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COMPLETE CONVERGENCE OF SHORT PATHS AND
KARP'S ALGORITHM FOR THE TSP*t
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Let Xf, 1 < i < 00, be unifonnly distributed in [0, i f and let T„ be the length of the shortest
closed path ccmaecting {Xf,X2, . . . , X„). \t is proved that there is a constant 0 < ;8< oo
such that for all o 0

This result is esseatial in Justifying Karp's algorithm for the trav«UtBg saksman problrai under
the independent model, and it settles a question posed by B. W. Weide.

1. iBtoodwtioB. The main objective of the present note is to solve a problem
prĉ >osed by Weide (1978) coQceming the complete convergence of c^lain random
variables associated with Karp's probabilistic analysis of the traveling salesman
problem (Karp (1976), (1977)).

To set the problem precisely let A',, 1 < i < oo, be ind^>eiMi(mt random variables
uniformly distributed on the unit square [0, if, and let T„ d^iote the teagth of the
shortest cl<»ed path (in the usual Euclidean distance) which connects each deawnt of
{Xi,X2, . . ., X^}.

It was proved by Beardwood, Halton, and Hammersley (1959) that

with probability one for a finite constant fi. This fact was central to the motivation
behind Karp's algorithm, but as Weide (1978) points out the Karp algorithm actually
calls for the following stronger result to be proved here:

THEOREM 1. There is a constant /3 such that for all € > 0, one has

This type of ccmvergence is usually called comf^ete convergence, and Theorem 1
stands in a similar relation to the Beardwood-Halton-Hanuaearsky Theorem as the
Hsu-Robbins Tbeoreia stands in relation to the strong law of large numbers (Lukacs
(1%8), Hsu and Robbins (1947)). The "easy-halP of tbe Borel-Cantdli lemma shows
that Thecvem 1 implies the Beardwood-Haiion-Hammersley Th&Kem and the "hard-
half of the Bord-Cantelli lemma shows how Theorem 1 is neeessary in modeling
contexts where problems of incr^sed size are generated iiid^>e3idently of previous
problems. (For a full discussion of indf^adent versus incrementing models for random
problems one ^ould consult Wdde (1978).)

By an elementary lemma due to Few (1955) the variables TJ^ are bounded, so
the almost sure convergence in the Beardwood-Halton-Hammarsley Theorem neces-
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sarily entails ET^~^^[n as well. This fact, Markov's inequality, and a standard
argument show that Theorem 1 is an easy consequence of the following result.

THEOREM 2. For all k > 0 there is a constant c^. such that

<.c^ (1.1)
for all n > \.

Actually for Theorem 1 it would suffice to show (1.1) for any k>l, but the present
method extends without effort to give the full result. The proof of Theorem 2 is based
upon a systematic recursive application of a recent jackknife inequa,lity due to Efron
and Stein (1978). This inequjiUty is described in the next section. The third section
gives the proof of Theorem 2, and the last section touches briefly on some extensions
of these results.

2. Two ineqiuiitfes. If ^(Xi.JCj,. . . ,x„_^) is any symmetric function of « - 1
vectors x,, and X^ are independent identically distributed random vectors we define
new random variables by

and

Efron and Stein (1978) proved the following inequality

X/nr C / V V Y \ g^ 17 ^ ^ / C C \ ^ f^ 1 \
V a r o f A ] , A 2 , . . . , ^fi—\) ^ ^ ^ I \^i — * j . ) . ( ^ ' ^ /

This remarkable inequality will no doubt find many applications in the asymptotic
analysis of nonlinear processes. By its application in the present case it was possible to
both simplify and sharpen an earlier proof of Theorem 1 due to the author. The earlier
proof was based on the theory of independent subadditive processes.

The second inequality concerns the variable </„ = mindXj - ^ , | : 1 < / < «} where
A", are independent and uniformly distributed in [0,1]^. It is that for all )t > 0 there is a
constant Af^ such that

Ed^ < Ai^n~''l'^ for all n. (2.2)

The proof of (2.2) is easy. One just notes by geometry that Pid„ > x) < (1 - ax^)"~',
even with a == w/4. Then by generous bounds.

f
Jo

3. Proof of Theorem 3. The proof of Theorem 3 can now be given. By the
Efron-Stein inequality applied to S = <t>(T„_^) where <|> is a smooth function one
obtains

Var<,(7;_,)< ^ 2 (<>.-<>•)' (3-1)
I - 1

where <J.,. = <i>(TiX,,X2, . . . , Xt_uX,+ i,. . . , X„) and <j,. = (l/«)2"-i«l»,. Replacing
<t>. by any other function of A',, A'j, . . . , X^ only increases the right side of (3.1), so we
have

Var<K7;_,) < £ 2 («, - 4>iT„-^)f• (3.2)
/•=i
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By the mean value theorem it is possible to choose a value 7"̂  _,(() between
^,X^, . . . ,A',_|,A', + | , A'Jand r(A',,A'2, . . . ,A'„^„,)such that

where ^„(i) = T{X^,X2, . . . , X,_,,A', + ,, . . . , ̂ J - r«_,. Applying the representa-
tion (3.3) to (3.2) and using the identical distribution of the A','s will yield

Var<|,(r^_,) < nE(<t>'(T„_,(l))^„(l))'. (3.4)

We will now make some special choices of (j> and proceed inductively. First consider
simply 4>(x) = x, then (3.4) becomes

V^irT„^,<nE{^i{l))<2A, (3.5)

where A2 is the constant provided by inequality (2.2) since \AJ < d„_^. Next, choose
</)(x) = (x — ET^_ 1)̂  and apply Schwarz' inequality to (3.4) to obtain

\)i''. (3.6)
Now since (a -f- b)'* < I6(a'^ + b'*) we have

Applying |A^(1)| <</„_] and (2.2) the last inequality reads

But since

equations (3.5) and (3.6) imply

n - \Y'-'^'^A\'\n - 1)''. (3.7)

Dividing both sides of (3.7) by {E{T^__^ - £7;_,)'*)'/^ is good enough to show that
£'(r^_, - £r«_,)'* is bounded by a constant which is independent of « > 2. This
proves the theorem for A: = 4, and this special case has been done in such detail
because the case /c = 4 is sufficient to prove Theorem 1.

The proof of the general case will be by induction. We begin by supposing the
existence of c^ and proceed to show the existence of Cĵ . By Jensen's inequality and the
induction principle, this will complete the proof. In order to avoid concerning
ourselves with irrelevant constants the Vinogradov symbol a^ < b^ will be used to
indicate that there is a constant c not depending on n such that a^ < cfĉ  for all n
sufficiently large.

This time we take <Kx) = (x - ET^_if and apply (3.4) to obtain

(3.8)
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Applying Holders inequality with p = Ik/lik - 1) and q = k one obtains

By inequality (2.2) we can check that £A^*(1)« n~* so

f *'•*/'' (3.9)

Since Nax^T^.^) = EiiT„_^- ET„^^f'') - (£(^„_, - ET„_^ff the induction as-
sumption and (3.9) imply

E{iT^_, - ET^_,f'^)<^cl^{EiT^_, - ET^.^ff'-''^'". (3.10)

Now just as in (3.7) the presence of the small power on the right side leads to a
uniform bound on EiTi^_i — ET^_i)^'' and thus proves the existence of Cik- As
mentioned at the beginning, this suffices to complete the proof.

4. Further results. In the previous section the aim was to give the most direct
proof possible of the result conjectured by Weide (1978). There are many natural
extensions of that result, and some of those will be stated here. The proofs of these
results can be given along exactly the same lines used in §3. The most obvious
extension is the following.

THEOREM 3. Suppose {A',} are independent and uniformly distributed in [0,1]^ and
7'„ = 7'(A', , ^ 2 , . . . , X„) is the length of the shortest closed path through {X,,

T„ - ET„)''< c^n'^''/^^^^-''/^^ for some c^ and all n > 1 (4.1)

and

2 P(| Tjn'^"- ''Z'' - ^1 > c) < 00 for some j8 and all e > 0. (4.2)
n = 1

In Theorem 3 one might also seek to replace the functional T„ by other Euclidean
functional for which the analogue of the Beardwood-Halton-Hammersley Theorem is
known. The analogue of Theorem 3 does hold for the Steiner tree problem and the
rectilinear Steiner tree problem. The proof in these cases differs little from that of §3. It
is not known at present if the full analogue of Theorem 3 is valid for the whole class of
Subadditive Euclidean Functional (Steele (1979)).

As a final point one should note that both Beardwood-Halton, and Hammersley
(1959) and Steele (1979) contain results valid for random variables with nonuniform
distributions. The approximation processes used in these papers to extend the uniform
case can again be tried here although to do so would require considerable space. Since
the algorithmic applications initiated by Karp (1976), (1977) are already ably served
by Theorem 1, these nonuniform extensions are not pursued here.
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