal for A, then

d
EPP(A) = Ep(Ny).

This beautiful and intuitive formula can be used in many ways, but it is often
applied to show that P,(A) cannot increase too rapidly as p increases. To see how
one such bound can be obtained in a crude but general context, we first note that
the differential equation of Russo’s formula can be rewritten in integrated form
forO0< p; < pp <1las

P2
1
Py, (A) = P, (A) exp(/ S Ep(Na | Aydp).
P1
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If there is a set S = {e1, €2, - . ., ey} of m edges such that the occurrence of A can
always be determined by knowledge of S, then the integral representation and the
trivial bound

Pp(e is pivotal for A | A) <1

provide a general inequality that bounds the rate of growth of P,(A) as a function
of p:

P, (A) < (ff) P, (A).

2.2. Distributional problems of random networks

In percolation theory the random variables associated with the edges are
invariably Bernoulli, but in the network models that aim to model physical systems
the network ingredients often are modeled by random variables with more general
distributions, and the central questions in such models concern the distributions
of larger network characteristics. Sadly, many of these distributional questions are
analytically infeasible. Moreover, in many cases of practical interest these same
questions are computationally intractable as well. We will illustrate some of the
technology that has been developed for such problems by considering the problem
of determining the distribution of the minimum-weight path from source to sink
in a network with random edge weights.

Calculation of the distribution of the shortest paths

Formally, we let G = (V, E) be an acyclic network with source vertex s and sink
t, where edge weights are represented by independent random variables W, for all
e € E. The stochastic quantity of interest is the distribution of the random variable
L(G), denoting the length of a shortest (s, £)-path in G. Valiant {1979] showed
that the problem of determining the distribution of L(G) is in general NP-hard,
so at a minimum one must look to approximation methods. One natural approach
to the distribution problem is to try to exploit the independence of the edge
weights through the use of cut sets. This idea forms the basis of the simulation
method of Sigal, Pritsker & Solberg [1979, 1980]. To describe their method for
building a simulation estimate for P(L{G) > t), we first let C = e, e2,..., €
be an exact cut in G, that is, we take C to be a set of edges such that every
(s, t)-path in G shares exactly one edge with C. Such a cut always exists, and it
offers us a natural method for exploiting the independence of the X,.. The key
observation is that the edges of C induce a natural partition of the (s, t)-paths
of G.

For each 1 <i < k and each ¢; ¢ C we let p; be the set of all (s, t)-paths that
contain ¢;. Now, for any t € R, we consider the random variable defined by the
conditional probability

R=PL(G)>t|W, ec E-C).
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Since R satisfies ER = P(L(G) > t), if we let r be the sample value of R based
on a realization {w.} of {W, : e € E — C}, then by independence we have

r =P(L(G)=t|w., ec E—C)

P(Z w, + W, >t for all p € p; and for all ¢; eC)

eEp
eFe;
= P\ W, >t —min we ) ).
=1 PEPi \ 5
eFe;

Since the right hand side can be computed from the known distribution of the
W,,, an estimate of P(L(G) > t) is given by n1 Y i<i<nti> where the r; are
given by independent simulations of r. For some simple networks this process
gives an effective method for the simulation estimation of the distribution of
L(G), and, at a minimum, the use of r is substantially more efficient than
the completely naive estimation of P(L(G) < t) via independent simulations
of L(G).

This method is reasonably crude, but with proper implementation it can pro-
vide answers in some situations of importance. Certainly, the computation of
minpep, (3 eep w,) for 1 < i < k should not be conducted naively since there

eze;
can be an explonential number of (s, t)-paths in G. There are even moderately

sized networks for which an exhaustive evaluation of the required sums is com-
putationally prohibitive. One does much better to note that once the edges in
E — C have been sampled, the lengths of the shortest paths from s to ¢; and
from ¢; to t can be computed for each i by using an appropriate deterministic
single-source shortest path algorithm, such as that of Dijkstra [1959], or more
recent refinements. Dijkstra’s algorithm is easy to implement, has low overhead,
and takes O(|V|?) steps in the worst case to compute all the required path lengths.
Having the lengths of the shortest paths from s to the ¢; and from the ¢; to ¢
allows the computations of the minima in the representation for » to be obtained
in at most O(|C|%) additional steps.

The problem of estimating the distribution of L(G) offers a typical instance
of the trade-off one often meets in simulation estimations. First, there is a
desire to have an efficient estimate of ER for which we would like a cut that
provides for a low variance of R. This is a kind of efficiency that helps us
minimize the number of independent realizations one must take in the simulation.
Second, we would like to have efficiency in the computation of the estimate
in the sense of computing the shortest (s, e;)- and (e;, t)-paths. The trade-off
that faces us is that as |C| increases, the variance of R decreases, but as the
cut size increases so does the of cost of computing shortest paths and minima.
There are often many different exact cuts on which one can base the simulation
estimation of P(L(G) > t) and the proper choice of the cut is an important design
consideration.
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Other distribution problems of random networks

Other studies have undertaken the difficult task of determining distributions of
flows in networks with random capacities. Among these is the paper of Grimmett
& Welsh [1982], which considered maximum flows in networks with independent
and identically distributed capacities. Grimmett and Welsh found limit theorems
for the cases where the networks are either complete graphs or branching trees. In
subsequent work, Frieze & Grimmett {1985] looked at the shortest path problem
under general independent models, and Kulkarni [1986] studied shortest paths
in networks with exponentially distributed edge lengths. One point that emerges
from these works is that the probability theory of network characteristics offers
many individual problems of considerable challenge. So far there seems to have
not been any attempt at providing the framework for the general theory of such
characteristics. With the insights of several special problems in hand, perhaps it is
time that work on a more general investigation was begun.

3. Probabilistic network algorithms

In this section we first provide an introduction to a general approach of Karp
& Luby [1985] for the design of randomized algorithms. We then illustrate their
method by showing how one can put the problem estimation of multiterminal
network reliability into their framework. We then review briefly two recent
randomized algorithms for maximum network flow. Finally, we review some of the
work on randomized algorithms for perfect matching and maximal matching in
graphs.

3.1. Karp-Luby structures for randomized algorithms

Karp & Luby [1985] provided a framework for randomized algorithms that
is useful in a broad range of applications and which specifically offers an effec-
tive approach to some problems of network reliability. Their approach begins
abstractly with a set S and a weight function a : § — RT which we then use
to provide a weight for any A C § by taking a(A) = Y, .4 a(x). Clearly there
are many important problems that can be framed in terms of the calculation of
a(A) for appropriate choices of a, S, and A; but, as one must suspect, we will
have to impose some additional structures before this framework can show its
value. We call (S, R,a) a Karp—Luby Monte Carlo structure if R C S and we
have the following three properties: (1) the ‘total weight’ a(S) is known, (2) there
is a ‘sampling algorithm’ that selects an item x at random from § according to
the probability a(x)/a(S) with independent selections at each invocation of the
sampling algorithm, and (3) there is a ‘recognition algorithm’ that can test if a
given element x of § is also an element of R.

For any such structure (S, R,a) one can estimate the weight a(R) in the
most straightforward way imaginable. One just selects n independent random
elements X1, X3, ... X, of § by the sampling algorithm. Letting ¥; be 1 or 0
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accordingly as X; € R or not, one then takes as an estimator of a(R) the value
Y =a(S)(Y1+ Y2+ ---Y,)/n. As a consequence of the traditional Bernstein tail
estimates of the binomial distribution, for any € > 0 and § > 0 we have

Y —a(R)|

provided that

2 g (2) 20
n> <€ log| aR)’

The punch line here is that once we are able to frame a problem in terms of a
Karp-Luby structure, we can determine a é-€ approximation in the sense of the
preceding probability bound. Moreover, we can bound the expected computational
cost of the algorithm by a polynomial in the parameters €', log(1/8), and the
sensitivity ratio a(S)/a(R).

3.2. Karp—Luby structures for network reliability

The multiterminal network reliability problem is a stylized model for commu-
nication reliability that has been studied from many perspectives, and it offers a
good example of how one fits a natural problem into the framework of Karp-Luby
structures. Given a connected graph G = (V, E) and a special set of ‘terminal
vertices’ T = {1, 12, ..., &%} C V , the motivating issue of multiterminal network
reliability is to model the possibility of communication between the elements of
T under random degradation of the network links. The probability modeling calls
for a function p : E — [0, 1] that is viewed as giving for each e € E the probability
p(e) that the edge e is ‘bad.” Under the assumption that the edges are made good
or bad according to independent choices governed by p, the key problem is to
determine the probability that for all pairs of elements of the set of terminals
there is a path between them that consists only of good edges.

More formally, we consider the set of all mappings s : E — {0,1} as the
elements of our probability space, and we take the interpretation of this function
as an assignment of a label of 0 on the good edges and 1 on the bad edges.
The probability of a specific state s thus is given by P(s) = [[,cx p(e)*@(1 —
p(e))!~*©. The computational challenge is to calculate the probability that there
is some pair of terminal vertices for which there does not exist a path between
them in the graph consisting of the vertex set V and the set of all edges of G
which are labeled ‘good’. We call a state for which this event occurs a failing state,
and we let F denote the set of all states s which have failure.

To provide a Karp—Luby structure so that we can use the strategy discussed in
the preceding section, we first need the notion of a canonical cut. Let s ¢ F be
any failing state, and let G(s) = (V, E(s)) where E(s) is the set of good edges for
the state s. For any 1 < i < k we then let C;(s) denote the connected component
of G(s) that contains the terminal ¢. Since s € F there is some { for which
C;(s) is not all of G and, further, because of the assumption that the full graph
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G = (V, E) is connected, there is at least one such C;(s) for which the graph
induced by the removal of all the vertices of C;(s) from G = (V, E) is connected.
We let i*(s) denote the least such index i, and finally we let g(s) denote the set of
edges that have exactly one endpoint in C;-(s). The set g(s) is a T-cut in that it
separates two terminals of 7" in the graph G(s) = (V, E(s)), and we call g(s) the
canonical cut for the state s.

We now have the machinery to specify the Karp-Luby structure for the multi-
terminal reliability problem. Let S be the set of all pairs (¢, s) where s € F is a
failing state and ¢ is a T-cut for which each edge of ¢ fails in state s. The weight
function associated with a pair (c, s) € § is taken to be the probability of the state
s, s0 a((c, s)) = P(s). Although this weight function ignores the first component
of (c,s), the presence of the first component turns out to be an essential in
providing an effective sampling process. This choice of a and § permits us to
write down a simple formula for a(S§). Since a(S) is equal to the sum of all the
probabilities of the states s where s fails for the cut ¢, we have

aSy= Yy atc,H=y []r@,

(c,s)eS ¢ ecc

where the last sum is over all T-separating cut sets of G = (V, E). The target set
R is given by the set of all pairs (g(s), s) where s € F, and (S, R, a) will serve as
our candidate for a Karp-Luby structure for the multiterminal network problem.
To see the interest in this triple we first note that

a(Ry =Y a(g(s),s) =) _ P(s),

seF seF

so the weight a(R) corresponds precisely to the probability of interest.

For the effective use of (S, R, a), it would be handiest if we had at our disposal
a list L of all the T-separating cut sets of G = (V, E). When the list is not too
large, the formula given above provides a way to calculate a(S). Similarly, we also
have at hand an easy way to test if s € F by examining the failure of each of the
cuts. To complete our check that the (S, R, @) leads to a Karp—Luby structure in
this nice case, it only remains to check that sampling from S is not difficult.

To choose an element (c,s) € S according to the required distribution,
we first choose at random a ¢ € L according to the probability distribution
[L.ec P(e)/a(S). We then select a state function s such that s(e) = 1 foralle € ¢
and by letting s(e) = 1 or s(e) = 0 with probability p(e) or 1 — p(e), respectively.

We have completed the verification that (S, R, a) satisfies the constraints
required of a Karp-Luby structure, but for it to serve as the basis for an effective
randomized algorithm we also need to have a bound on the sensitivity ratio
a(S)/a(R). In many multiterminal reliability problems a sufficiently powerful
bound is provided by the following inequality of Karp & Luby [1985]:

a(s)
2B = E(l + p(e)).
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Thus far we have given a reasonably detailed view of the Karp—Luby structure
and how it can be applied to a problem of computational interest in network
theory. The development recalled here so far has the shortfalling that it seems
to require an explicit list of the T-cuts of the network, and that list must be
reasonably short. Karp & Luby [1985] go further and show that there are cases
where this requirement can be avoided; in particular they show that if G is a planar
graph, then the program still succeeds even without explicitly listing the cut sets.

3.3. Randomized max-flow algorithms

The theory of network flows is to many people what the theory of networks is
all about, and there are two recent contribution of randomized algorithms to this
important topic that have to be mentioned here, even though this survey cannot
dig deeply enough into them to do real justice. The first of these is the algorithm
of Cheriyan & Hagerup [1989] for maximum flow in the context where all the
arc capacities are deterministic. The Cheriyan-Hagerup algorithm produces a
maximum flow for any (non-random) single-source, single-sink input network. The
algorithm takes O(|V||E|log|V|) time in the worst case, although this happens
with probability no more than |V|~Y where « is any constant. Most important
is that the Cheriyan—-Hagerup algorithm takes O(|V||E|+|V [*(log |V ])?) expected
time, which, being O(|V|[E]) for all but relatively sparse networks, compares
favorably with all known strongly polynomial algorithms. The algorithm is also
strongly polynomial in the sense that the running time bound does not depend on
the edge-capacity data.

The Cheriyan—Hagerup algorithm builds on some of the best deterministic
algorithms and takes a step forward by introducing randomization at key stages.
The algorithm calls on scaling techniques in the spirit of Gabow [1985], Goldberg
& Tarjan [1988], and Ahuja & Orlin [1987] and also employs pre-push labeling,
another device of the Goldberg and Tarjan max-flow algorithm [cf. Ahuja, Mag-
nanti & Orlin, 1991]. The randomness of the Cheriyan and Hagerup algorithm
arises in how the network is represented at a given moment during the course of
the algorithm. The model used for network representation is the adjacency list
model, in which the neighbors of each v € V are maintained by a list associated
with v. One of the key ideas of the Cheriyan—-Hagerup algorithm is to randomly
permute each adjacency list at the outset of the algorithm, then randomly permute
the adjacency list of vertex v whenever the label of v is updated. The net effect
of the permutation is to lower the expected number of relabeling events that the
algorithm must carry out during each phase, lowering the expected running time.
One further interesting aspect of the Cheriyan-Hagerup algorithm is that Alon
[1990] has provided a device that derandomizes the algorithm in a way that is
effective for a large class of graphs.

A more recent contribution of a randomized algorithm for max-flow has been
provided in Karp, Motwani & Nisan [1993]. Given a realization of an undirected
network with independent identically distributed random capacities, the algorithm
finds a network flow that is equal in value to the optimum flow value with high
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probability. The algorithm runs in linear time, which is significantly faster than the
best known algorithms that are guaranteed to find an optimal flow.

The algorithm of Karp, Motwani, and Nisan is not simple, but at least some
flavor for the design can be appreciated independently of the details. In the
first stage of the algorithm, the max-flow problem on G is transformed to an
instance of a probabilistic version of the transportation problem. The instance of
the transportation problem is constructed so that its solution flow is forced to
yield (1) a maximum flow that can be immediately transformed to a max-flow in
G and (2) a flow that saturates the (S, V —5) cut in G, where S is the set of
sources. The second stage of the max-flow algorithm is a routine that attempts to
solve the transportation problem. Here Karp, Motwani & Nisan [1993] introduce
their so-called mimicking method which they outline in four steps: (1) before
considering the realization of the random graph, consider instead the graph
formed by replacing each random variable X; with EX;; (2) solve the resulting
deterministic problem; (3) consider now the realization of the random graph,
and attempt to solve the problem by ‘mimicking’ the solution from (2); and (4)
fine-tune the result to get the optimum solution. Even though these steps have
engaging and evocative descriptions, there is devil in the details which in the end
leads to delicate analyses for which we must refer to the original.

3.4. Matching algorithms of several flavors

Information about matchings has a useful role in many aspects of the theory
of networks. Moreover, some of most effective randomized algorithms are those
for matching, so this survey owes the reader at least a brief look at randomized
matchings for algorithms and related ideas.

The key observation of Lovéasz [1979] was that one can use randomization to
test effectively for the positivity of a determinant, and this test can be used in
turn to test for the existence of a perfect matching in a graph. To sketch the
components of the method we first recall that with the graph G = (V, E) we can
associate an adjacency matrix D by taking 4;; = 1if (i, j) € E and zero otherwise.
From the adjacency matrix we can construct the Tutte matrix 7 for G by replacing
the above-diagonal elements d;; by the indeterminants x;; and the below-diagonal
elements d;; by the indeterminants —x;;. The construction of T is completed by
putting zeros along the diagonal. The theorem of Tutte, for which he introduced
this matrix, is that G has a perfect matching if and only if det T # 0.

The core of the idea for testing if G has a perfect matching is then quite simple.
One chooses random numbers for the values of the x;; and then computes the
determinant numerically, a process that is not more computationally difficult than
matrix inversion. The savings come here from the fact that the determinant in the
indeterminant variables x;; can have exponentially many terms, but to test that the
polynomial is not identically zero we only have to see that it is non-zero at a point.
Naturally, to be true to the values of honest computational complexity theory one
cannot rely on computation with real numbers, but by working over a finite field
one comes quickly to the conclusion that there is merit to the idea.
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Lovasz [1979] generalized Tutte’s theorem and went on to provide an algorithm
that takes advantage of the idea just outlined in order to find maximal matchings in
a general graph. Rabin and Vazirani [1989] pressed this idea further and provided
an algorithm that is faster than that of Lovdsz. A computational virtue of both
the Lovasz and Rabin-Vazirani algorithms is that they are readily implemented as
parallel algorithms.

Another development from the theory of matching that has had wide-ranging
impact on the theory of combinatorial algorithms is the introduction of the
method of rapidly mixing Markov chains. The development evolving from Jerrum
& Sinclair [1986, 1989] calls on the idea that if one runs a Markov chain for a long
time, then its location in the state space is well approximated by the stationary
distribution of the Markov chain. This idea can be used to estimate the number of
elements in a complicated set, say, the set of all matchings on a graph, if one can
find a chain on a set of states that includes the set of matchings and for which a
Markov chain can be constructed that converges rapidly to stationarity. This idea
has undergone an extensive development over the last few years. For a survey of
this field we defer to the recent volume of Sinclair [1993].

The final observation about matching in random graphs that deserves space
in the awareness of researchers in network theory is that algorithms based
on augmenting paths are likely to perform much better than their worst-case
measures of performance would indicate. These algorithms, which exhibit the
fastest worst-case running times, are also fast in expectation, sometimes out
performing even the best heuristic algorithms. Many of the algorithms, including
the algorithms of Even & Kariv [1975] and Micali & Vazirani [1980], run in linear
expected time if the input graph is chosen uniformly from the set of all graphs. The
reason behind this observation seems to be the expander properties of random
graphs and the fact that in expander graphs one has a short path connecting any
two typical points [cf. Motwani, 1989].

The proofs of these results come from an analysis of the lengths of augmenting
paths. It is shown that, with high probability, every non-perfect matching in a
random graph has augmenting paths that are relatively short. Since the bulk of
augmenting path algorithms is spent carrying out augmentations, bounds on the
lengths of augmenting paths translate to fast running times.

4. Geometric networks

One of the first studied and most developed parts of the theory of networks
concerns networks that are embedded in Euclidean space. A geometric network is
defined by the finite point set S C R4, with d > 2, and an associated graph, which
is usually assumed to be the complete graph on S. The costs associated with the
edges of the graph are typically the natural Euclidean lengths, though sometimes
it is useful to consider functions of such lengths, for example, to take the cost
of an edge to equal the square of its length. The central questions of the theory
of geometric networks focus on the lengths of subgraphs; so for example, in the
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traveling salesman problem, we are concerned with the length of the shortest tour
through the points of S. Also of central interest in this development is the theory
of minimum spanning trees, Steiner trees, and several types of matchings. The
key result in initiating the probabilistic aspects of this developments is the classic
Beardwood, Halton, and Hammersley theorem.

Theorem [Beardwood, Halton & Hammersley, 1959]. If X;, 1 < i < oo are
independently and identically distributed random variables with bounded support in
RY, then the length L, under the usual Euclidean metric of the shortest path through
the points {X1, Xz, ..., X} satisfies

L
(d—';)/d- — BTSP.4 / F )Y/ dx almost surely.
-

Rd

Here, f(x) is the density of the absolutely continuous part of the distribution of
the X;.

In addition to leading to algorithmic applications, the Beardwood, Halton, and
Hammersley (BHH) theorem has led to effective generalizations, as well as new
analytical tools. In this section, we review these tools, including the theory of
subadditive Euclidean functionals, bounds on tail probabilities, related results in
the theory of worst-case growth rates, and bounds on limit constants such as
Brsp a-

One elementary point that may help avoid confusion in the limit theory offered
by the Beardwood, Halton, Hammersley theorem is the observation that it is of
a much deeper character than ©(n@~D/4) results for L,, which only require that
there exist positive constants a and b such that an@=V/4 < [, < pnld=1/d The
latter results are sometimes useful, but they are almost trivial in comparison,
unless one presses for very good values for a and b. The stronger asymptotic result
that L, /n“~D/4 converges to a constant requires entirely different techniques and
typically leads to much different applications.

A second comment concerns uses to which one can put results such as the
Beardwood, Halton, Hammersley theorem and its relatives. The use of the BHH
theorem in the polynomial-time probabilistic TSP algorithm of Karp [1976, 1977]
is one of the primary reasons results like the BHH theorem are studied today.
Part of the charm of TSP is that it is NP-hard, and it has been studied from many
heuristic and approximation perspectives. Karp’s algorithm has a special place in
the theory of algorithms because given any € > 0, its expected running time is
almost linear and with probability one it produces a tour of length no more than
(1+¢€) times the optimal tour length. Karp’s algorithm played an important role in
launching the field of probabilistic algorithms, and it certainly stimulated interest
in the development of theorems that extend that of Beardwood, Halton, and
Hammersley. Since then, theorems like the BHH theorem have been proved for
other quantities, like the length of the minimum spanning and Steiner minimum
trees, greedy and semi-matchings, and others. For further information on some
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of these developments one can consult Halton & Terada [1982], Karp & Steele
[1985], or Steele[1990a, b].

4.1. Subadditive Euclidean functionals and non-linear growth

The length of the traveling salesman tour has a few basic properties that
are shared with a large number of problems of combinatorial optimization in
Euclidean space. By abstracting some of the simplest of these properties, it is
possible to suggest a very general result that provides information comparable to
that given by the Beardwood, Halton, Hammersley theorem.

Let L be a function that maps the collection of finite subsets {x1, x2, ..., x,} C
R4 to the real numbers R. To spell out the most innocent properties of L
that mimic the behavior of the TSP, we first note that for the TSP, L exhibits
homogeneity and translation invariance, i.e.,

Laxy, axy, ..., 0xy) =aL(x),%x2,...,x,) foralloe > 0, (4.1)
and
Lxi1+y,x3+y,...,xn+y)=L(x(,x2,...,x,) forail y € R4, 4.2)

The TSP’s total length also has some strong smoothness and regularity proper-
ties, but these turn out not to be of essential importance, and for the generalization
we consider we will need to call on the smoothness of L only to require that, for
each n, the function L viewed as a function from R™ to R is Borel measurable.
This condition is almost always trivial to obtain, but it is nevertheless necessary in
order to be able to talk honestly about probabilities involving L.

Functions on the finite subsets of RY that are measurable in the sense just
described and that are homogeneous of order one and translation invariant are
called Euclidean functionals. These three properties are somewhat bland, and one
should not expect to be able to prove much in such a limited context, but with
the addition of just a couple other structural features, one finds a rich and useful
theory.

The first additional property of the TSP functional that we consider is that it is
monotone in the sense that

L(x1,x2,...,%n) < L(x1, X2, ..., Xp, Xn41) forn > 1, and L(¢) = 0.
4.3)

A second additional and final feature of the TSP functional that we abstract
is the only truly substantial one. It expresses both the geometry of the space in
which we work and the fundamental suboptimality of one of the most natural TSP
heuristics, the partitioning heuristic. The subadditive property we require is that
there exists a constant B such that

md
L({x1, %2, .., X} N[0, £]%) < D L({x1, %2, ..., ¥} N Qi) + Brm?™!
i=1 (4.4)
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for all integers m > 1 and real ¢ > 0, where {Q,-},’.":d] is a partition of [0, t]d into
generally smaller cubes of edge length ¢ /m.

Euclidean functionals that satisfy the last two assumptions will be called mono-
tone subadditive Euclidean functionals. This class of processes seems to abstract
the most essential features of the TSP that are needed for an effective asymp-
totic analysis of the functional applied to finite samples of independent random
variables with values in R¢.

To see how subadditive Euclidean functionals arise naturally and to see how
some closely-related problems can just barely elude this framework, it is useful
to consider two basic examples in addition to the TSP. The first is the Steiner
minimum tree, which is a monotone subadditive Euclidean functional. For any
finite set S = {x1,x2,...,x,} C R", a Steiner minimum tree for S is a tree T
whose vertex set contains S such that the sum of the lengths of the edges in T
is minimal over all such trees. Note that the vertex set of T may contain points
not in §; these are called Steiner points. If Lsr(x1, x2, ..., x,) is the length of a
Steiner tree of x1, x2, ..., x, and if we let /(e) be the length of an edge e, another
way of defining Lgr is just

Lst(S) = mTin Zl(e) : T is a tree containing § C R4, S finite }.

ecT

A closely-related example points out that the innocuous monotonicity property
of the TSP and Steiner minimum tree can fail in quite natural problems. The

example we have in mind is the minimum spanning tree. For {x1, x2, ..., x,} C
Rd, let LysT(x1,%2,...,%,) = min)_, rI(e), where the minimum is over all
spanning trees of {xi,x,...,x,}. The functional LysT is easily seen to be

homogeneous, translation invariant, and properly measurable; one can also check
without much trouble that it is subadditive in the sense required above. Still, by
considering the sets S = {(0, 0), (0, 2), (2, 0), (2,2)} and S U {(1, 1)}, we see that
Lyst fails to be monotone as required. One should suspect that this failure is of
an exceptional sort that should not have great influence on asymptotic behavior,
and it can be shown that this suspicion is justified. The example, however, puts
us on warning that non-monotone functionals can require delicate considerations
that are not needed in cases that mimic the TSP more closely.

Subject to a modest moment condition, the properties (4.1) through (4.4) are
sufficient to determine the asymptotic behavior of L(X1, X, ..., X,), where the
X; are independent and identically distributed.

Theorem 1 [Steele, 1981a]. Let L be a monotone subadditive Euclidean functional.
If{X;}, i =1,2,..., are independent random variables with the uniform distribution

on [0,1]4 and Var L(X1, X3, ..., X,) < oo foreachn > 1, thenas n —> oo
L(X17X2s"'7Xn) e
nd-17d Pr.a

with probability one, where By 4 > 0is a constant depending only on L and d.
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The restrictions that this theorem imposes on a Euclidean functional are as
few as one can reasonably expect to yield a generally useful limit theorem,
and because of this generality the restriction to uniformly distributed random
variables is palatable. Moreover, since many of the probabilistic models studied in
operations research and computer science also focus on the uniformly distributed
case, the theorem has immediate applications. Still, one cannot be long content
with a theory confined to uniformly distributed random variables. Fortunately,
with the addition of just a couple of additional constraints, the limit theory of
subadditive Euclidean functionals can be extended to quite generally distributed
variables.

4.2. Tuil probabilities for the TSP and other functionals

The theory just outlined has a number of extensions and refinements. The first
of these that we consider is the work of Rhee & Talagrand [1989] on the behavior
of the tail probabilities of the TSP and related functionals under the model of
independent uniformly distributed random variables in the unit d-cube. In Steele
[1981b], it was observed that Var L, for d = 2 is bounded independently of n. This
somewhat surprising result motivated the study of more detailed understanding
of the tail probabilities P(L, > t), particularly the issue of determining if these
probabilities decayed at the Gaussian rate exp(—cx?/2). After introducing new
methods from martingale theory and interpolation theory which led to interesting
intermediate results, Rhee & Talagrand [1989] provided a remarkable proof that
in d = 2, the TSP and many related functionals indeed have Gaussian tail bounds.
The formal result can be stated as follows.

Theorem [Rhee & Talagrand, 1989]. Let f be a Borel measurable function that
assigns to each finite subset F C [0, 1]* a real value f(F) such that

fF) < f(FUx) < f(F)+min(d(x,y):y € F).

If X; are independent and uniformly distributed in [0, 11%, then the random variable
defined by U, = f({X1, X2, ..., Xu}) is such that there exists a constant K for
which, forall t > 0,

42
P(1Uy — EUy)| > 1) < exp (%) .

4.3. Worst-case asymptotics

The probabilistic rates of growth just surveyed are replicated in worst-case
settings. In this section, we survey some of the work that has been done on
worst-case growth rates and draw parallels with the probabilistic rates.

Let /(e) be the usual Euclidean length |e| of the edge e. As a primary example
of a worst-case growth rate, consider the worst-case length of an optimal traveling
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salesman tour in the unit d-cube:

(n) = max min l(e): Tisatourof St. 4.5
PTSP gmax, mi ; (4.5)
1S|=n

In words, psp(n) is the maximum length, over all point sets in [0, 1]¢, that an
optimal traveling salesman tour can attain. The minimized quantity in (4.5) is
just the length of an optimal traveling salesman tour of the point set S, and
the maximum is taken over all point sets S of size n. We note that there is no
probability theory here, for the point sets and tours are deterministic. Steele &
Snyder [1989] showed that, despite this, one obtains a rate of growth for prgp that
is identical to the probabilistic growth rate in Theorem 1.

Theorem 3 [Steele & Snyder, 1989]. As n — oo,

prsp(n) ~ atsp g n@ V4,

where atsp 4 > 01s a constant depending only on the dimension d.

4.4. Progress on the constants

Estimation of the limiting constants has a long history in both the worst-case
and stochastic contexts. Few [1955] improved some very early work to provide the
bound arsp ; < +/2 and gave a dimension-d bound of asp 4 < d{2(d—1)}1-D/24,
where d > 2. After other intermediate work, Karloff [1989] broke the /2 barrier
in dimension two by showing that argp ; < 0.984+/2. The best bounds currently
available in higher dimensions are those of Goddyn [1990].

Bounds on the worst-case constants are also available for other Euclidean
network problems. Of particular note is the bound on agsr g, the constant
associated with the worst-case length of a rectilinear Steiner minimum tree in the
unit d-cube. Chung & Graham [1981] proved that wgsr 2 = 1, which is significant
in that it is the only non-trivial worst-case constant for which we have an exact
expression. The problem of determining agsr, 4 in higher dimensions is still open,
with the current best-known bounds being max({1, d/(4e)} < arsr.q < d41-H/4,
for d > 1 [Snyder, 1991, 1992; Salowe, 1992].

In the case of the probabilistic models, there is recent progress due to Bertsimas
and van Ryzin [1990], where asymptotic expressions as d gets large were obtained
for the probabilistic minimum spanning tree and matching constants Byst 4 and
B, . Specifically, they showed that BysT ¢ ~ /d/2me and By g ~ (1/2)\/d/2me
as d — oc. Still, the most striking progress on probabilistic constants was the
determination of an exact expression for BysT 4 for all d > 2 by Avram & Bertsi-
mas [1992]. Their expression for BysT 4 comes in the form of series expansion in
which each term requires a rather difficult integration. The representation is still
an effective one, and the first few terms of the series in dimension two have been
computed to yield a numerical lower bound of Syst 2 > 0.599, which agrees well
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with experimental data. The proof of the series representation for Byst 4 relies
strongly on the fact that a greedy construction is guaranteed to yield an MST, and
unfortunately these constructions are not possible for many objects of interest,
including the TSP.

5. Concluding remarks

The theory of probabilistic networks and associated algorithms is rapidly evolv-
ing, but it is not yet a well consolidated field of inquiry. In surveying the literature,
one finds relevant contributions growing in many separate areas, including the
theory of random graphs, subadditive Euclidean functionals, stochastic networks,
reliability, percolation, and computational geometry. Many of these areas make
systematic use of tools and methodologies that remain almost unknown to the
other areas, despite compelling relevance. The aim here has been to provide a
view of part of the cross-fertilization that seems possible, but of necessity our
focus has been on topics that allow for reasonably brief or self-contained de-
scription. Surely one can — and should — go much further. For more general
information concerning probability theory applied to algorithms, one can consult
the surveys of Karp [1977, 1991], Rinnooy Kan {1987], Hofri [1987], and Stougie
[1990], as well as the bibliography of Karp, Lenstra, McDiarmid, and Rinnooy
Kan [1985]. For morc on percolation theory, Grimmett [1989] is a definitive
reference.
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