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SUMS OF SQUARES OF EDGE LENGTHS AND SPACEFILLING
CURVE HEURISTICS FOR THE TRAVELING SALESMAN
PROBLEM*

JUN GAO! AND J. MICHAEL STEELE?

Abstract. The sum of squares of the edge lengths of the tour provided by the spacefilling curve
heuristic applied to a random sample of n points from the unit square is proved to be asymptotically
equal to a periodic function of the logarithm of the sample size.
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1. Two sources of motivation. Two lines of investigation come together to
form the motivation for the present work. The first of these concerns the behavior
of the sums of squares of the edge lengths in several classical problems of geometric
combinatorial optimization. The second concerns recent progress in the understanding
of the behavior of the spacefilling curve heuristic for the traveling salesman problem
(TSP).

Sums of squares of edges. This line begins with an empirical discovery of R.
Bland. Since we obtain the same minimum spanning tree (MST) for a set of n
points {z1,Z2,-..,Zn} C [0,1]?> whether we assign edge costs c;; that are equal to
the Euclidean length ||z; — z|| or to the square of the lengths ||z; — z;||?, we can
save some computation time by working with the squared lengths. When Bland used
the sum of squared edge lengths as the feature of merit in a study of algorithms
for the MST, he found after computing the MST of a number of random samples of
different sizes from [0, 1]? that the value of the minimum value of the sum of squared
edge lengths showed very little dependence on 7 and little variation between samples.
Bland was led to conjecture that there is a constant Cyst such that for the MST of
{le, Xa,...,Xn} where the X; are independent random variables with the uniform
distribution on [0, 1]2, we have

| . .
(1) Lim S lell® = Cust
eeMST

with convergence in probability. This conjecture was proved in Aldous and Steele [1].

The method used to prove (1) relied on the possibility of calculating the MST via
a greedy algorithm. Still, there are many functionals that are closely related to the
MST for which there is no such possibility. Probably the most studied of these is the
TSP that asks for the shortest tour through the points {z1,Z2,-..,Z,} C [0,1]2. We
do not know at present whether the analogue to (1) holds for the TSP.

For the worst-case analysis, the state of knowledge for the TSP is more complete.
Snyder and Steele [10] showed that there is a universal constant Crgp such that, for

* Received by the editors November 23, 1992; accepted for publication (in revised form) March
2, 1993.

t Portfolio Management International, Swiss Bank Corporation, 10 East 50th Street 32nd floor,
New York, New York 10022.

! Department of Statistics, Wharton School, University of Pennsylvania, Philadelphia, Pennsyl-
vania 19104 (steele@uharton.upenn.edu). This author’s research was supported in part by National
Science Foundation grant DMS92-11634 and Army Research Office grant DAAL03-91-G-0110.

314



SQUARED EDGE LENGTHS AND THE TSP 315

any S = {z1,%2,...,Z,} C [0,1]? and any tour T of S of minimal length, we have
(2) > " llell? < Crsp logn.
ecT

In subsequent analyses, Bern and Epstein [3] showed that the logarithmic term of (2)
could not be replaced with a more slowly growing function.

Limit theory for the spacefilling heuristic. The spacefilling curve heuristic rests
on the existence of a surjective mapping v : [0,1] — [0,1]* such that for each
z € [0,1]* we can quickly compute a t € [0,1] such that () = z. Formally, given
{z1,Z2,...,Zn} C [0,1]%, we have a three-step process where we (1) compute a set
of points {t1,%2,...,tn} C [0,1] such that ¥(¢;) = z; for each 1 < ¢ < n, (2) or-
der the t; so that t(;) <ty < -+ < t(,), and, finally, (3) define a permutation
o : [1,n] = [1,n] by requiring z,;)y = ¥(t(;)). The path that visits {z1,z2,...,zZ,} in
the order of Z,(1), ZT5(2),- - > ZTo(n) Will be called the spacefilling curve path, and the
tour that closes this path by adding the step from z,,) back to z,(;y will be called
the spacefilling curve tour.

Here we will focus on the behavior of the spacefilling curve heuristic in the context
of the simplest possible stochastic model, where the points to be toured are modeled
by independent random variables X;, 1 < i < n that are uniformly distributed in
[0,1]2. In [4], results of Platzman and Bartholdi [8] were refined to show that for a
large class of spacefilling curves (SFCs) the length LSFC = LSFC(X;, X,,..., X,,) of
a spacefilling heuristic tour through {X;, X5, ..., X,,} satisfies

E LSFC
lim —2 =1,
ns0 p(iog, m)

where p is an integer depending on the geometry of the spacefilling curve and where
¢ is a continuous periodic function of period 1 that is bounded away from zero. This
behavior offers a novel contrast to that of the length LYFT = LOPT(X;, X,,..., X,)
of the shortest tour through the random sample { X3, X3, ..., X, }, where the theorem
of Beardwood, Halton, and Hammersley [2] declares that for the optimal solution no
periodic term is needed; rather, there is simply a constant 8 > 0 such that for n — oo
we have

3)

LYPT/v/n— B,

where the convergence takes place in expectation as well as with probability 1.
The purpose of this article is to provide a precise asymptotic understanding of the
sum of the squares of the edges of the tour provided by the spacefilling curve heuristic

(4) Sp = Z N Xo@) — Xa(i+1)|12 = Z [ (ts) — ¢(t(i+1))”2,
2=x1

i=1
where we invoke the convention that

on+1) ¥ o(1) and tmin = tay.

We will establish the possibly surprising fact that for a large class of spacefilling curves
the value of this random variable is well approximated by a periodic function of the
logarithm of the sample size.
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2. Main result. The first three properties described below are found in many
classical spacefilling curves, including those of Hilbert [5] and Peano [7]. For these and
related curves, the ordinary Lipschitz property and the bimeasure-preserving property
are established in Milne [6]. The dilation and translation properties are easily verified
by direct consideration of the traditional constructions, and only minor alterations
of the usual constructions are needed to obtain curves with the circular Lipschitz
property Assumption 4.

Assumption 1 (dilation property). There is an integer p > 2 such that, for all

Sstsl, () -+ (5)|

Assumption 2 (translation property). For 1 <1 < p, if (i—1)/p < s,t < i/p, then

lo(s) — v(®)ll = llv(s + 1/p) — Pt + 1/p)]l-

Assumption 3 (bimeasure-preserving property) Given any Borel set A in [0,1],
the set 1(A) is measurable, and

19(s) = p(0)]l = ﬁl

A(4) = A2 (P(4)),

where )y is the Lebesgue measure on IR%.
Assumption 4 (circular Lipschitz property). There is a constant cy, such that

lI(s) — ()] < eyols, )2,

where p is the circular metric on [0, 1] given by
p(s,t) = min{|s — t|,1 — [s — t|}.

The main result of this article is the following theorem.
THEOREM 1. If a heuristic tour is built using a spacefilling curve v that satisfies

Assumptions 1-4, then there exists a strictly positive continuous function ¢ of period
1 such that

ES,
5 m —< =1
® 5% pllog, )

where p is the integer of Assumptions 1 and 2.

3. Convergence of expectations. We first recall that a ¢ that satisfies As-
sumption 3 creates a natural correspondence between random variables with the uni-
form distribution on [0,1]% and [0, 1]. We safely omit the routine proof.

LEMMA 1. Suppose that X is a random varieble that is uniformly distributed in
[0,1]? and that ¢ : 0,1} — [0,1]? is @ surjection. Let 1 be a function that, for every
z € [0,1)?, selects a preimage of z; that is, Y* satisfies Y(¢*(z)) = z. For t defined
by t = *(X), we have the fact that t is uniformly distributed in [0,1], provided that
the spacefilling curve v satisfies the bimeasure preserving Assumption 3.

One key to the analysis of S, is that ES, has a tidy expression in terms of the
independent (unordered) t;’s. If d(s, t) is given by

dsty={ t=° if 0<s<t<l,
T 1—-s4+t if 0<t<s<1,
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then d(s,t) describes the distance along the circle of unit circumference in the coun-
terclockwise direction from s to ¢, and we can write Sy, in the symmetrical form

Sp = 2 |[w(t:) — ((t; + &) mod 1)|J?,

where
6, = min d(t;, t;
i = min (ti,t5)
and S; = {t1,t2,...,ti—1,tis1,.-,tn}. Moreover, the variables §; and ¢; are indepen-

dent, and for each i the variable §; has probability density given by

f@)=m-11-""%

sO we can compute

ES,=EY_ |l4(t:) — ¢((t: +6:) mod 1)]|”
i=1
= nE|[Y(t1) — ¥((t1 + 1) mod 1)|?
1 1
= [ [ 15(5) = (s +1) mod DI~ (1 ~ Pt

Finally, introducing

1
m(t) = ]0 I[(s) — (s + ) mod 1)|[%ds,

we end up with the following lemma.
LEMMA 2 (key representation). It holds that

1
(6) ES, =n(n—1) / m(t)(1 — &)"2dt.
0

To use this representation, we must collect some properties of m(t). From the
definition of m(-) and the circular Lipschitz property (Assumption 4) of ¢, we imme-
diately find a useful pointwise bound.

LEMMA 3. For 0 <t <1, we have

m(t) < i min(t, 1 —¢t),

where ¢y, is the Lipschitz constant of Assumption 4.
To get to the deeper properties of m(t), we first set ¢ = 1/p and define a sequence
of related functions {f,}»>0 on the increasing intervals [0,p"g] by

1-t
folt) = /0 (s + ) —B(s)lPds, 0<t<g

and

Fult) = " fo (;f;) . 0<t<pa



318 JUN GAO AND J. MICHAEL STEELE

We also define a parallel sequence of functions {g, }n>0 by

go(t) = fo(t) + c4t?, 0<t<gq

and

¢
gn(t) =" g0 (17) , 0<t<piq

The benefit of introducing f, and g, is that we can show that they share a common
limit that offers insight into the behavior of m(z). We first establish a monotonicity
relationship.

LEMMA 4. There is a function w(t) such that for all n > 0 we have

(7) fa(t) < fara(t) S w(t) < gns1(t) < ga(8), 0<t<pig

Proof. For any 0 < z < g, we see from the definition of m(z) that

®) m(z) >Z / T ets) = (s + )l 2s.

Next, by the translation Assumption 2, by changing variables, and by the dilation
Assumption 1, we obtain

> q:) 1406) = wls+ 2o = [ 1v(s) ~ s + s
=1 Y2 1)e

L G) -+ (57)

-1 /0 () = (s + pa)l P

2
ds

By combining (9) and (8), we find the basic fact that
1
(10) m(z) 2 -;m(px),

and from (10) the first inequality of (7) follows immediately.
Turning to the g,, we first note by the definition of go and identity (9) that for
0 < z < g we have

(1)
iq—z

go(z) = {Z ] I (s) - ¢<s+x)uzczs+2 / |t¢(s)*¢<s+x)n2ds}+cfbm2
-1)g q—x

= ——m(p:L‘ + Z/ [l(s) — (s + z)|[*ds + {Epz® — & (p — 1)z}

ig—x
=1

= —m(pz) + c,2,,p:r2 + }: {

1=1

/i els) = (s + o)|Pds - %xz} ,

q—x
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By the Lipschitz property of ¢, we have

[iq ll(s) — (s + z)|*ds — 322 < 0;

g~z
so, after replacing = by z/p, we have for 0 < z < 1 that go(z) > pgo(z/p), and our
inequality for gy immediately yields the last inequality of (7).

Local boundedness and monotonicity of the sequences f,(z) and g,(z) tell us the
sequences have pointwise limits. The definition of g, further tells us that

(12) gn(z) = fulz) = cG2?/p", 05z <p g

so, in fact, both f,(z) and g,(z) must have the same limit; moreover, if we denote this
limit by w(z), then by the first and last inequalities of (7) we have for 0 < z < p"¢
that

(13) fa(z) < w(z) < gulx),

completing the proof of Lemma 4.

The next lemma shows how w(z) approximates m(z) and articulates a vital scal-
ing property.

LEMMA 5. The function w has the following properties:

(a) wlt) S Bt for0< t<1,

(b) For 0 <t < g=1/p, Im(t) —w(t)| < c4t?,

(c) w(t) = pw(t/p).

Proof. By Lemma 3, we have m(u) < cf,,u for0<u<1;s0, for 0 <z <ptqgwe
have .

(14) fal) =p"m(z,p") < pclz/p" = ciz,

yielding (a). To show (b), we note that the case where n = 0 in inequality (7) states
that, for 0 <z <gq,

m(z) = fo(z) < m(z) < go(2),
and, by the definition of gg, we obtain
Im(z) — w(z)| < lgo(z) — folz)| = cz?, 0<z<gq.

All that remains is to establish (c). By Lemma 4 and the definition of go, we have

. T
w(z/p) = lim p*m (p_ pn>

— T 1 721 z
-t (e ()

= w(z)/p,

completing the proof of the lemma.
LEMMA 6 (first Laplace representation). As n — 0o, we have

(15) ES, = n? /1 m(t)e ™ dt + O(1/n).
0
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Proof. The difference between ES,, and the integral of (15) is bounded by

/1 m(t)|n%e™™ — n(n—1)(1 - )" ?|dt,
0

and, by Lemma 3, m(t) = O(t) as t — 0; so easy estimates give the lernma.
We can modify this last representation slightly to obtain one with the form of a
standard Laplace integral. First, we note that

q 1
ES, =n? ] e~ m(t)dt + n® / e ™m(t)dt + O(1/n)
0 a

= n? /Oq e ™w(t)dt + O(1/n),

since

/q nZe” ™ |m(t) — w(t)|dt < /q n2e‘”tcf,,t2dt =0(1/n)
0 0

and
1 1
n2/ m(t)e ™dt < n2/ chte™™dt < cynie ™.
q q
Moreover, we have
o oC
/ nw(t)e ™ dt < n? / chte ™dt = O(n%e™™);
g q

so we have proved the following lemma.
LEMMA 7 (second Laplace representation). It holds that

ES, =’ / w(t)e="tdt + O(1/n).
0

All that remains is to show that the last integral is a periodic function of log, n. If
we let I(n) denote the value of the integral, divide the interval [0, co) into subintervals
[p*/n, p*+!/n], where —oco < k < o, and let t = pF*% /n, then we obtain

p*tl/n

I(n) = n? i w(t)e ™ dt

k= —00 p/n

oo 1
=n Y [ w@/n)ptt exp(—p*T) logpdu.
0

k=00

(16)

Using the key recursion relation of Lemma 5, part (c), we have w(pFt*/n) = pFw(p®/n);
)

I(n) _ logp/«I w(pu..logpn)/(pu—logpn) { i p2(k+u) exp(—— k+u)} du
0

k=woo

1
=logp [0 {w(p*1o% ™) /(p* 1% ™) } U(w)du,
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where [(u) is defined by

<<
)= Y p**™ exp(~p*).

k= —o0

Since the defining sum for [ converges uniformly on compact subsets of [0, c0), we see
that [ is continuous. Furthermore, if we define a function ¢ by

1
a7) o) =togp [ {uwle™ =)/ i),

the continuity of I, the local boundedness of w, and the convolution form of (17) show
that ¢ is also continuous. Since ¢(log,n) = I(n), we can write Lemma 7 as

(18) BS, = p(log, n) + O(1/n)

and the proof of the theorem is completed once we establish the following lemma.

LEMMA 8. The function ¢ is continuous, periodic of period 1, and bounded away
from zero.

Proof. We have already noted the continuity of ¢, and periodicity is immediate
from the recursion w(pu) = pw(u) combined with the integral representation (17) of
. The integral representation also gives p(z) = 0 for all z.

By compactness, ¢ will be bounded away from zero unless there is an z such that
¢(zo) = 0. However, for such an zo, we would get from (17) that w(p~@o—%) =0 for
all 0 < u < 1. By the recursion w(pu) = pw(w), we could then conclude that both ¢
and ES, were identically zero. This contradiction establishes that ¢(z) is bounded
away from zero. By (18) and division by ¢(log, n), we find that

ES,

oz, 7) 1+0(1/n)

which is more than we require to complete the proof of the theoremn.

4. Beyond expectations. One finds no difficulty in extending Theorem 1 be-
yond the convergence of expectations to almost sure convergence. The first step is
to obtain an understanding of VarS,, and this is easily approached though the use
of martingales. For the martingale difference sequence defined by d; = E(S.|F:) —
E(Sn|Fi-1) where F; = o{X1,Xa2,...,Xn}, we have the representation

Sn "ESn = zn:dh

i=1

and, by the orthogonality of the martingale differences, we have

VarS, = E|Sp — ESu? =Y _ Ed?.

i==1

To help estimate Edf, we introduce another collection of random variables {X’i, 1<
i < n} that are assumed to be independent, uniformly distributed, and independent

of the random variables {X;,1 <1 < n}. We then let () denote the sum of squares
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of the edges in thg spacefilling heuristic tour of {X1, Xo, ..., Xi—1, Xs, Xi+1,---» Xn}
and note by E(Sf(f)lfi) = F(S,|Fi-1) that we have

d; = E(S, — SP|F).

The basic observation is that the tours associated with S, and S differ by at
most six edges. Furthermore, if we recall the oriented distance function d(s,t) defined
in §3 and specify integers j; and j; by the relaticns

d(tjl,fi) = min d(tj,ﬂ) and d(t;,tjz) = min d({i,tj),
PR T Jii#d

then we obtain the spacefilling tour through {X;, X2,..., Xi-1, X, Xit1,---, Xn} by
connecting X; into the spacefilling tour through {X1, Xa,..., Xi—1, Xit1,-- -, Xn} by
edges to X, and X, and removing the edge that connects X, and X;,. We are thus
led to

57@ = S(X1, X2, ..., Xic1, X1, .., Xp) H[¥(t5,) — Y(&)|)?
+ (&) — wE)IP = (ts,) — D)l

Similarly, to build the spacefilling tour through { X3, X5, ..., X} from the tour through
{Xl,Xg, S ,X,;__l, Xi+1, PR ,Xn}, we find kl and k2 such that

d(tkl 1 tz) = ﬁl;lz d(tk) tz) and d(th tkz) = ﬁli d(ti; tk)a
from which we obtain

Sn = 8(X1, X2, -, Xic1, Xis1, -, Xn) + |9(te,) — (2|
+ [[9(t:) — Pt — b (te,) = D (twa)IP
The implied bound on lS’,(f) — S, is then
1S — S| < H[W(ts,) — w(E)I + [[$(&) = w(t)lI?

+ () — D5l + 1t ) — ()12
+ | (t:) — e |IP + lo(tey) — 9 te,)II%,

from which we find by Assumption 4 that E|d;|* < E|S, — Sf(f)lz is bounded by
(19)
6612/)E (pz(t.‘iu t:) + pz(fi’t:iz) + pz(th : tjz) + pz(th i) + p2 (tis ;) + pz(tkntkz)) :

The computation of the expectations in (19) are now routine, given the known distri-
bution of the gaps between n (or n — 1) points chosen on the unit circle. All of these
expectations are O(1/n?), and hence we have Lemma 9.

LEMMA 9. For n — oo, the variance of the sum of squares of edges S, satisfies

VarS, = 0O(1/n).

Now we are ready to prove the almost sure convergence of Sp.
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THEOREM 2. We have

Proof. The remaining steps follow a familiar pattern and will just be sketched.
First, we consider a subsequence by letting n; = [i log? i]. By Chebyshev’s inequality,
for any € > 0, we have

S P(ISn, — ESnl > €) < €2 VarS,, <€ S itlog ™ < oo

gm=l §=2 g=2

s0, by the easy part of the Borel-Cantelli lemma, for n — oo, we have (Sp, —ESn,) — 0
with probability 1. To stretch the convergence to the full sequence, we look at the
largest difference V; of S, and S,, as n varies through the intervals [, nig1),
Vi= niﬁ%%};iﬂ ‘Sn B Snil‘

For each n such that n;_; < n < n,, the number of terms that occur in S, and not
in Sp, or vice versa is at most O(n; — ni-1) = O(log? ). If A denotes the set of all
such terms, then |A| = ()(1og4 i); and, if L; is the largest of these terms, then by
Assumption 4 and the classical proof of the fact that the largest gap between n points
chosen at random from the circle is sharply concentrated around n~!logn, we can
show that EL? = O(n;?log®n;). Since V; < |A|L;, we see EV? = O(i~%log'% ); so,
again by the Borel-Cantelli lemma, we see that, for n — oo, we have V; — 0 with
probability 1, which, in turn, completes the proof of the theorem.

5. Concluding remarks. We have established a striking property of the sum
of squares of the heuristic tour provided by the spacefilling curve method. Of the
questions that remain open, the most natural are perhaps those that seek a more
detailed understanding of ¢, the periodic function that figures in Theorem 1. The
(centered) supremum norm of ¢ determines the strength of the oscillation of ES,,
and almost nothing is known about this norm. Simulations offer little insight because
of the slow growth of log,n and the difficulty of estimating ES,. Still, calculations
given in Platzman and Bartholdi [8] would suggest by analogy that the oscillation
due to ¢ is not large, perhaps only a few percent. This reinforces the difficulty of
obtaining detailed information about ¢ from simulations.

Another natural question addresses the possibility of obtaining sharp bounds on
the tail probabilities P(S,, > t). In view of the remarkable work of Rhee and Talagrand
[9] on the Gaussian tail bound for the optimal length of the TSP tour length, we are
tempted to suggest that P(S, > 1) < A exp(—Bt?) for all some A and Band all ¢ > 0.
Some of the structure that Rhee and Talagrand require (like the martingale used in
§4) is available in for Sy, but a detailed understanding of P(S, > t) seems to require
additional insights, since, in particular, S, may have tails that are much lighter than
those of the Gaussian distribution.

Perhaps the most compelling problems suggested by this work concern the be-
havior of the optimal tours rather than the heuristic cousins. First, if we let STSP
denote the sum of the squares of the edges in the (almost surely unique) shortest tour
through a random sample of n points chosen from the unit square, do we have

lim ESTSF =C

T~ OO
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for some constant C7

Finally, there at least one compelling problem concerning the worst-case behavior
of the sum of squared edges in an minimal length path. If S is a finite subset of [0, 1]?
and TSP(S) denotes a path of minimal length through the points of S, we suspect
that

M= max 3 el
1S1=" c1sp(s)

is asymptotic to clogn as n — cc. By the results cited in the first section, we know
M, = O(logn) and M, = Q(logn), but the present methods offer no serious progress
toward a full asymptotic result. The periodicity that has been found for ES, shows
that subtleties can emerge, though we need not expect them at every turn.
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