establish that $\hat{\lambda} = u(\hat{\theta}) \to S^2(\hat{\lambda}) \leq S^2(\lambda)$ for all λ in Λ. In the “classical” linear model $E_\theta(X) = b(\theta) = B\theta$ and $\text{Cov}(X) = \Lambda^{-1}. However, the assertion above holds even without this particular specification of $b(\theta)$ and Λ.

Indeed, as one can see, this invariance property could be claimed for any method of estimation which defines the estimate, if it exists, as the one minimizing the value of a suitable non-negative “distance” function.

REFERENCE

When Successes and Failures are Independent a Compound Process is Poisson

**J. M. STEELE* **

Let N be a random variable which takes on non-negative integer values, and let X be a random variable which takes on values E_1, E_2, \ldots, E_r. Now let Y_k denote the number of occurrences of event E_k in N independent trials of the random variable X. If N is Poisson, it has been observed ([1], p. 217) that Y_1, Y_2, \ldots, Y_r are independent. In the case that X is Bernoulli, and E_1 denotes success and E_2 denotes failure this yields the interesting situation that the random variables Y_1 and $Y_2 = N - Y_1$ are independent. It should be noted that the random variables determined by Y_1 conditioned on the event $N = n$ need not be independent, but with this precaution one can express the independence of Y_1 and Y_2 by saying that in a Poisson number of trials the number of successes is independent of the number of failures. The theorem of this note forms a converse to the preceding observations.

Theorem. If there exist two of the Y_i which are independent then N must be Poisson.

Proof. Suppose Y_1 and Y_2 are independent, and let $f(s)$ be the generating function for the random variable N. Then letting $p_i = P[X = E_i]$ we have that the generating function for Y_1 is $f(1 - p_1 + p_2 s)$. Calculating the bivariate generating function for Y_1 and Y_2 gives

$$\sum_{k, l} P[Y_1 = k, Y_2 = l] s^k t^l = f(1 - p_1 - p_2 + p_1 s + p_2 t).$$

(1)

Now, by the independence of Y_1 and Y_2 we have

$$f(1 - p_1 - p_2 + p_1 s + p_2 t) = f(1 - p_1 + p_2 s)f(1 - p_2 + p_2 t).$$

(2)

Letting $a = 1 - p_1 + p_2 s$ and $b = 1 - p_2 + p_2 t$ yields the equation

$$f(a + b - 1) = f(a)f(b).$$

(3)

If $f(0) = 0$ then setting $a = b = \frac{1}{2}$ in equation (3) gives $0 = f(\frac{1}{2})$, which is impossible since $f(s)$ is the generating function of a non-negative random variable. Hence we have $f(0) \neq 0$. Now let $g(s) = f(s)/f(0)$. We have

$$g(a)g(b) = f(a)f(b)/[f(0)]^2 = f(a + b - 1)/[f(0)]^2.$$

(4)

Now note that letting $b = 0$ in (3) gives $f(a - 1) = f(a)f(0)$, and then replacing a by $a + b$ gives $f(a + b)f(0) = f(a + b - 1)$. This yields

$$g(a)g(b) = f(a + b)f(0)/[f(0)]^2 = g(a + b).$$

(5)

Since $g(s)$ is monotone (5) has the unique solution $g(s) = e^{u s}$ where $\mu \geq 0$ is a constant.

Now we have $g(1) = 1/f(0)$ so $f(0) = e^{-\mu}$, and $f(s) = e^{-\mu + u s}$ which is the generating function of the Poisson distribution.

Corollary. If two of the Y_i are independent then all of the Y_i are independent.

REFERENCE

* Dept. of Mathematics, Stanford Univ., Stanford, Calif. 94305.