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Data-analytic tools for choosing transformations to increase linear association are applied to
a basic problem of soil physics, the determination of the coefficient of soil-water diffusivity
D(6). Data on Manawatu sandy loam illustrate the decisions the analyst must face and the
quality of the estimates that the analyst can expect.
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1. INTRODUCTION

In many problems of science and engineering, one
needs to estimate derivatives and integrals of func-
tions that are determined empirically. One problem
that requires such estimates and that seems partic-
ularly interesting from a statistical perspective is the
estimation of the coefficient of soil-water diffusivity
D(0). Despite being relatively unfamiliar to statis-
ticians, this problem is a basic one of soil physics,
and empirical findings are regularly reported. The
feature of the problem that makes it unusual is that
estimation of D(6) typically requires determining
both derivatives and integrals of a function that is
indirectly observed.

The present approach to the estimation of D(#) is
guided by the view that statistical methods for deal-
ing with data that exhibit strong linear associations
are well developed; consequently, many nonstand-
ard problems are best addressed by transforming the
data to achieve increased linear association. The fun-
damental notion of straightening curves and plots is
well known in the statistical literature. Still, when
that simple notion is applied to a technological prob-
lem that has traditionally been addressed by ad hoc
means, the outcome can be surprising. In this in-
stance, one finds a natural estimation process that
has several advantages over methods that are widely
applied. The resulting approach also has the inter-
esting feature of incorporating data-analytic explo-
ration and conventional statistical estimations in
relatively equal proportions.
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In Section 2, we give a quick overview of the ex-
periments that are typically conducted to estimate
the coefficient of soil-water diffusivity. Section 3 then
outlines the basic steps leading to the estimation of
D(0), and Section 4 provides the details of the ap-
proach as applied to data on Manawatu sandy loam.
The analysis given there also serves to illustrate (a)
the exploratory use of the alternating conditional ex-
pectation (ACE) algorithm to suggest reexpressions,
(b) the application of the bulge rule to aid the search
for analytically tractable reexpressions of the data,
(c) the use of the R? from the ACE transformed
variables as a benchmark, and (d) the use of explicit
analytic and numerical calculations to provide esti-
mates of the derivative and integral expressions that
determine D(6).

Section 5 places the transformation-based ap-
proach to the estimation of D(6) into a larger context
by developing its relationship to two other problems.
The first problem concerns specialized experiments
for the estimation of D(6) for 6 near saturation.
These experiments differ substantially from the clas-
sical horizontal infiltration experiments, and they of-
fer an interesting direction for further statistical
investigation. The second problem concerns the
matching problem of reservoir engineering. It illus-
trates the substantial differences that can exist within
the area of diffusivity estimation.

2. SOIL-WATER DIFFUSION PROBLEM

The movement of water in a horizontal column of
unsaturated soil is commonly modeled by means of
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the one-dimensional diffusion equation

220l
at dx ox

0<x<>o,0<t<o, (2.1

where 0 is the water content of the soil, ¢ is time, x
is the position in the horizontal column, and D(0) is
the coefficient of soil-water diffusivity at the moisture
level 6. Any two-variable function 6(x, t) that sat-
isfies (2.1) can be shown (see Jost 1960, p. 31) to be
a function of the single variable A = x/¢'"?, which is
often called the Boltzman variable. After writing
0(4) for the new function of one variable, one can
check that 6(1) satisfies the ordinary differential

equation
Al do d do
- [2] a4 [DW) a]- (2.2)

From this equation, one can then easily obtain the
expression for D(6) that underlies our approach to
its estimation:

1]di (e
D(0) = [2] a0 ), A(u) du, (2.3)
where 0, is the initial water content of the soil. The
simultaneous appearance of both derivative and in-
tegral terms in this expression for D(6) provides one
of the most intriguing features of its estimation.

One point concerning (2.3) that probably deserves
clarification is the absence of an additive term D(6,)
on the right side. The fact that no such term is needed
follows from the fact that, as § — 6,, the two factors
of (2.3) strike an asymptotic balance. As § — 6, one
has the convergence of the integral term to 0, but
the derivative term goes to « in such a way that the
limit of the right side of (2.3) converges to D(6,).

The process that has been most widely used to
estimate D(#) is the transient-flow experiment of
Bruce and Klute (1956). In that experiment, water
is held at a constant head and permitted to infiltrate
into a horizontal column containing air-dry soil.
After a fixed time interval, the column is sectioned,
and the water content of the individual sections is
determined either by weighing or by other methods.
The data of Clothier and Scotter (1982) on Mana-
watu sandy loan plotted in Figure 1 are typical of
those obtained through horizontal infiltration exper-
iments. They also give an indication of some of the
inherent difficulties in estimating D (). For instance,
many smoothing methods when applied to the data
of Figure 1 would lead to a virtually useless estimate
of the derivative of 4 with respect to 6.

In the soil-physics literature, the determination of
D(0) is sometimes described succinctly as follows:
One plots 6 as a function of 4 and then “‘graphically”
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Figure 1. Scatterplot of the Volumetric Water Content, 6,
Versus the Boltzman Variable A.

determines the slope dA/df and the area under the
curve A(u) for 0y < u < 6. Naturally, there is a variety
of ways in which the § — J plot can be used to obtain
estimates of these functionals, but the procedure that
is most commonly applied is probably the one given
by Kirkham and Powers (1972, pp. 257-264, 266—
267). A method based on splines was given by Erh
(1972), and one based on piecewise parabolic fits
was given by DuChateau, Nofziger, Ahuja, and
Schwartzendruber (1972). Both methods provide a
reasonable mechanization of the graphical determi-
nation of the terms of (2.1), but neither method has
been widely applied.

In addition to these so-called “graphical deter-
minations” of D(6), there are approaches that rely
on estimating the parameters in an assumed para-
metric representation for D(6). One of the earliest
such approaches is that of Gardner and Mayhugh
(1958), who assumed that D(6) can be expressed in
the form

D(0) = Dsexp($0), (2.4)

where D, is the soil-water diffusivity at air-dry con-
tent, f is a parameter to be estimated, and O is the
dimensionless normalized water content:

® = (0 — 00)/(6; — 6o, 25)

where §; is the saturated soil content and 6, is the
initial water content.

Other parametric models that have been explored
include the power-function form applied by Ahuja
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and Schwartzendruber (1972),

D(0) = ab"/(6, — O)™. (2.6)
This form for D(#) is suggested in part by the work
of Philip (1960), which provided a host of functional
forms for D(#) for which (2.1) is exactly solvable.
Other parametric models were investigated by Miller
and Bresler (1977), Brutsaert (1979), and Clothier
and White (1981). Clothier, Scotter, and Green
(1983) gave a method that applies for many of the
“exact” forms of D(6) of Philip (1960). For more
details on these methods, some comparison of their
relative merits, and a further parametric model of
interest, consult McBride and Horton (1985).

3. ESTIMATION PROCESS

The description of the horizontal infiltration ex-
periment and formula (2.3) for D(#) enable us to
provide a top-down view of the transformation ap-
proach to the estimation of D(f). Several features
distinguish the present approach to the estimation of
D(0) from previous methods, but the most salient is
surely the explicit role given to exploratory data anal-
ysis for selecting appropriate linearizing transfor-
mations. The subsequent determination of the
derivative of A(#) can then be calculated analytically,
and the integral of 1(#) can be calculated by either
analytical or numerical means.

The details of the method we propose are possibly
best explained in the context of an example such as
the analysis of D(#) of Manawatu sandy loam that
is given in Section 4. Moreover, one almost has to
have an honest example to detail the role of the two
tools we have used to assist our transformation
choice, the bulge rule and the ACE algorithm. With
that said, it seems useful to have a top-down view
of the proposed method. The five basic steps are the
following:

Step 1. Find transformations F(6) and G(4) such
that the transformed data values (F(6;), G(%)), 1 =
i = n, exhibit a strong linear association. This step
will be achieved by means of the ACE algorithm and
the bulge rule for selecting power transformations.

Step 2. Use simple linear regression (or a more
sophisticated technique like iteratively reweighted
least squares) to determine values a and b, which
provide an approximate functional relationship in 6
and 4 of the form

F(0) = a + bG(A). (3.1)

Step 3. Use a chain rule calculation to extract from
(3.1) an expression for d4/d@ in terms of 0.

Step 4. Use either analytic or numerical integra-

tion to determine the value of the definite integrals

10) = [ i(u) du,

by

(3.2)

forall 6, = 0 < 0,.
Step 5. Let D(0) be estimated by the expression

D) = - B] %J: i) du,  (3.3)

where the indicated derivative and integral are those
determined by the results of Steps 3 and 4.

These steps are all decently explicit, except per-
haps for the first. That step does require some judg-
ment, but, as the example of Section 4 illustrates,
there are useful tools to aid that judgment. Note also
that Step 2 takes advantage of the fact that 4 is known
with negligible error, so we can more explicitly say
that a and b are estimates in a model F(6;,) = a +
bG(4;) + &, where the error terms are independent
normals with mean 0 and variance 7.

4. MANAWATU SANDY LOAM:
EXPLORATION AND TRANSFORMATION

To understand the extent of the linear association
between 4 and @ that can be achieved by marginal
transformations, we will call on the ACE algorithm
of Breiman and Friedman (1985). This algorithm
finds transformations f and g such that the empirical
correlation of the transformed data (g(4;), f(6,)), 1
=i = n, is approximately maximized. If (X, Y) is a
pair of jointly distributed random variables, one can
define f and g as the limits of the functions f, and
g. determined by taking fo(x) = x and go(y) = y
and applying the recursions f,. (X) = E(g,(Y)| X)
and g,.(Y) = E(fu(X) | Y). The f and g deter-
mined by this process can be shown to maximize
corr(f(X), g(Y)). Naturally, if the joint distribution
of X and Y is not known, one cannot find f and g
precisely by this method, but one can derive an em-
pirically based algorithm as a natural modification of
the theoretical algorithm. All of our ACE compu-
tations were performed using the implementation of
the empirical ACE algorithm of L. Breiman that was
incorporated by Schilling (1985).

Even for the best choices of f and g, the linear
association between 4 and 6 is imperfect. Still, the
ACE-transformed variables plotted in Figure 2 ex-
hibit substantially greater linear association than the
plot of the untransformed variables given in Figure
1. Moreover, when we measure the linear association
of the transformed variables in terms of R?, we find
a respectable value of R* = .93. This value provides
us with a benchmark; in fact, one of the principal
benefits of the ACE algorithm is that it provides a
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Figure 2. Scatterplot of the ACE-Transformed 6, Versus the

ACE-Transformed ;. This plot is used to assess linearity of
the ACE transformation.

theoretical standard against which more analytically
appealing transformations can be judged.

To aid in the search for such surrogates for f and
g, the ACE-transformed variables are plotted against
the untransformed variables to see if simpler func-
tional forms might suffice. Figures 3 and 4 show the

g(%)

Figure 3. Scatterplot of the ACE-Transformed A; Versus 4,
That Is Used to Suggest a Power Transformation Approxi-
mating g(4).
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Figure 4. Scatterplot of the ACE-Transformed 6, Versus 6,
That Is Used to Suggest a Power Transformation Approxi-
mating f(0). Notice that the bulge rule may not be directly
applicable here.

plots of (4;, g(4,)), 1 =i=n,and (6, f(8)),1<i
= n, respectively.

The hunt for analytically tractable replacements
for f and g is further guided by the so-called bulge
rule of Mosteller and Tukey (1977). Loosely speak-
ing, the bulge rule suggests finding an outward nor-
mal to a smoothed plot of the data and using the
signs of the normal components to guide one’s choice
of transformation. For example, Figure 3 exhibits a
bulge where both the x and y components of the
outward normal are positive. The bulge rule then
suggests that the variable plotted on the horizontal
axis should be transformed by moving up the scale
of powers. In fact, the successive examination of
plots of (47, g(4,)), 1 =i < n, for larger values of «
continues to suggest moving up the scale of powers,
and we are thus led to consider the exponential trans-
formation. An alternative approach to this explor-
atory search for an appropriate transformation would
be to use the method of Box and Cox (1964). The
results obtained by the Box—Cox method are com-
parable to those obtained via the bulge rule.

When we begin a similar examination of the plot
of (6;, f(6)), 1 =i = n, given in Figure 4, the bulge
rule for reexpression fails to offer unambiguous ad-
vice. There may be a modest indication that we might
wish to send ¢ down the scale of powers, but the
indication is not supported when tried. Fortunately,
we have recourse to a second approach that does
suggest an appropriate transformation, and we can
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Figure 5. Scatterplot of §; Versus e'i. The bulge rule sug-
gests going up the ladder for either 6 or A.

consider the plot of 6; versus e, which is shown in
Figure 5. After all, since we have settled on e* as the
surrogate for f(1), the principal remaining task is to
determine a surrogate F for f such that the scatterplot
(F(0;), e*) is approximately linearized.

The bulge rule applied to Figure 5 initially suggests
that we consider a transformation F that moves 6 up

03
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Figure 6. Scatterplot of 63 Versus e'. Approximate linearity

is achieved with this transformation, which should be com-
pared with the ACE transformations of Figure 2.

the ladder of powers, and successive applications of
the bulge rule eventually lead us to the choice of
F(6) = 6°. Strikingly, this transformation achieves
an R? of .93 that meets the level of the optimal R?
= .93 achieved by the ACE transformations. More-
over, when we consider the plot of 6} versus e* given
in Figure 6, the visual impact of the linear association
exhibited by this figure seems to compare well with
that exhibited by the ACE-transformed variables of
Figure 2. On the basis of both the quantitative evi-
dence provided by comparing R?’s and the subjective
evidence provided by comparison of the scatterplots
of Figures 2 and 6, it seems appropriate to settle on
the transformation choices of Figure 6.

5. MANAWATU SANDY LOAM:
ANALYTICAL STEPS

For the Manawatu-sandy-loam data, our explor-
atory analysis has led us to an approximate relation-
ship of the form

F(0) = a + bG(A), (5.1)

where F(0) = 6° and G(4) = e*. The coefficients in
(5.1) can now be estimated by ordinary least squares,
from which we obtain a = 448 X 1072 and b =
—1.20 x 10~* with nominal standard errors of 5.30
x 107* and 3.30 x 107, respectively. In Figure 7
we show a plot of the predicted values 0} versus the
residuals that are obtained from fitting the model
(5.1) by ordinary least squares. The residuals appear
approximately homoscedastic, and we have no rea-

Residual 67 — 603
0.005 0.010
1

-0.005

-0.010
1

T T T T T
0.0 0.01 0.02 0.03 0.04

Predicted 6?

Figure 7. Scatterplot of Residuals Versus Predicted Values
for the Model 3 = a + be’i. Residuals appear to be approx-
imately homoscedastic.
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son to be discontent with the estimates obtained by
ordinary least squares. If the scatterplot of Figure 7
had exhibited a greater heteroscedasticity, we would
have probably elected to apply iteratively reweighted
least squares or a similarly directed technique.

As a final check on the reasonability of the fitted
model, one should consider the fit in terms of the
untransformed variables as exhibited in Figure 8.
This plot has no flagrant defects; indeed, it suggests
that the procedure has been reasonable. Still, one
feature of Figure 8 deserves comment. The principles
of good experimental design suggest that one should
take more observations in those regions of 4 where
0 changes more rapidly. Practitioners are aware of
this fact and often take thinner soil sections near the
wet front, although no systematic analysis of the ex-
perimental design has yet been provided.

By differentiating (5.1), we find the general rela-
tionship

i F') _ b-1F'(0)

d6 ~ bG'(2) ~ G (G (F(6) — a)/b))’ (5-2)

and, for the choices that were made by means of the
exploratory analysis of the Manawatu-sandy-loam
data, one finds a particularly simple net result:

di

- = 30 - o). (5.3)

To obtain D(@), it remains only to determine the
integral of 1(8) = G~'((F(6) — a)/b). For the Man-
awatu-sandy-loam data, we find A(6) = log((¢*> —
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Figure 8. Scatterplot of §; Versus A,. Predicted values from
the equation 6, = (a + be*)"” are shown by the line.
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Figure 9. Plot of Soil-Water Diffusivity D(8) Versus Mois-
ture Content 6.

a)/b), and the integral of 1(f) can be determined
analytically.

We are now in the position to provide the estimates
for D(6). These are given first in Figure 9 on a raw
scale and again in the more appropriate log scale in
Figure 10. The 99% confidence intervals given in
Figure 10 probably deserve some comment. By the

Log,,D(8)(m?/sec)

T T T T
0.10 0.15 0.20 0.25 0.30 0.35

0

Figure 10. Plot of Log,, of Soil-Water Diffusivity Versus 8
and the Associated 99% Upper and Lower Confidence Inter-
vals.
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usual least squares theory, one can obtain the joint
distribution of the estimates 4 and b of the param-
eters of Equation (5.1). We then calculated 10* pseu-
dorandom observations (a;, b;) with the same joint
distribution as (4, b). For each §in a set of 100 evenly
spaced values, we then calculated D;(f) based on
(a;, b;). Finally, we set D*(6) and Dx(0) equal to
the upper and lower 1% points of {D;(6): 1 =i <
10%}, and used these values to provide our estimates
of the upper and lower values of the confidence
bounds in Figure 10. The extreme narrowness of
these confidence bounds is fundamentally a reflection
of the small standard errors of @ and b. One essential
observation concerning these confidence bounds is
that their width increases greatly as 6 approaches the
saturation level 6,. This feature is endemic to the
problem of estimating D(#), and one would have
been alarmed if the confidence bounds on D(#) did
not degrade as ¢ approached saturation.

The desire to know how well we have done is
natural but frustrating. In fact, one faces today al-
most the same situation as when Bruce and Klute
(1956) observed, ‘“There is unfortunately no stan-
dard against which diffusivity values can be checked”
(p. 462). The estimates of Figures 9 and 10 pass the
tests of physical reasonability and exhibit reasonable
consistency with the results obtained by other meth-
ods, such as those of McBride and Horton (1985).
We are, therefore, at a point that has confronted all
others who have attempted to estimate D(0). We
have an estimate that appeals to our theoretical sen-
sitivities, but, on the basis of current experimental
evidence, we cannot argue that the present estimate
is indisputably better than those obtained earlier.
This fact is part of the interactive process between
theory and experiment, and from the beginning of
this investigation no outcome could have been ex-
pected to emerge with an ironclad claim on the truth.

6. CONCLUDING OBSERVATIONS

The problem of estimating the coefficient D(6) of
soil-water diffusivity is one that deserves the atten-
tion of statisticians. The approach explored here is
natural from the point of view of contemporary data
analysis; yet in comparison to commonly applied
analyses, the present approach offers some substan-
tial benefits. First, the estimate for D(6) is guaran-
teed to be smooth and monotone, just as one would
expect from fundamental physical principles. Fur-
ther, the present method permits one to be genuinely
guided by the data in contrast to methods that assume
parametric forms for D () based on past experience
or analytic convenience.

Still, it should be understood that the estimation
of D(#) is not always easy, especially for values of
0 near saturation. The difficulties in that range were

recognized by Bruce and Klute (1956) and were
further emphasized by Morel-Seytoux and Khanji
(1975). More recently, experiments to address the
estimation of D(6) near saturation were performed
by Clothier and Wooding (1983) and applied by
Clothier et al. (1983). These new experiments are
substantially more sophisticated than the classical
horizontal infiltration experiments. They rely on the
use of continuous dripping of water onto a column
of soil and observation of the associated periodic
fluctuations in pressure potential at differing depths
in a vertical soil column. These procedures appear
promising, and reexamination of the associated es-
timations from a statistical viewpoint would be val-
uable.

When one looks beyond the immediate problem
of estimating the coefficient of soil-water diffusivity,
one finds a world of estimation problems associated
with diffusion models. Some of these problems are
close cognates to the problem studied here, but other
problems with a strong structural resemblance are
faux amis. A striking example of this phenomenon
is provided by the history-matching problem of res-
ervoir engineering that was discussed from a statis-
tical point of view by O’Sullivan (1986).

Again, the basic problem concerns the estimation
of the diffusion parameter in a model of flow through
a porous medium. Specifically, one wants to estimate
the coefficient a(x) in the diffusion equation with
forcing:

du(x,t) 9

202 a0 2 0 = g,

xEN0=t=T. (6.1)

Here x is a two-dimensional spatial variable, and one
has data on scattered well pressures u(x;, ¢;) and
forcing pressures g(x;, b)), 1 =i=m,1=j=1

Three essential facts separate the reservoir-match-
ing problem from the problem of estimating soil-
water diffusivity. First, the spatial variable is neces-
sarily two dimensional, so there is no possibility of
a reduction to an ordinary differential equation like
(2.2). Second, time plays an essential role in (6.1),
whereas in the analysis of (2.1) time had only the
modest role of scaling the Boltzman variable 4 =
x/t'2. Finally, in (6.1) one has to deal with a complex
forcing term. The presence of a modest forcing term
does not automatically remove one from the domain
of the present analyses—for example, the methods
applied here can be modified for use on vertical in-
filtration experiments in which one has a forcing term
because of gravity. But forcing terms with the com-
plexity of those present in the reservoir-matching
problem are of a different order, and their presence
takes one into a different realm.

TECHNOMETRICS, FEBRUARY 1989, VOL. 31, NO. 1
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The two problems just sketched should serve to
suggest that the subject of diffusivity estimation is
quite broad. In fact, our original problem of esti-
mating soil-water diffusivity lies at the beginning of
a whole scale of challenging problems that appear
ripe for statistical exploration. We hope that the steps
taken here provide some introduction and encour-
agement to statisticians who would engage the many
difficult diffusivity estimation problems that remain.
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