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GROWTH RATES OF EUCLIDEAN MINIMAL SPANNING
TREES WITH POWER WEIGHTED EDGES'

BY J. MICHAEL STEELE

Princeton University

Let X;, 1 <i < oo, denote independent random variables with values in
R%, d=>2, and let M, denote the cost of a minimal spanning tree of a
complete graph with vertex set {X,, X,,..., X,,}, where the cost of an edge
(X;, X)) is given by ¥(|X; — X;|). Here |X; — X;| denotes the Euclidean
distance between X; and X; and y is a monotone function. For bounded
random variables and 0 < a < d, it is proved that as n — oo one has
M, ~ c(a, d)n(4=/%p f(x)4~ /% dx with probability 1, provided ¥(x) ~
x* as x — 0. Here f(x) is the density of the absolutely continuous part of the
distribution of the {X}.

1. Introduction. The main issue pursued here is the development of the
probability theory for the minimal spanning tree of n independent multivariate
observations. For x; € R% 1 < i < n, we will be concerned with graphs G which
have vertex set V = {x, x,,...,%,} and edge set E = {(x,,x,): 1 <i <j < n}.
Here the length of an edge e = (x;,x;) € E will be denoted by |e|, where
le]| = |x; — x,| equals the Euclidean distance from x; to x;.

The functional of interest is M(x,, x,,..., x,), the weight of the minimal
spanning tree of V = {x,, x,,...,x,}, where the weight assigned to edge e is
Y(Je|). More precisely, we focus on

(1'1) M(x11x2""’xn) = mTi‘n Z \b(lel)’

esT

where the minimum is over all connected graphs T with vertex set V. The
weighting function ¢: [0, o) — [0, co) which is of most interest to usis y(x) = x¢,
where 0 < a < d. More general ¢ are still of interest and some of the analysis
which follows assumes only that ¢ > 0. When additional properties of { are
required, those properties are made explicit.

Any tree T which attains the minimum in (1.1) will be called a minimal
spanning tree (MST) for V. In almost all of the situations considered here the
minimal spanning tree is unique; but, to avoid consideration of special cases, we
never rely on that uniqueness.

Subsequent sections will develop several results which pertain to finite values
of n, but the main result is the limit theorem:

THEOREM 1. Suppose X;, 1 <i < oo, are independent random variables
with distribution p having compact support in R d > 2. If the monotone
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function { satisfies Y(x) ~ x* as x = 0 for some 0 < a < d, then with probabil-
ity 1

lim n-@-/dM(X,, X,,..., X,) = c(a, d)f Fx) @074 gy,

n— o0 RY
Here f denotes the density of the absolutely continuous part of p end c(a, d)

denotes a strictly positive constant which depends only on the power a and the
dimension d.

For the case of ordinary length y/(x) = |x|, Beardwood, Halton and Hammers-
ley (1959) state that the preceding result follows from modifications of their
analysis of the traveling salesman problem. The proof of Theorem 1 which is
given here uses several tools which were not applied in Beardwood, Halton and
Hammersley (1959). Perhaps largely for this reason, the proof given here for the
general result is more direct and less taxing than the original analysis of
Beardwood, Halton and Hammersley (1959) of the asymptotics of the traveling
salesman problem. Still, many of the insights provided in Beardwood, Halton
and Hammersley (1959) have helped guide this analysis of the minimal spanning
tree.

One feature of Theorem 1 that should be noted is that if p has bounded
support and p is singular with respect to Lebesgue measure, then we have with
probability 1 that M(X,, X,,..., X,) = o(n®=%/9). Part of the appeal of this
observation is the indication that the length of the minimal spanning tree is a
measure of the dimension of the support of a distribution. This suggests that the
asymptotic behavior of the minimal spanning tree might be a useful adjunct to
the concept of dimension in the modeling applications and analysis of fractals;
see, e.g., Mandelbrot (1977).

Theorem 1 is closely related to the theory of subadditive Euclidean func-
tionals [Steele (1981a)], but there are some essential differences. One issue is that
M, = M(X,, X,,..., X,) is not an almost surely increasing sequence of random
variables. This fact forces subtleties on M,, which are absent in the study of the
traveling salesman problem, the Steiner tree problem and other monotone
Euclidean functionals.

The technique applied to prove Theorem 1 was also useful in studying optimal
triangulations and the directed traveling salesman problem [Steele (1982, 1986)].
Still, the minimal spanning tree function has its own unique features and,
apparently, one cannot avoid developing some results which are special to the
geometry of the minimal spanning tree. Many of the special features of the
deterministic functional M(x,, x,,..., x,) are expressed by the inequalities given
in Section 2. The unified treatment of those inequalities is made possible by the
systematic use of a distance counting function and the pattern used in the
analysis of the counting function might prove useful in other geometric prob-
lems.

In Sections 3 and 4, a proof of Theorem 1 is given under the hypothesis that p
is the uniform distribution in [0, 1]%. A key tool used in the proof is the jackknife
inequality of Efron-Stein (1981). That inequality states (approximately) that
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Tukey’s jackknife estimate of variance is conservative in expectation. From the
point of view of combinatorial and geometric probability, the virtue of the
Efron-Stein inequality is that it shows how to bound the variance of a multi-
variate function of independent variables when one understands how the func-
tion changes as one of the arguments of the function is varied.

Section 5 provides a general method for extending results for Euclidean
functionals from the uniform case to arbitrary distributions. This extension
method is easier and more direct than the methods used in either Beardwood,
Halton and Hammersley (1959) or Steele (1981a). The idea behind the extension
technique is closely linked to almost sure embedding, and an important tool in
the technique is the embedding lemma of Strassen (1965).

The final section reports on those aspects of the probability theory of minimal
spanning trees which could not be resolved by the methods of this paper. In
particular, effort is made to lay out some open problems of interest.

2. A counting function and its applications. Let 7, denote a minimal
spanning tree of {x,, x,,...,x,} C [0,1]% where the edge weighting function ¢
is taken to be Yy(x) = |x|. Also, let »,(x) denote the counting function of the
edge lengths of Tj, i.e., »;(x) is equal to the cardinality of the set

(2.1) {e € Ty: le| > x}.

Lemma 2.1 does a good job of capturing the most basic information on the
distribution of the edge lengths. An interesting feature of the bound is that it
does not depend on n.

LeEMMA 21. There is a constant B, depending only on the dimension d > 1
such that

(2:2) v(x) < Byx™?

forall 0 < x < o0.

ProOF. We first note by the pigeonhole principle that there is a constant a,
such that from any set of & points {x,, x,,..., x;} in [0,1]¢, one can select a pair
of points x; and x; with |x; — x| < a;k~'/% With a little care, one can show
that a, = 2vd will suffice, but we will not need to be concerned with precise
constants either here or subsequently.

We now suppose that {x,, x,,...,x,} are any n points in [0,1]¢ and let E
denote the set of edges of a MST for {x,, x,, ..., x,,}. We recall Prim’s algorithm
for constructing a MST [see, e.g., Prim (1957) or Papadimitriou and Steiglitz
(1982), page 273] can be expressed as (1) initially join the two nearest points and
(2) iteratively join the two nearest connected components. Now if e;, 1 <j < n,
are the edges of a MST for {x,, x,,..., x,} constructed by Prim’s algorithm and
the edges are listed in the order chosen by the algorithm, we have the bound

lej] < ag(n—j+ 1)_1/d,
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since, when e; is chosen, there are exactly n —j + 1 connected components of
the forest produced up to that time by the algorithm.

Now if e,l< J < k, are any k edges of E, the fact that the edges are chosen
in monotone increasing order gives us

k n-1 k+1
(2.3) Ylel<s X lel<ay) i"Vi<apd-ve
J=1 ! i=n—k i=2

for a new constant &,. If we apply this last inequality to the set of & = y,;(x)
edges with length at least x, we have

(2.4) xvy(x) < @y(va(x))
Upon division by x»{?~V/4(x), inequality (2.4) establishes Lemma 2.1 with
Bs= (&% O

(d-1)/d

Lemma 2.2 is a generic application of inequality (2.2). It suggests the correct
order of magnitude for sums of powers of edge lengths.

LEMMA 22. For any {(x) = |x|', any minimal spanning tree T of
(%1, %o, ..., x,} C [0,1]? satisfies the inequalities:

(2.5) Y le|” < B'(y,d)n@ V9 for0<y<d,
eeT

(2.6) Y le|? < B'(d)log n
eeT

and

(2.7) Y le" < B(y,d)y"™@ for0<y<owand0<y<d.
lel=y

Here B'(v, d) is a constant depending only on the parameter y and the dimen-
sion d and B'(d) is a constant depending only on d.

ProoF. For any A > 0, we have for 0 < y < d,

L= X le"+ X eI

e€T lej<n™? lej>n~2

s0, noting that n — 1 — yy(x) is the number of edges of the MST which are of
length less than x, we can majorize the first sum by n!~*" and write the second
sum as a Stieltjes integral to get

Y le]" <nt"™+ f‘/‘?xyd(n -1 —yy(x)).

eeT n=?

Integrating by parts, we find

Y lel" < nt M+ n ™y (n7r) + yf‘/‘fx’_lvd(x) dx.
-

eeT
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Majorizing »,(x) by B,x ¢ and integrating, we get

T lel" < n'7 + Bn@0 + Biy(d — ) AN,

ecT

Choosing A = 1/d, we obtain (2.5). By analogous arguments, one can verify
inequalities (2.6) and (2.7). O

REMARK. The preceding proof provides a bound on B’(y, d) which diverges
to infinity as y = d. When d = 2, an explicit bound "

2 le* <23

eeT

was proved by Gilbert and Pollak [(1968), page 16]. The method of Gilbert and
Pollak uses the geometry of the plane extensively and their method appears to
be difficult to generalize beyond d = 2.

In the jackknife estimates developed in Section 4, we need bounds on the
change which takes place in the value of M(x,, x,,..., x,,) as a point is deleted
from {x,, x,,...,x,}. Following the customary jackknife notation, we set
My, Xgyeees£yeees X,) = M(X1, X9y evs i1y Xipqs--5 Xy), 1:€., @ hat is used to
signal a missing variable. Further, if T is any graph, we let N(i) = {j: (x;, x;) €
T}, so N(i) is the set of neighbors of x; in the graph determined by 7. We can
now bound the changes in the values of M as the sample changes by adding or
dropping points.

LEMMA 2.3. For any edge weight function , we have

(2.8) M(xy,x9,...,%,) < M(x),%5,...,%;5..0,%,) + jr.njiili\p(lx,- - x})

and, for any nondecreasing y, we also have

(2.9) M(xy, %5,y &iseresXy) < M(xy,%5,...,%,) + Y \I/(lei—le).
JjENG)

Proor. To prove inequality (2.8), note that any tree which spans
{xy, X9y, %;5...,%,} can be completed to a connected graph spanning
{x1, x3,..., x,} by connecting the point x; to the point x;, j # i, for which
¥(|x; — x,|) is minimal.

To prove inequality (2.9), let T be a minimal spanning tree of {x,, x,,..., x,}
and let x’ be an element x; of N(i) such that |x; — x| is minimal. We get a
connected graph spanning {x,, X, ..., £;,..., x,,} by (1) taking the edges of T, (2)
deleting all the edges incident to x;, i.e., deleting the set {(x;, x;): (x;,x;) € T}
and (3) adding the set of edges which join x’ to the other neighbors of x,, i.e.,
adding in the set A = {(x', x,): j € N(i), x; # x'}. This procedure implies the
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bound
M(x,, x5y, %;5...,%,) < M(x;,x5,...,%,)
= L ¥(xi-x)+ X w(x - x).
JEN(@) JEN()

By the triangle inequality and the definition of x’, we have |x' — x| <
lx" — x;| + |x; — x| < 2|x; — x|, so inequality (2.9) follows by the monotonicity
of . O

To bound sums such as that in inequality (2.9), one needs a bound on |N(i)|,
the cardinality of the set N(i) of neighbors of x;.

LEMMA 2.4. If { is strictly increasing, then there is a constant D, depending
only on d such that any MST in R® has maximum vertex degree bounded by D,.

In the case of Y (x) = x, this lemma is well known; in fact, D, is bounded by
N, the number of spherical caps with angle 60° which are needed to cover the
unit sphere in R? To check this bound, one can note that if a vertex had degree
greater than N, then two edges of the MST would have an angle less than 60°.
Simple geometry would then contradict minimality.

To prove Lemma 2.4 for general monotone ¢, we first note by the monotonic-
ity that we can choose edges for a minimal spanning tree with edge weighting
function ¢ which are also the edges of a minimal spanning tree with edge
weighting function yy(x) = |x|. To see this, just consider building the two
minimal spanning trees by the algorithm of Kruskal (1956) which (1) orders the
edges of the complete graph in increasing order and (2) examines each edge in
order and accepts an edge into the minimal tree provided it does not create a
cycle with the previously chosen edges. By the monotonicity of ¢, the edge
ordering given by ¢ and ¢, coincide, so if one constructs a minimal spanning tree
using Kruskal’s algorithm for ¢ and v, the sets of edges can be chosen so they
will also coincide. [For more detail on Kruskal’s algorithm, one can consult
Papadimitriou and Steiglitz (1982), page 289.]

The main result of this section is Lemma 2.5 which expresses a basic continu-
ity of the minimal spanning tree functional.

LEMMA 2.5. There is a constant B”(a, d) such that for any two finite subsets
x and x' of [0,1]%, we have for the weighting function Y(x) = x% 0 < a < d,
that
(2.10) IM(x) - M(x')| < B"(a, d)lxax'| @4,
Here xax’' denotes the symmetric difference of the sets x and x’, i.e., (x U x’) —
(x N X))

Proor. For any x’ in the set x’' — x, we let N(x’) denote the set of
neighbors of x’ in the MST of x U x’. By the same considerations used in the
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proof of (2.9), we obtain
M(x)sM(xux)+ ¥ L ¢@u - ).

x'ex—x' x€N(x')

We will use Lemma 2.2 to bound this double sum, but some maneuvering is
required. First consider the set of edges E’ = {(x’,x): x € N(x’) and x’ € x —
x'} and let V' denote the set of all vertices which belong to an edge of E’. We
know the cardinality |V’| is bounded by (D, + 1)|x — x’|, since no vertex x’ can
have degree bigger than D,.

A necessary and sufficient condition due to Prim (1957) for an edge e to
belong to some minimal spanning tree of a graph is that the vertex set of the
graph can be divided into two nontrivial complementary components A and A€
such that e is the least weight edge which meets both A and A°. For e contained
in MST{x,, x,,...,x,} = E, we can thus find A C {x, x,,...,x,} such that e
meets A and A€ and

el =min{é€ E: éNA #¢,éN A° # ¢}.
Now if e € E’, we also have e € E, and hence we have the equality -
lef =minfe€ E:eNANV #¢,eNANV # ¢}

and we see that e must also be in MST(V’) by Prim’s sufficient condition. We
therefore have the bound

X Y v@x-x) < X ¥(2e),

x'ex—x x&€N(x') e MST(V")
so using Lemma 2.2 and the bound on the cardinality of V’, we have
(2.11) M(x') < M(x U x) + 2%B'(a, d)(Dy + 1)~ g — x| 4=,

To obtain an inequality in the other direction, we build a spanning tree for
x U x’ by taking minimal trees for x and x’ — x and joining them with a single
edge. This construction gives

(212) M(xux)sM(x)+Mx' -x)+ e D

Y(lx — «')).
-x

Since by inequality (2.5), we have the bound B'(a, d)|x’ — x| %/¢ on
M(x’ — x) and since ¥(|x — x’|) is majorized by d*/?, inequality (2.12) yields

(2.13) M(x U x) < M(x) + B'(a, d)x’ — x|“ 2%+ d*/.

Now majorizing M(x U x’) in (2.11) by the bound given by (2.13) yields
M(x’) — M(x)

(2.14)

< B'(v, d)(1 + 25Dy + D) )ix — x|+ d2,

By the symmetry of x and x’, we see that |[M(x’) — M(x)| is also bounded by
the right side of (2.14). Since we can either assume |x — x’| > 1 or else inequality
(2.10) is trivial, we see that inequality (2.14) establishes the claimed bound (2.10)
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with a value of B8} which can be given by
B"(a,d) = B'(v,d)(1 + 2D, + 1)) + g2, O

3. Growth in mean. The asymptotics of m, = EM(X,, X,,..., X,), where
X, are independent and uniform on [0,1]¢, can be established by a three step
technique of Poisson smoothing, analysis of an approximate recursion and a
Tauberian argument for extracting information about m, from information
about averages.

By 7 we denote a Poisson point process on R¢ with constant intensity equal
to 1. For any bounded Borel set A, the set #(A) is almost surely a finite set of
points and M(7(A)) will denote total weight of the minimal spanning tree of the
finite set of points m(A). Here, of course, the total weight of the minimal
spanning tree is defined in terms of ¢ as expressed in (1.1).

We now let ¢(¢) = EM(7[0, t]¢); that is, ¢(¢) is the expected cost of the
minimal spanning tree of the set of points 7r[0 t]% To make this explicit, we
write 7[0, t]¢ = {X), X,,..., Xy}, where N is a Poisson random vamable with
mean ¢% and we apply (1. 1) to get the representation

o(¢) = Em;n r (X - X)),
& )ET
where the minimum is over all spanning trees of {X,, X,,..., Xy}. The asymp-
totic behavior of ¢ will be obtained from Lemma 3.1.

LEMMA 3.1. If Y(x) =x* with 0 < a < d, then there is a constant C =
C(a, d) such that

(3.1) o(t) < m%(t/m) + Ct*m?=<

for all reals t, 0 < t < o0, and integers m > 1.

ProOOF. We first partition [0, ¢]¢ into m? subcubes @, of edge length t/m.
Next, for each i for which #(Q;) # 0, we choose one representative Y; from
7(Q,). By inequality (2.5) scaled up to [0, ¢]%, we can obtain a minimal spanning
tree T of the set (Y: 1<i<m? n(Q) + ¢} such that ¥ . le|* <

t°8'(a, d)(m?)@=9/4d = t8"(a, d)m?=* But now the tree T, together with the
minimal spanning trees of all the «(Q,), must form a connected graph. Such a
connected graph has length no greater than that of the minimal spanning tree of
7([0, t]¢), so

M([0,6]%) < T M(n(Q)) + L lel*

i=1 ecT

(3.2)
< iM(vr(Qi)) + t%8'(a, d)m?<.
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Taking expectations and using the fact that EM(#(Q,)) = ¢(t/m) completes the
proof of the lemma with C = f'(a, d). O

As a consequence of (3.1) and the continuity of ¢, we can show there is a
constant ¢(a, d) > 0 depending only on d and a such that

(3.3) o(t) ~ c(a,d)t? ast— oo.
To prove this, we set ¢(t) = ¢(¢) + 2Ct* and note that if m, is chosen large

enough to insure 2m¢ < m¢, then inequality (3.1) implies that for m > m,, we
have
¢(tm) < m%(t).
For any ¢ > 0, we can let 8 = liminf, , ¢(¢)/t? and use the continuity of ¢ to
ﬁnd an interval [tO, t,] such that ¢(t)/t®< B + ¢ for all t e [, t,). Setting
= {s: ¢(s)/s?< B+ ¢}, we note that the recursion for ¢ implies that
Uﬁ=mo[mt0, mt,] € A. But since mt; > (m + 1)¢, for all m > t(t, — t,) ' = t*,
we see that for m greater than max(¢*, m) the intervals [ mt,, mt,).are overlap-
ping. From this we see that A must contain an infinite interval [¢**, c0). This
implies lim sup ¢(¢)/t% < B + ¢, and by the arbitrariness of ¢ we obtain ¢(t) ~
Bt?. This result and the fact that a < d implies the asymptotic relation (3.3).
By the definition of ¢(f) and the scaling property t*M(x,, x,,...,%,) =
M(tx,, tx,, ..., tx,) of M, one can compute by conditional expectations that

(3.4) o(t) =t f‘, me~ ¢ /n!.

n=0
Here m, = EM(X,, X,,..., X,), where the X, are independent and uniformly
distributed on [0,1]%.
To extract the asymptotics of m, from (3.3) and (3.4), we will first prove that
the sequence m, has a useful monotonicity property, specifically,

(3.5) nm,_, < (n+2*%)m,.
To verify inequality (3.5), we sum inequality (2.9) over 1 < i < n to get

> M(X, X,,..., X,y X,) < nM(X,, X, ..., X,,)
i=1

(3.6) n
+Y )Y 29X, - X
i=1 jeN()

Next we note that the double sum exactly equals 2'**M(X,, X,,..., X,), so
taking expectations in inequality (3.6) completes the proof of inequality (3.5).
The way we will use inequality (3.5) is through the fact that it implies

(3.7) ntm, > (n—1)*m,_ , foralln>1,

provided %2 > 2!*¢,
The last tool required is the following differentiation lemma of Ha.rdy and
Littlewood [see, e.g., Widder (1946), pages 193-194].
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LeEMMA 3.2. If f(x) ~ AxY as x = 0 and f"(x) = O(x""2) as x = 0, then
fi(x) ~yAx" lasx - 0.

We can now assemble the pieces to prove the main result of this section.

LeEMMA 3.3. If X;, 1 < i < oo, are independent and uniformly distributed on
[0,1]¢ and m, = EM(X,, X,,..., X,,), then there is a constant c(a, d) such that

(3.8) m, ~ c(a,d)n@ 94 gsn - 0.
ProoF. By (3.3), (3.4) and the change of variables t¢ = u, we have

o0
(3.9) Y. me“u"/n! ~ c(a,d)u®" 7 a5y > 0.
n=0
Taking the Laplace transform of the left side of (3.9) and applying the Abelian

theorem for Laplace transforms [Widder (1946), page 181], we obtain for A — 0
that

Y m,(1+A)"""" ~c(a,d)T(2 - a/d)A"2+e/d
n=0
or, equivalently,
(3.10) Y me ™ ~c(a,d)(2 - a/d)x"2"/? as5x - 0.
n=0

From Lemma 2.2 we know m, = O(n®~®/9) and, by the Euler—-Maclaurin
formula, we have £2_,n%™"* ~ x“Y"IT(y + 1) as x — 0; so, for all &,

o0
(3.11) Y. nfme " = O(x7%72*/4) asx - 0.

n=0

Finally, by the Hardy-Littlewood differentiation lemma applied successively
beginning with (3.10) and using (3.11), we find for each integer £ as x — 0 that

« Y ntme ™™ ~ c(a,d)T(2 - a/d)(2 - a/d)3 - a/d)
(3.12) n=0
- (B+1-a/d)x *2te/d
By the substitution e * = y, we have as y — 1 that
Y n*m,y" ~ (e, d)T(2 - a/d)(2 - a/d)(3 — a/d)
(313) n=0
oo (k+1-a/d)(1 —y) ke

“The Karamata Tauberian theorem [see, e.g., Feller (1971), page 447] applied to
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(3.13) now gives us information about the partial sums of the n*m

N
Y n*m, ~ c(a,d)T(2 — a/d)
n=1

(3.14)
k

X [T +j— a/d)N**+2-/2/T(k + 3 — a/d).
Jj=1

The point of this maneuvering is that the series {n*m,} is increasing by (3.7)
and, by a well-known lemma [cf. Apostol (1976), page 280], the monotonicity of
the terms of a partial sum justifies carrying over the asymptotics to the
individual terms, i.e.,

(3.15) n*m, ~ c(a,d)n**1-2/9,

On dividing by n*, the proof of Lemma 3.3 is complete. O

The repeated differentiation technique applied previously can-be used in
many problems where one needs to exploit an approximate monotonicity such as
expressed by inequality (3.5). The passage from the asymptotic relation (3.3) to
(3.15) can be made a bit more quickly by using a more sophisticated Tauberian
theorem, but building the derivation on Karamata’s theorem is simple enough.
One benefit of the path chosen is that the structure of m, is drawn out a bit
more fully through the development of inequality (3.7). A third method for
proving (3.8) can be based on (3.7), the fact that m, = O(n?~%/?) by Lemma
2.2 and direct estimation of the Borel sum in (3.9).

4. Variance bounds. Efron and Stein (1981) established the useful fact
that Tukey’s jackknife estimate of variance is conservative in expectation.
Together with the geometric lemmas of Section 2, this fact will provide effective
bounds on Var M,,.

Let S(x,, x4,...,%,_,) denote any symmetric function of n — 1 vectors x; €
R If X;, 1 <i < n, are independent identically distributed random vectors in
R, we define n + 1 new random variables by

n
S, =8(X,, X5,..., X;_1, X;11,-.-,X,) and S=n"1Y §,

i
i=1

The Efron-Stein inequality says
(4.1) VarS(X,, X,,..., X,_,) <EY (S, - §)’.
i=1

Since the right side of (4.1) is not decreased if S is replaced by any other
variable, we can apply (4.1) in the MST problem to obtain

VarM, ,<EY (S,- M(X, X,,..., X,))*.
i=1
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For X; that are independent and uniformly distributed on [0,1]¢, it will be easy
to bound the preceding sum.

To avoid concern over irrelevant constants, we use the Vinogradov symbol
a, < b, to denote that a, < Cb, for some C not depending on n. By Lemma 2.3
and the bound (max(a, b))? < a? + b2, we have

n n 2
VarM,_, < E Z min |X; — Xj|2°‘ + E Z ( Z 2°X; — le"‘) .
j=1Jt J*0 i=1\jeN@GE)

By elementary calculus, we can show for any 0 < 8 < « that E min il X —
X|# < n~P/? g0 the first sum is majorized by n'~2%/¢ Applying Schwarz’s
inequality to the second sum, yields a total bound

n
VarM, ,<n'"2+EY ) 1X; — X%
i=1 jeN@)

Since the last sum equals 2EY, _ 7|e|?%, where T is a minimal spanning tree of
{X,, X,,..., X}, Lemma 2.2 shows that we have completed the proof of Lemma
4.1.

LEmMMA 4.1. If X;,1 < i < oo, are independent and uniform on [0,1]¢, then

(4.2) Var M, < n'~2*/? for 0 < 2a < d,
(4.3) VarM, < logn for 2a =d

and for each a, d/2 < a < 0,

(4.4) Var M,, is uniformly bounded for alln > 1.

To move now toward a proof that n=@~*/4 M — m ) converges almost
surely to 0, we set up a subsequence argument. For a real number A > 1 which
will be determined later, we define a subsequence of integers n, by letting
n, = [k*] and we note by Lemma 4.1 that we have the set of three inequalities:

(4.5a) Var(M, /n@ /%) < n=1 for0 < a < d/2,
(4.5b) Var(M, /n@*/?) < logn/n for a = d/2,
(4.5¢) Var(M, /n@-9/?) < n=2+2¢/d for d/2 < a < d.

Under each of the conditions of (4.5a)—(4.5c), we see for 0 < a < d that
[}
y Var{Mnk/nS;’_“)/d} < o0,
k=1

provided also that A(—2 + 2a/d) < —1, i.e, provided A > (1 — a/d)~". For
such a value of A, we see by the usual Borel-Cantelli argument that M, n (4~*/¢
is asymptotic to m,, with probability 1 as £ — co.

To push this relation toward one valid for the full sequence of integers, we will
bound the variability of M,, as n varies through the intervals [n,, n,, ), i.e., we
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bound V;, = max,, _,<p,,, M, — M,,|. By Lemma 2.5, we see that for n, < n <
n, ., we have with probability 1 that

M, — M, | <B"(a,d){Xps1, Xnigs-os Xy, JI @7 < pO- DA/,
Hence we have with probability 1 that
(4.6) V,/n{d-a/d « p=(d-a/d,
From the identity
M, n~(d-a/d _ Mnhn;(d—a)/d
= (M, - Mnk)n—(d—a)/d + Mnh(n—(d—a)/d _ n;(d—a)/d),

the bound (4.6), the fact that M, < n{?~®/¢ and n~(@-0/d _ po(d-0/d «
k~n;(@=9/4 we have the relation

(4.7) | M n~(@=0/d _ Jf p-(d-a/d| « p-(d-ay/d | p-1,
n n,'“k

Finally, inequality (4.7) and the fact that M, ~ c(a, d)n{*~*/? with probabil-
ity 1, complete the proof. Our result is summarized in Theorem 2.

THEOREM 2. If X;, 1 <i < oo, are uniformly distributed on [0,1]% and M,
is the length of the MST of {X,, X,,..., X,,} using the edge weight function
Y(x) = x* with 0 < a < d, then there is a constant c(a, d) > 0 such that with
probability 1,

(4.8) M, ~ c(a,d)n® 94 agsn — 0.

This theorem has been proved except for showing c(a, d) is strictly positive.
To see this, note that each X; is connected to some X; and hence

M, > min{|X; - X,/ 1<j<n, j+i}.

N}
.M=

1

13

Since it is easy calculus to show there is a ¢ > 0 such that
E min{|Xj -X|1<j<n,j+ i} > cn~v4,

the proof is complete.

5. General extension principle. We now show how the result just ob-
tained for uniform distributions can be extended to any bounded distribution.
The main observation is that the minimal spanning tree functional has enough
continuity to permit approximation of samples from a general distribution to be
replaced by samples from a simpler class of distributions whose asymptotic
analysis follows easily from the results for uniformly distributed variables. This
approximation is made easier by using an almost sure embedding technique
based on the following property of marginal and joint distributions.
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LEMMA 5.1 [Strassen (1965)]. Suppose P and @ are probability measures on
a bounded subset of R? and suppose also that there is an ¢ > 0 such that P and
Q satisfy P(F) < Q(F) + ¢ for all closed F. There is then a probability measure
fi on the product space R® X R? such that

i(-,R%) = P(-), A(R%,-)=Q(-) and pA{(x, y)ix+y} <e

For an elegant combinatorial proof of this lemma based on Hall’s matching
theorem, one can consult Dudley (1968 or 1976).

The proof of Theorem 1 begins by establishing the limit result for a special
class of distributions which we call blocked distributions. These are probability
measures on [0,1]¢ with the form g(x)dx + dp, where g(x) = I7 ,a; 1g, the
measure p, is purely singular and the @;,1 < i < m < co, are disjoint cubes with
edges parallel to the axes. Here we recall that a measure p, on [0,1]¢ is called a
purely singular measure if p,[0,1]%) = p,(A) for some measurable A of
Lebesgue measure 0. The next result points out a continuity condition which
suffices to carry asymptotic results for the class of blocked distributions to the
class of bounded distributions.

THEOREM 3. Suppose that there is a constant B not depending on n such
that S(x,, x,,..., x,) satisfies the continuity condition
(5.1)  IS(xy, x5,...,x,) — S(x{, x5,..., x5)| < B|{i: x; # x/}|¢" /4,

Suppose also that for every sequence of i.i.d. random variables {X}, ;<o
distributed with a blocked distribution p = p, + g(x) dx, we have with probabil-
ity 1 that

(5.2) S(X,, X,,..., X,)n~ @9/ _ ¢(a,d) fg(x)(d_a)/d dx.
One then has that with probability 1,
S(X{, X, ..., X;) = 0@ de(a, d) [{(x) dx,

whenever { X/} are independent and identically distributed with respect to any
probability measure on [0,1]¢ with an absolutely continuous part given by
f(x) dx.

Proor. If the X; are distributed according to f(x)dx + p,, where B, i
singular, we take an approximation g,(x)dx + p, where g, (x) = ;-1“ lQ
Here, each Q; is one of the subcubes obtained by partitioning [0, 1]¢ into m¢
parts and the a; are defined by «; = [, f(x)dx. It is a traditional exercise to
show that for such a; we have f |gm(x) — f(x)|dx - 0 as m = co. Finally,
defining measures P and Q by

P(A) = /A f(x)dx + p,(A) and Q(A)= fA En(x) dx + p,(A),

we have |P(A) — Q(A)| < [4|f(x) — &(x)| dx < e for all m > m(¢) and & > 0.
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By Lemma 5.1, one can therefore define a probability measure fi on R¢ X R
with marginals P and @ such that i{(x, y): x # y} <e.

We now define a sequence of random vectors in R¢ X R¢ by (X;, X/),
1 <i< oo, where (X, X/) is the ith vector of an independent sequence of
random vectors with distribution given by the measure fi. By the law of large
numbers, we have with probability 1 that

(5.3) I(i: X, # X/} ~ ni({(x, y): x # y})
and by the bound on the off-diagonal probability mass we have ni({(x, y):
x # y}) < en. By conditions (5.1) and (5.3), we see
limsupn~@-48(X,, X;,..., X,) — S(X{, X3,..., X)| < Beld-0/4
whence by (5.2) we have almost surely
limsup8(X,, X,,..., X,)n~(@-*/d

n—oo

< Be@=9/? ¢ limsupS(X/, Xg,..., X, )n"(d-2/d

n— oo
< Be@=9/4 4 ¢(a, d)/gm(x)(d_a)/d dx.
Since m and & > 0 are arbitrary, we consequently have

limsupS(X,, X,, ..., X,)n~"@=9/4 < ¢(a, d)ff(x)‘d“‘)/d dx as.
n—oo
Finally, since the limit infimum can be dealt with in exactly the same way as the
preceding limit superior, the proof of this theorem is complete. O

We now apply Theorem 3 to minimal spanning trees. By Lemma 2.5, in-
equality (5.1) is satisfied by the minimal spanning tree functional, so it only
remains to verify the relation (5.2).

We consider a blocked distribution g(x) dx + pu, and let E denote the support
of p,. We will also denote Lebesgue measure by A(-) or by dx, according to
convenience. Since the Lebesgue measure of E equals 0 and since g is constant
on a set of subcubes, we can find for any & > 0 a partition {@;}; < ; of [0,1]¢ into
subcubes such that the following properties hold:

(5.4) oneach @;, i € I, g(+) is constant,
(5.5) forallie I, l=\NQ,)"" <e,
E c AU B, where A and B are disjoint, A(A) =0,
(5.6) P(X,€A) =p,(4) <¢,
B= U@, whereA(B)= Y AQ,) <e.
jed JjEJ

We now set C = [0,1]¢ — (A U B) and note that by tying together the minimal
spanning trees of these sample points which lie, respectively, in the sets in A, B
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and C, we have
M(X, X,,...,X,) <2d?+ M({X;: X; € A)})
+M{X;: X;€ B} + M({X;: X, € C)}),

where the first term 2d*/2? denotes the maximal cost needed to unite the three
trees. Since P(X; € A) < ¢, the strong law of large numbers and Lemma 2.2 give
the bound

(5.7) limsupM({X;: X; € A})n~4~9/4 < B'(a, d)ed /4,

For the sample in the set B, we use a more geometric bound. Specifically, we
apply Lemma 2.2, rescaling and Hélder’s inequality to obtain

M((X;: X, € B)) s 1d** + L M({X:: X; = Q)
JE
(5.8) < |J1d*? + B'(a,d)I* ) |{X; € Q;}|@ /¢
jEed
< IJlda/2 + B/(a d)lalJIa/dn(d—a)/d

By the last bound given in (5.6), we have L ;. ;A(Q;) < &; so by the definition of
1, we have |J|I¢ < ¢ and inequality (5.8) finally ylelds

limsupM({X;: X; € B})n=@~ 9/ < B'(a, d)e*/“.
n— oo
Writing J’ for the complement of J in I, we now handle the more substantial
contribution due to the points in C. We write @, = @;— A and note C =
U je J»Q o SO

(5.9) M({X;: X;€ C)) <d*/\|+ ¥ M({X;: X, € §,}).
JjEJ
Setting v, = [o.8(x)dx = P(X; € Q,), we note g is constant on each member of
the partition {Q,};c; so we can write g(x) = v,I~ 4 for all x in Q;
Conditional on the event {X; € @} the random variable X; has the uniform

distribution on @ ;, j» 80 scaling, Theorem 2 and the law of large numbers tell us
that with probability 1,

M({X;: X; € Q;}) ~ c(a, d)I*|{X;: X, € Q;}|4==/4
(5.10) ({%: X € @}}) - ela, )1 X X, = Q)

~ ¢(a, d)ld(yjn)(d_“)/d.

When we sum the previous bounds on the contributions of A and B and the
contribution expressed by (5.10), we have

]j‘msupM(Xls X2’ ey Xn)n-—(d-—a)/d
(5.11) e s e
< B’(a,d){b‘( a)/d 4 ga/ } + c(a,d) Z .Yj( a)/dyd

JjEJ
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The arbitrariness of ¢ > 0 and the bound X ;. ;A(Q,) < & can now be applied
in (5.11) permitting us to conclude that for any blocked density g(x) dx + p, we
have the upper bound

5.12) limsupM(X,, X,,..., X,)n" @94 < ¢(a, d) [g(x) "/ dx.
1

n— oo
The corresponding lower bound on the limit inferior is a bit more subtle. For
A, B and C defined as before, we have by Lemma 2.5 that
M(X,, X,,...,X,) > M({X;: X,e BUC})
—B"(a, d)|{X;: X; € A} =2/,

Now, given a minimal spanning tree T of {X;: X; € B U C}, we take x to be the
set of elements of {X;: X; € C} which are joined by an edge of T to an element
of {X;: X; € B}.

The minimal spanning tree of {X;: X; € BU C} together with a minimal
spanning tree of x will contain a spanning tree of the set {X;: X; € C}, so we
have the crude bound

(5.14) M({X;: X;e C}) < M({X;: X,;€ BU C}) + M(x).

(5.13)

To bound the cardinality |x|, we note that for each element of x there is either
(1) an endpoint of an edge of length greater than y or (2) a point of C within a
distance y of B. Thus

(5.15) Xl < 7a(9) +[{X:: X, € €, miniX, - o] <5)|
T wEe
Since C is disjoint from B and the singular support of { X}, we have the bound
P(X; € Cand min|X, — o] <) < llgll.l/I{(Z +25)* - 14),
we

where ||g||,, = sup|g(x)| < co. Also, by (5.6) we have T, ;MQ;) = I%J| < ¢, so
the preceding bound gives us for 0 < y < //2d that

(5.16) P(X,eCand min|X; — o] < 7) < 2ellgll. 1" "ed,
weE

where we haveused 1 + x <e* <1+ exfor0<x < 1.
By Lemma 2.2 applied to M(x) and by the law of large numbers applied to
inequalities (5.15) and the probability bound (5.16), we have

(5.17) limsup M(x)n~@" /% < B"(a, d)(2e||g||, ¥l 'ed)

n—oo

(d-a)/d

Also by (5.13) and (5.14), we have
M(Xl’ XZ’”" Xn) 2 M({Xi: Xi € C}) - M(X)
—B"(a, d){X;: X; € A}|@-4,

The last two terms have already been bounded; so as before, our problem is
reduced to calculating the contribution from C.

(5.18)
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To begin, take a spanning tree T of {X;: X; € C} and, for each j € J’, let D;
denote the set of edges e € T such that both end points of e are in Q Also, 1et
X j denote the set of points in Q which are joined by an edge of T to a point in
the complement, Q° Since D; together with a MST of x; will span {X:
X e Q .}, we have

(519)  M({X: X Q)] < T lel+ B )b,

ee DJ
which, after summing over <J’, yields

.ZIM({X,.: X,€Q,}) < M({X;: X;e C})
(5.20) red

+B'(a, d)I* 3 x4
jed

To handle the last sum we note as in (5.15) that

(621) X ixiswm(y)+ X
jed jed

and, as in (5.16), we have for 0 < y < [/2d that

wEQ;

(5.22) P(X,. € @;and min |X; - o] < y) < 2e||g|l ¥4 d.
wer

By (5.21), (5.22), Hélder’s inequality and the law of large numbers, we have

limsup( Z Ile(d—a)/d)n—(d—a)/d
(5.23) n=wo \jeJ

(o _ (d—a)/d
< ||/ (2¢]|g]| , ¥4 ') :

Now, since |J’|I¢ < 1, inequality (5.23), inequality (5.20) and the fact that y is
arbitrary except for the constraint 0 < y < [/2d, we can take y/~! to be as small
as we like and conclude

liminf M({ X;: X; € C})n~(d—a)/d

n—oo

> liminf ¥ M({X;: X, € Q-})n_(d"")/d.

n—ooo jeJ’

Finally, for each @, relation (5.10) says the limit of M({X;: X; € Q,})n~(?~*/¢
exists and equals c(a, d)y§4~ /4%, so summing (5.24), we have

(5.24)

(5.25) liminfM({X;: X, € C})n" @/ > ¢(a,d) / g(x) 9% d.
n-— oo
Since the Lebesgue measure of C is at least 1 — ¢, inequality (5.25) completes
the proof of a lower bound on the limit infimum which complements the bound
on the limit superior given in (5.12). We have therefore completed the proof of
Theorem 3 under the restriction that y(x) = |x|* The conclusion of the proof of
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Theorem 3 under the more general assumption that ¢ (x) ~ x* as x — 0 comes
from Lemma 5.2.

LEMMA 52. If x;,1 < i < o, is any sequence of points in R® such that for

0 < a <d, we have M'(x, x,,...,%,) = o0 as n - o, where
M'(x,,%9,...,%,) = min Y, |e|%
T esT

Then if ¢ is monotone and Y(x) ~ x* as x = 0 and
M(xvxz’---,xn) = min Z ‘P(lel)’
T eeT
we have
M(xy,x9,...,%,) — M'(xy, %5,...,%,) = o( M'(x,, x5, ...,%,))

asn— .

ProoF. If we choose the edges of the two minimal spanning trees of
{xy, Xg,..., x,} under weight functions y(x) and |x|* by using Prim’s algorithm,
we will obtain the same tree T because of the monotonicity of . The absolute
difference of the tree weights is therefore given by

Ap=| L ¥(el) = Xlel*| = X e(el)lel’,

eeT ecT eeT

where &(x) = |Y(x) — x%x~* and &(x) — 0 as x — 0. Since

(5.26) A, < sup e(x) Y le|*+ sup e(x) Y |e|,
0<x<$é eeT 0<x<d/? eeT
lel<8 le|>8

we see the second sum of (5.26) is bounded independently of n by inequality (2.7)
of Lemma 2.2 and the first sum of (5.26) is bounded by

supe(x)M(x, Xg,y...,%,)-

x<8
By our choice of § > 0, we can make sup, _s&(x) as small as we like, so we see
that (5.26) implies A, = o(M'(x,, x5, ..., X,)), as claimed. O

6. Concluding remarks. The results given here concern the almost sure
convergence of a sequence of normalized random variables to a constant c(a, d).
The natural questions associated with such a result are:

1. Can the constant be determined?

2. Can the basic strong law be supplemented with a result which provides
information about the rate of convergence?

3. Can the strong law be supplemented with distributional results such as a
central limit theorem?

Concerning the value of the constants ¢(a, d), there are some analytic bounds
and Monte Carlo estimates, but there is little hope for an exact analytic
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determination. Gilbert (1965) proved that c(1,2) < 271/2 = 0.707 and cited ex-
perimental evidence that suggested c¢(1,2) = 0.68 as a good approximation.
Roberts (1968) proved that 0.5 < ¢(1,2) and 0.554 < ¢(1,3) < 0.698. Through a
more extensive Monte Carlo analysis, Roberts (1968) estimated that c¢(1,2) =
0.656 with a standard deviation of 0.002 and c¢(1,3) = 0.668 with a standard
deviation of 0.002.

There are two issues concerning the possibility of more detailed information
on the rate of convergence. First, what can be said about the rate of convergence
of the normalized means m,n~(@~*/? o ¢(a, d)? Here experience in the area of
subadditive processes suggests that progress is unlikely. On the other hand,
several approaches are likely to give more detailed information about the
asymptotic size of M, — EM,. For example, the Efron-Stein inequality can be
used iteratively as in Steele (1981b) to obtain moment bounds on M, — EM,,
e.g., with ¥(x) = |x| and d = 2, one can show that for each 1 < p < oo thereis a
constant B, < co such that

(6.1) E(M,- EM,)" < B,

for all n > 1. Even stronger bounds on the tails of M,, — EM, should be possible
using the inequalities of Section 2 together with the interpolation technique of
Rhee and Talagrand (1986), which has proved remarkably effective in the
traveling salesman problem.

Concerning the possibility of a central limit theorem, there is encouraging
progress owing to Ramey (1982), who proved that a central limit theorem would
follow if one could verify a certain complicated Ansatz which expresses a type of
conditional independence between distant parts of the minimal spanning tree.
The required Ansatz is analogous to results in statistical mechanics which have
been rigorously justified, but so far there is no complete proof of a central limit
theorem for minimal spanning trees.

Outside of this set of classical questions, there is an intriguing and delicate
problem raised by Robert Bland. For X;, iid. U[0,1]% Bland observed em-
pirically that the sums L, |e|?> seem to converge as n — oo. Bland’s observa-
tions and conjecture provided basic motivation for the present analysis of power
weighted minimal spanning trees, and it is intriguing that the case y = d seems
particularly resistive. This conjecture bears an interesting relation to the result
of Frieze (1985) concerning the weight M, of the MST for the graph with edge
weights chosen independently from the uniform distribution on [0,1]. Frieze
proved that M, converges in probability (and expectation) to the constant
$(3) = 1.202.... An earlier result of Timofeev (1984) only established that
EM, < 3.29, but the method of Timofeev is still intriguing because of its
generality. '

Acknowledgments. Persi Diaconis, Ingram Olkin, Dan Ramey, Geoffrey
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