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INTRODUCTION

Let Xl, X2, X5, «os Dbe a sequence of independent identically
distributed random variables defined on probability space (2,P,%)
taking values in IRd. If A 1is a Borel subset of IRd, then, writing
1 for the indicator function of A, we have the primordial fact

A
that

£
. -1
Lim £ 1(X,) = P(X, e A) a.s.
4 > o iéi AN 1

Indeed this conseguence of the law of large numbers rests as'one of
the basic means of expressing what is meant by probability. Directly
associéted with this ancient result is a question almost as basic:

If S8 is a class of Borel subsets of ]Rd, what is a necessary

and sufficient condition that

’
2in sup|s™l ¥ 1 (%) - B(X, €A)| =0 a.s. ?
. A1 1
£ - o AeS i=1

If S is a class of sets which satisfies the preceding equation, we
call 5 a uniformity class. There are several such classes which
have been discovered and found to be useful. The first such class
to be widely used is of course S = {A : (=»,x] = A, x ¢R} where
d = 1, and the statement that this S 1is a uniformity class is
exactly the classical Glivenko-Cantelli Theorem. The study of uni-
formity classes really acquires depth only when d > 2.

In this case, special uniformity classes have been studied by
numerous authors including Fortet and Mourier [10], Wolfowitz [24]

and [25], Bluu [2], R. R. Rao [15], and S. Ahmad [1]. The general
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question as we posé it was first studied by Vapnik and Chervcnenkis
[22] and independently by Topsde [20].

It is the direction of Vapnik and Chervonenkis which we pursue
in this work. The fundamental idea is to introduce a type of combina-
torial entropy of the class S which will lead to a complete charac-
terization of the uniformity classes.

It Xys Xpy eee 5 X, are £ 7points in :Rd we define a class

of subsets of these points by
Is(xl, Xpy ses s xz) = {{xl, Xy eee s xﬂ} NA :Aesl),
and define
A?(x X x,) = |I.(x., x x,)|
12 P22ttt 2 Ryl T ISg\ Tty o2ttt 2 Ty

where l(:l denotes the cardinality of the class C;. As we will be
concerned with these functions at great length, it is worthwhile tc
verify one's understanding by checking a simple case. To provide

such a case let d = 1 and take {a4 : (=,x] =A, x elR}. The

class Is(xl, Xps see s xz) is seen to consist of the sets B, {xi},

{xl, xg}, cee {xl, Xpy ees s xz} and these are aptly called the

subsets of [xl, Xpy eee s xz} which are induced by S. From this

enumeration of IS(xl, Xpy ees s xz) one obtains A?(xl,xa,...,xz) = f+1.
The combinatorial entropy which concerns us is a function h(F,S)

of the class S and the distribution F of the Xi’ It is defined by

h(F’S) = 'Zim z-JE log AS(Xl’ X2, cee Xl) .

b - x

This definition allows us to state the Main Theorem of Vapnik and

2



Chervonenkis:

A necessary and sufficient condition that the random variables

2
-1
sup [ ¥ 1.(X.) - P(X, €A)]
Aes =1 A1 *

converge to zero in probability is that
h(F,s) =0 .

In the first chapter of this thesis we strengthen this result to yield
a corresponding uniform strong law and thus provide a complete answer
to the question posed in the first paragraph of this introducticn.

In sucéeeding chapters we focus on results of second order and are
able to obtain results which go beyond the law of large numbers for
several large and useful classes. TFinally we conduct a study of the
particular classes giveh by {A, TA, T?A, ees} where T is a bimeas-
urable, measure preserving transformaticn and A 1s a Borel set.
This study allows a complete comparison of the entropy of Vapnik and

Chervonenkis with the entropy of Kolmogorov.



CHAPTER I

THE GENERAL CONVERGENCE THEOREMS

The principal objective of this chapter is to prove the strong
limit law corresponding to the main theorem of Vapnik and Chervonenkis.
In order to make this proof reasonably self-contained, we first give
a brief proof of a technical lemma used by Vapnik and Chervonenkis.
This repetition is justified by the numerous applications we make
of the lemma and also by the understanding its proof fosters on the
manner in which A? enters our estimates. As an economy in expression

we employ the following notation:

(8) = £7* f ) ) =27t ? )
vi(L) = & 1 (X. V(L) = £ 1 (X,
A &5 AV A 174 AV
o = lvt (8) - V(o) o = sup of

A A A A

AeS
ﬂﬂ = |vt(s) - P(X, € A)] wﬁ = Sup nﬁ .
A A 1 AcS A

One quickly finds these six notations are significantly less cumbersome
than the lengthy formulas their avoidance would require.

It is significant to note that the functions pz and Wﬁ are
not necessarily measurable as certain pathological choices of §
will easily show. In almost all cases, it is quite easy to show
pz is measurable, but it happens sometimes that the measurability of

ﬂﬁ requires more work. In Chapter I we will always assume that pﬁ

and wﬂ are measurable, but some effort will be made to point out
those cases when it suffices to assume only the measurability of pz.

We are now in a position to state the last of our preliminaries.
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Vapnik-Chervonenkis Lemma. For all  we have

1 £
mg l{a) by p (Xo_(l), XG(Z), sce o X0(22)) > €}
< 5x,, X, ,)exp(~e°(4-1))
— l’ 2’ oo H 22 - /
where the summation is over all permutations of {1, 2, ... , 2£}.

Proof. For each w there is a finite subset S8' of 8 such that
st Y _ A8
A (kl(m) 2 Xg(d}/ ) et Xez ((1)) ) - A (Xl(w) > Xe(w) ) oo Xzﬂ (0‘)) )

and for such an 8' we have

)
1w : p (xc(l), XU(Z), cee X0(2£)) > €}

SAES'l{w : pﬁ(Xc(l), Xg(2)? *** > Xc(e,z)) > e} .
Hence we have
T?%)Tg o : pZ(XO,(l), Xc(a), cee s XU(%)) > ¢}
< L, T D3t 50y Togay +oe s Xagasy) > € -
We have to estimate
-(,é—}ﬁgl{w : pﬁ(XG(l), XG(E), cee Xc(ez)) > ¢}

so we begin by assuming that m of the samples Xl(w), Xa(m), cee X2Z(w)
are in A. If the samples are then so distributed that k of

~ I\\ . -
Xc(l)(w),.Kc(z)\dJ, cee Xc(z)(w) are in A, m ~ k of XG(£+1)(w),

XG(Z+2)(w), ses Xc(ez)(aﬂ are in A and |k/f - (m-k)/Z| > e,



‘Z .
1w : QA(XG(l)’ Xc(2)’ vee X0(2£)) >el=1.

The number of pefmutations 0 which perform the above feat is seen

tc be

Y ()0 2

nm-k

5 - B >
If we now let

H(m,n,e€) = )3 ) (% )(gz-m)/(ez

we have proved that

L

1
T Lo

(Xg(l), Xc(e)’ cee Xo(gz)) > ¢} = H(m,n,e) .

Here we recognize that H(m,n,e) is the tail of a hypergeometric
distribution, and we note that H(m,n,e) can be estimated by classical
’ N . . 2
methods (see {231, p. 273) to obtain H(m,n,e) < 3 exp(-e (£4-1)).

Finally
-(—Q%Trgl{w : pg(xg(l)((l)), Xo‘(2)(w)’ cee XU(Qﬁ)(w)) > ¢}

L3 exn(-2(8-1) = 305(x, (), Xy(@), wee 5 Xy (0))exp(=c>(4-1))

AeS!

<

Theorem 1l.l1. Let Y logzé <Xt’ ETIRTTR Xv)’ "then we have the

tv
following properties of the process {th, t>0, v> t}:



(1) Y is stationary, that is the process defined by

tv

T AP . s g .
th = Yt+l,v+l has the same finite-dimensional distributions as th.

@) Y , 1s subadditive, that is Y <y, +Y, forany

t t tu
t<u<v.
(3) Each Y., bhas finite expectation, in fact 0 S_th <v-t+ 1
() #im £7E(y,,) = fim £7E(Y) = e > 0.
AR 4 -

(5) ﬂim .Z-lYu = C QeSe
b >«

Proof. Since the random variables Xl’ X2, X3’ ees are i.i.d. the

first conclusion is immediate. Since
S S S
A (Xt, eese Xu’ oo s o Xv) S' A (X‘b, eee o Xu)A (Xu+l, ee e o Xv)

and since A?(X

TR SR

we have Yo S-Y't;u * Yu+l,v’

S . . s
- T
A%(X 5 wee s XV) this verifies ¥, <Y, +Y . DNext we note that

conclusion (3) follows direct from the fact that

S Vet+l
LSO Xy »oe 5 X)) <2 .
Now if we let a = E(Yln), n > 2 we obtain from conclusions (1)

and (2) that 0 S-an+m < a, *ta. For such a subadditive sequence

-] . - '
it is well-known that fim £7'a, < fim £™a, = ¢ > 0. The only

L - L - ©

nontrivial conclusion to be considered is the last. The conditions
of stationarity and subadditivity are exactly those of Kingman's sub-
additive ergodic theorem [14]. The conclusion of Kingman's result

is that fim Z-lYlﬁ = £t a.s. for a random variable E. We will
b >

show that £ 4is a.s. a constant by an application of the Hewitt-Savage



zero-one law. Assuming that & is a constant it can be identified
as ¢ by an application of conclusion (h) and the:dominated convergence

theorem,
ILet ¢ be a finite permutation of the sequence (Xl, X2, cee)e

If k is the largest index such that G(Xk) # Xk then we have
A5(X,, Xy eee 5 X,) = A5(X X X )
1’ “2? S’ a(1)’ “a(2)? " 2 “a(k)
for all £ > k, and hence

. -1 S . -1
-e].m ,@ log A (Xl, X2, cee XB) = zlm z lOg AS(XG(l), eeo 9 XG(,@)) .

L - @ 4 -» @

This showé ¢ dis a random variable which is in the permutable field
of the stationary independent process (Xl, X,y eee)s so £ is indeed

a.s. a constant.

Theorem 1.2, A sufficient condition that

y/ 28
i -1
(1) P( £im sup £ I.Z lA(Xi) - T 1A(xi)i =0) =1
£ - o AeS i=1 i=2+1 -

is that

(2) £im oe-:LE log2 AS(X-.L, Xg) eee Xz) =0 .

L »>

Proof. Defining D(4,8) = {w : log, Aﬁ(Xl, Xpr eee s ng) > 28},

8 > 0, we have by Theorem 1.1 and the hypothesis (2) that

P(N D(£,8)) =0 .
I=1 4=L

Now setting C(Z,¢e) = {0 : pﬁ > ¢}, € >0, we have



2] o] o0 co 00 =]

N U c(Le) = (N U clLe) NDE8) )N U Ccl4,e)N D(4,8)),

=1 4=L Iel 4=L L=1 £=1
] [oe]

and so to show P(N \J C(£,e)) = 0 we need only show for some
I=1 £-L
[on] 00

8 =058(e) that P(N VU c(£L,e)N D(ﬂ,a)c) = 0. We will accomplish
I=1l £=L,

this by obtaining an estimate of P(C(£,e) N D(£,8)%) suitable for
an application of the Boreli-Cantelll lemma. For any permutation o

of 1, 2, ¢ee , 24 we have

P(C(%,¢) N D{£,8)°) = f 1w : pz(xc(l), Xg(z),...,xd(%)) > e}dp
" D(£,8)°

2
since in fact both p and D(ﬁ, B)C are invariant under permutation.

New by summing over all permutations o of 1, 2, ... , 2 we have

P(C(Z,¢) 0 D(£,5)°)

1 )/
= ( f)c (EOH %l{m 2P (Xd(l)’ Xg(2)? ** 2 xc(zz)) > e}ap .
D(£,5

By the Vapnik-Chervonenkis lemma we therefore have

2(0(£,) A D(£,0)%) < [ 3%xy, Xys eun 5 Xy dexp(-eE(4-1))cp
D(£,5)°¢

_<_3-2£8exp(-e2(2-1)), since on D(Z,S)c we have

23

AS(Xl, Xps ese s Xz) < 2”7, Finally by choosing & < e2/2 our estimate

shows that

Z P(c(£,e) N D(ﬁ,S)c) < o
£=1

and the theorem is proved.



Theorem l.3. A necessary and sufficient condition that

2
p( 2im sup[4™t P 1(X,) - P(X, € A)| =0) =1
. At i 1
4 > o AeS i=1

. . - S

Proof. One-half of the result follows directly from the main theorem

of Vapnik and Chervonenkis given in the introduction, since wﬁ -0
£

8.5, implies 7T - 0 in probability and hence

gim £7YE log, A%(X ), Xyp +ee 5 X,) = 0.

L - o

The proof of sufficiency is the main issue, so we assume that

tim £ log, AS(Xl, Xps eoe s XZ) = 0. As before, we let

L - o

S
D(£,8) = {w : log, A (Xl’ Xps see s Xzz) > 84}, and now we work to
obtain an inequality relating l(pz > ¢) and

l(sup]y&(z) - P(Xl e A)| > 2¢).

AeS
E(l])(,z,?j)c 1(;:2 > e)IXl, Xps see 5 X,)

?-X‘;é’ E(lD(z,s)c 1([%(2) - VX(»@)I > e)le, Xor eev 5 Xp)

Zf{‘é‘é E(lD(z’a)c l(IvA(z)-P(XleA)b 2e)1(|vX(z)-P(xleA)l< e)lxl,xg,...,xz).

Now we note that

S . S .
lD(z 8)(: Z 1(1052A (Xl’x2"°"xﬂ)i 82/2) l(long (Xz+l’xz+2,000)X2£)-<_ 8,@/2).
2

Since l([y&(ﬂ)-P(XleA)I> 2e)l(log2A$(xl,X2,...,Xﬁ) < 84/2) 1is contained

10



in the sigma field G(Xl, Xp5 eoe s Xz) and

7

LIvp(9) = B(xy e 0] < €)*2(Logy A7(Xy 15Ky psenesXyy) S 84/2)

is independent of U(Xl, X55 eee s Xz), we then have

)
E(1 1p” > €)Xy Xy oo 5 X,)
D(2,8)° 1 4

> sup(1(]v1(() - B(X; € A)] > 2¢)+1(log, As(xl,xz,...,xz) < 84/2)-
AeS )

B(1(Jvr(4) - B(X; e )] < €)-1(log, .AS(X£+1’X;Z+2’°"’X2£) < 84/2))}.

Now by Chebyshev's inequality we note that

P(|vy(8) - P(x; en)| > ) < e‘2z'lP(Xl e A)P(X, £A) < 2t

and we also note that

sup l(lyi(ﬂ) - P(X, € A)| > 2¢) = l(suply&(z) - P(Xl eA)| > 2¢) .
AeS

Applying these observations we obtain the required inequality

Lk
(1) E(lD(z’a)c 1(p” > e)IXl, Xor oo 5 X,)

> 1(sup|v!(£) - P(X, € A)] > 2¢; log, AS(X.,X.,ee.,X,) < 88/2)-
= AesS A 1 2 1772 AR

-2 -1 S
(1-¢ £ - P(log, A (x“l,x“g,...,xy) > 84/2) .
- 2
If we now let g(w) = J, E(1 10" > €)|Xys Xy oo 5 X,),
=1 p(4,8)¢ v 4

2
then for 8 < ¢ /2 we can check that g(w) is integrable by the



estimate given in Theorem 1.2, Specifically, we have

, 1
(2) E(E(lD(Z,S)C e > €)Xy, Xps oee 5 X))

; , , .
= B(D(£,8)° N (p” > €}) < 3:2"Pexp(-c"(4-1)) .
For the concluding argument, we now let

-2 =] S .
€ 4 - P(log2 A (xl,xg,...,xg) > 84/2)

and

©o
h(w) = z‘—"‘i w(a,s,z)l(zglv&(z)-za(xle;\) > 263208 A% (X, ;X504 0,X,)< 82/2)

By inequalities (1) and (2) we see h(w) is integrable. On setting

F, = (0t ¥(8,6,8)1(log, 85(Xys Xps «ev 5 X,) < 88/2) > 1/2} and
(>0

Gy = N Fz we have Gy increases to an event of probability one.

‘ L=k

Purther we see that

> 1(éup|v1;(z) - B(x, e~A)| > 2¢) = »}

Gy N {w
2:1 AeS

is contained in {w : h(w) = ®} and hence has probability zero. This
last fact immediately yields the theorem.

As a consequence of Theorem l.3 we note that the sufficient con-
dition given in Theorem 1.2 is in fact also necessary. This stems
from the easily established fact that Wﬁ - 0 a.s. if and only if
pz -> 0 a.S.

Under the very general hypothesis that

zz?w £™1E 108 25(X,5 Xy vee 5 Xp) = 0,

12



the conclusions of~Theorems 1.2 and 1.3 cannot likely be sharpened
to give rates of convergence. Nevertheless, we can provide sharper
results in case more is required on As. In fact, for many classes

we have the condition that there exist constants C and T such that
S T
A (Xl, X2, e e e 5] Xz) S Cﬂ 3

The following result provides a more quantitative complement to Theorem

1.3 in this instance.

Theorem 1l.4%. If A?(Xl, X2, cee XE) < CﬂT for some constants C

and T, then

2
P(supl/z"l 7 1A(xi) - P(Xl e A)| > (c('r)z'l log z)l/Q i.o.) =0
AeS i=1

where c(T) = h(2+7)1/2.
-1
Proof. We let & =24 (7 log2(2£) + C), then

D(:e,ﬁ)c = ((D . log AS(Xl’ X2) eee Xez) S ﬂﬁ} = Q

and also {w : log AS(Xl, Xps eee s xz) < £8/2} = Q. By inequality (1)

of Theorem 1.3 we have

2
E(l l(p > €) lX. E) X ) eee X )
D(ﬂ,a)c 1’ 2 4

> 1(sup|vI(2) - B(X; € &) > 2¢; log, AS(Xl, Xor eee 5 X,) < 82/2)
AeS

-2 -1 S '
€ £ - P(log, & (xl, Xps see s Xz) > 88/2) .

(1-

13



This simplifies to yield
£
(l) E(l(p > e)lxl} Xe) e Xﬂ)

> (1 - e~25"l)l(suply&(£) - P(Xl e A)] >2¢e) .
AeS

We also have

y) )
EE(1(p" > e)]Xl, Xys eee 5 X,) = P(p > €)
and

p(p’ > €) < 300 exp(-e2(£-1))

by the Vapnik~Chervonenkis lemma. Now letting

2 2

e = e(£)” = (z~1)-1(7+2)log £

we have

8

Pl > e(2)) < .
4=1

Thus by inequality (1) we have

2 l(suply&(ﬁ) - P(Xl e A)]| > 2¢)
=1 AeS

is bounded by an integrable function, and consequentially

P(suply&(ﬂ) - P(Xl en)| > 2e(4) 1.0.) =0 .
AeS

Since 2¢(£4) < h(2+7)1/2(£-llog 2)1/2 the proof is complete.

2



CHAPTER IT

SECOND ORDER LIMIT THEOREMS

We will fir§t focus on obtaining estimates for the function
As(Xl, X2, oo XZ) for certain classical classes S. These estimates
are then put to work to yield strong and "very strong" limit theorems
like the Jaw of the iterated logarithm. The main result is in fact
a law of the iterated logarithm for wﬁ when the class § is taken
to be the class of polynomial regions of bounded degree. 1In passing,
a result is obﬁained which sharpens Wolfowitz® Glivenko-Cantelli theorem
for half-spaces in IRd. Turther we show that our methods give the
"ypper" part of the laws of iterated logarithm for the empirical dis-
tribution function due to Chung [4] when d = 1 and Kiefer [13] when
d > 2, but our results are not so precise in this instance as these
earlier works.

In the following we use Pn to denote the set of all real poly-

d
>
nomials in d variables which have degree not greater than n. If

4 gefined by Ag = {x : g(x) > 0}

is called a polynomial region of degree n. Our immediate task is

g é P , then the subset of IR
d,n

ok 5 = :
to estimate A (Xl’ Xps oee s Xz) where § = {Ag 1 g ¢ Pd,n}' Two
proofs of the estimate are given, the first being the longer and more
geometrical with the second being briefer and more algebraic.

Before stating the next result, we emphasize that Pn will be

d

J

considered always as a real vector space and dimR P Just denotes
n,d

the dimension of P as a vector space. Specifically, we know by

n,d

a classical counting that 7T = (n;d).

15



d} and T = (ngd), then

-1 for all £ > T and all xi eIRd.

Theorem 2.1, If $=(A_ :g¢e?P
-_— g n,

S 2
o (xl, X wee s Xg) < (7-1)2

First Prcof., Since two proofs will be given, we will first content
ourselves with giving a sketch of a geometrical proof. We first will
show that we may assume that the Xi are in general positiocn, i.e.,

for any g ¢ Pn we have g(xi) = 0 for at most T of the Xi.
2

d
If we suppose that X9 Apy eee 5 Xy are given, it then suffices to

show that there are xJ'_, xé, cee x}, such that

S S
A (xl, Xgs een xz) A (XZ'L’ Xy eee s Xé) .

We do this by choosing polynomials g;> i= 1,2,...,As(xl,x2,...,xﬂ)

such that the sets Ag induce all the subsets of Xl, x2, eee XZ
i

which are induced by 8. A moments thought shows that there is a

constant & > 0 such that

{xl,xg,...,xz} ) (x:gi(x) >0} = {XJ_’XQ""’XI,} M {x:gi(x) +0a > 0}

for all i =1, 2, «ue , As(xl, Xps oo s xz), and additionally one
can require of O that gi(xj) #0 for all i and j. Since we
have that each x4 is in the interior of ({x : gi(x) +a >0} or
else in the open set ({x : gi(x) +a < 0}, we can choose an > 0
such that the ball B(xj, ¢) of radius e about Xj ~is contained

in either ({x : gi(x) +a >0} or {x: gi(x) +a <0} for all i
and j. Now choose x!, j=1,2, «e. , £ 1in genert_a.l position such
that xJ! € B(xj, €). Since the polynomial domains {x : gi(x) +a > 0}

partition the balls B(x;, €) into AS(x_L, %5 eee » %) distinct

16



subsets, we have that the x5 are partitioned by {x : gi(X) +a > 0]}
into Aﬁ(xl, Xé’ eee Xz) distinct subsets. A fortiori we have

], :2’ o "z ], 23, eee z *

Next we observe that one can assume that Xy # 0 for all i,
and that S = {Ag :geP 4; g(0) = 1} induces the same partitions
2
on any set of x; £ 0 that S would induce.
These remarks complete the preliminaries. Now let g € Pn a’
J
g(0) = 1 be given. Intuitively what we wish to do is to deform g
(i.e., chénge its coefficients continuously) until we obtain a extremal
B * *
polynomial g € P 45 8 (0) = 1, such that (1) g (xi) = 0 for
2
exactly T - 1 of the X35 i=1,2, vsa , £ and (2)
. .
g (x) >0 if g(x;) >0

and
* -
g (xi) <o if g(xi) <0.

We now do some counting to show that the theorem is proved once
we show that to each g we can associate a g* as above. Since
g*(O) = 1, it is uniquely determined by the choice of T - 1 of
the x; such that g*(xi) = 0. Hence there are at most (Tfl) poly-
nomials g* which may arise in our association. By the second property
of g* there are at most QT—l disﬁinct partitions which can give
rise to the same g*, since g* determines the same partition of
the xi as g except possibly when g*(xi) = 0 which occurs exactly

17



These two observations immediately give us that

T=1, £
(

S
A (xl, Xpy eee xz) <2 'r-l) .

To complete the .proof we need to show that the g* exist.

This can be done in several ways, but as these are messy and do not
contribute further to the understanding of the estimate, we go on to
our second proof.

The second proof of Theorem 2.1 depends on the following:

Sch14flits Theorem. Let X1y Xps see 5 X, be elements of IRd, d>2

in general position (i.e., any d elements of Xys Xpy eee 5 X, are
linearly independent). Further, let H be the class of all

A = fx : x*h >0} with h em®%, then

d-1

H 2
A (Xl, Xe, sse o X‘e) = 2 (k) .
k=0

This result goes back to the work of Schlifli [18] and its direct
bearing on Theorem 2.1 is explicitly pointed out in vaer [6]. This
later reference contains a generalization of Schl#fli's theorem, and
applies the generalization to calculate functions related to
A?(xl, Xpy eee s xz) for several classes such as hypercones and hyper-
spheres.

The second ingredient of the second proof is provided by another
piece of ancient mathematics. We define (after the early algebraic

geometer Veronesi) the mapping @(x) s given by

x = (x(1), x(2), «.. , x(d))

18



and
O(x) = (1, (1), oe. , x(d), x(l)g, cee x(i)x(j), vee 5 x()) .

Finally the proof of Theorem 2.1 can be made very brief, since
(1) D, %, vee 5 x,) = A 0(x), O(%.), vee , 0(x,))
l) 2) ) z 1 J 2 2 ° 2 z

where

. =T
»H_»{Ah.Ah—{xem : x*h > 0}} .

By the perturbation result given at the beginning of our first proof
we may assume @(Xi), i=1,2, oo , £ are in general position in

IRT. By Schlifli's theorem we therefore have

i Pl
A (cp(xl), (P(X(’_))’ se e cp(xz)) _<_ 2 (k) .
k=0
We have thus proved by (1) that
T;l

S . )/
A (K.L’ Xys eee X.E) ik?o (k) .

Now

T~-1
2 T-1, 2
kzé (k) E ° (T-l)

for 1 <7< £ so the second proof of the theorem is complete.
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We note that the two proofs of Theorem 2.1, though methodically
quite different, both provide bounds which are of degree 7T - 1 in
£. The two estimates are thus equivalent in most applications.

To provide'one immediate such application we state the following:

Corollary. If § = {Ag - Pn,d} and T = dig, Pn,d’ then there
is a constant ¢ = ¢(T) such that
P(sup Wﬁ > c('l‘)(ﬂ"l log 2)1/2 i.0.) =0 .
AeS A

This side product of our efforts is, of course, immediate from
Theorem l.4 and Theorem 2.1. It is noteworthy that i.i.d. is the only

assumption made on randcm variables Xi’ i=1,2, ... which define

£
wﬁ = !ﬂ-l Y 1.(X.) - P(X, € A)|. As a consequence, we see that this
A iti A 1

corollary contains the Glivenko~Cantelli theorem of Wolfowitz [25]
for half-spaces in IRd. In fact, we see the corollary goes farther
both in that the supremum is taken over a larger class and in that
the provision of a rate of convergence estimate is given.

Our method for proving the required estimates on the tail of the
distribution of ﬂj consists in decomposing S into subclasses which
can be more efficiently estimated. First we require a known result
({23], p. 273) which is obtained by a means quite similar to the Vapnik-
Chervonenkis lemma of Chapter I.

One-sided estimates of Vapnik and Chervonenkis: For any class

S we have



P(X, e A) - v, (£)
(1) Plsup —e—— A T > o] < 1605(28) exp(-c"/4)

AeS P(Xl € A)

and

-P(Xl
(2) P|sup
AeS 1- P(xl € A)

A) £) s
- i YA( > el < l6m°(2£)exp(-e2£/h)

where mS(EE) max A?(Xl’ X2, oo Xéz) where the maximum is taken
over 211 w e Q.

In order to pursue the result of the corollary to the level of
best possible rate of convergence, we are forced to develop sharper
estimates on the tail of the distribution of ﬂﬁ. Once this is done,
we then connect the function Wﬁ to related submartingales. This
then makes Kolmogorov's inequality available and allows us a rather
classical path to the ILIL. In order to pinpoint our argument, we
prove a general LIL for submartingales which is much more convenient
for our purposes than the related result of E. Csaki [5]. This general
result and our tail estimates then provide a unified proof of the LIL
for ﬂﬁ for the polynomial regions and the rectangular regions of
the classical (d > 1) empirical distribution function.

To make good use of these estimates we show that each element of
S 1is the union of a small simple set and an element from a moderate
subclass of S. We begin by making S into a metric space by defining
the distance A(A,B) = P(Xl e (A\UB)\(AMNB)) for A,B e S. The required

result is then essentially a lemma in metric entropy.

Theorem 2.2. Let S Dbe the class of half-spaces in IRd and let A

be the metric defined above. If X, has bounded density and finite

1
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expectation, then there is a constant B = B(A) such that we have:
For any integer k > O there is a subset Sk of S with
2
]Sk] S Bkd such that any element of S has X\ distance at most

1/k from an element of Sk.

Proof. Since Xy has finite expectation we have by Chebyshev's
inequality that there is a constant 7 such that for all k,

P(Xy # c(7k)) < 1/2k where cC(ky) is the cube of side ky and center
0.

To accommodate half spaces A whose boundary does not intersect
C(7k) we need only include in S, @ half space which contains C(7k)
and one which does not intersect C(Vk). One of these half spaces
will surely have distance less than l/k from A.

The remaining necessary elements of Sk are given by forming all
the hyperplanes determined by a finite subset of the boundary of C(7k)

and then including in 8, the closed half spaces determined by these

k
vhyperplanes. We first partition each of the edges of the cube C(7k)
into segments of length less than or equal to O > O. Then we let

H denote the class of all hyperplanes determined by the endpointsiof
these segments. We note that an arbitrary hyperplane which intersects
the cube Cc(7k) will pass between two elements of H in the interior
of C(7k). We therefore need to calculate the‘upper bound of the
probability that Xl be between two.consecutive elements of H.

Since the diagonal of the cube is of length “dyk we have for

MA) = P(Xl €A) A eB that the A\ measure between.any two consec-
utive hyperplanes is less than (-VE?k)d'13a-M where M is the bound

on the density of X.. Finally, taking a = [2kd(7k)®™M]™1 we obtain

l.
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the fact that

2

d- )

1
4 ) (2ka(re) ™ ® < ox

| < (%

where C is a constant depending only on A. By our previous estimate
on the measure between consecutive elements of H and the measure of

C(')'k)c we immediately see that S, has the required approximation

k
property. Finally, we have lSkl <2+ 2lH| so the theorem is proved.

Theorem 2.3, TLet S be the class of half-spaces in ZRd and suppose
the random variables Xi have finite expectation and bounded density.
Then there is a constant C depending only on the distribution of

X

1 such that

2 2
P(ﬁ‘n‘z > r) < C(log Z)d exp(- %—) .

Proof. ILet ®(£) be an integer valued function which will be specified
later in the proof, and let A(A) = P(Xl e¢hA) for A e (Ig). By
Theorem 2.2 we select a finite subset S(£) of S such that

IS(z)I < 5@(E)d2 with the property that any element of S 1is at

most a distance of 1/9(£) from S(£) in the A metric. Next
denoting by D the class of subsets of IRd which are given as the
symmetric difference of pairs of elements of S, we have

(1) P(sup|a(a)-vi(2)| > 1) < ¥( sup In(8)-vi(2)| > x/2)
AeS AeD,N(A)P(£)<1

+P( sup |n(A) - v;\(z)l >r/2) .
AeS(£)

Next we note that

a3



(2) P( sup  -n(A) + vy (2) > x/2)
AeD;M(A)P(£)<1

< B sup A(R) + vj;(z-) > r/h)
AeD;A(A)>1-1/9(2) T

+P( sup In(8) - vi(a)] > x/b)
AesS(4)

and consequently

(3)  P(supln(a) - vi(£)] > x) < 2p( sup [a(a) - wi(2)] > x/4)

AeS Aes(4)
+ P(‘ sup - AA) + vI(£) > r/h)
AeD;N(A)>1-1/0(4) AT
AP sup A - vI(R) 2 x/)
AeD;n(A)<1/0(4)

By the classical estimate on the tail of the binomial distribution
we have a constant C such that

-2r2£

)
erd < CBO(£)doe .

) P sup [n(a)-vi(£)] > 1) < |s(£)]-cee”
Aes(2)

Also mD(EE) 5‘(16)d12d so we apply Theorem 2.3 to (3) and obtain our
basic estimate for £ > 2r-2

2 a2 2
(5) P(VE T >r) <26p(£)" +C exp(-r~/8)

+ 2(16) 2% xp(r2p(2) /4-16) .

Now let @(£) = 1+ [(2 + 2d log £)4+16] and note for r > 1
24 2 2 d? d2
2" exp(~r"p(£)/4+16) < exp(-2r ), and @(£)° < 7(log £) for a

constant ¥ = 7(d). The theorem is thus proved.
The role of the class of half spaces is brought out by its immediate

applicability to the study of more general regions by means of the
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Veronesi (or other) mappings.

Theorem 2.4, TLet § = {Ag 1 g e Pd n} be the class of polyncmial
- J

regions in IRd of degree not greater than n. Suppose further that
the random variables Xi have finite nJCh moment and bounded density.

Then there is a constant C such that
y; 72 2
P(1ﬂ?ﬂ' >r) < ¢(log £) exp(-r /8)

where T = (n;d).

Proof. We let ¥ :IRd-+IRT be the Veronesi map defined in the second
proof of Theorem 2.1. By our hypothesis, we obtain that W(Xi),
i=1,2, ;.. are i.i.d. random variables with finite expectation
and bounded densities. If Aw is a half space in IRT given by

{z : zew> 0} where w e]RT is the vector formed by the coefficients

of ge Pn a given in lexicographical order, then we have the basic
J

observation:
\!r(xi) e A, if and only if X, e Ag .

With this identification the present result follows directly from
Theorem 2.3.

Now we embark on the second part of our program; we establish
the connection between our inequalities and the theory of submartingales.

This is done completely in the next two results.

Theorem 2.5. Let {Y(Z),fﬁg} be a submartingale such that

P{Y(£) > u} < c(log ﬁ)Texp(4xu2/£), then
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P{limsup Y(£)(loglog z/z)l/2

£ » o

<D) =1

where (1+1)°Y2p o (ua)M2 4 (ua)=3/2,

Proof. We first estimate the moment generating function of Y(£).

E(exp(ty(£))) = 1 + tJ,roo exp(tu)P(Y(£) > u)du

o

[o0]
<1 + ct(log ﬁ)fj' exp(tu - auE/Z)du
«00

<1 + ct(log ﬂ)TViZ exp(tgﬂ/ha) .

Now since Y(£) is a submartingale so is exp(tY(#4)) and Kolmogorov's
inequality can be applied. We let n be an increasing sequence of

integers, and observe for € > 0

P, =B sup Y(2) > (D+e)(nk/loglog nk)l/z)
nk{ Y/ S-nk+l

< B( Sup exp(tY(£)) ziexp(t(D+é)(nk/lOglog nk)l/e)

B S P

< E(exp(tY(nk+l))'exp(-t(D+e)(nk/10€lOg nk)l/z) .

o]
It remains to choose ny and t in such a way that Z: Pk <
k=1
which then would complete the proof.
"Let A and B denote positive constants and set n, = [l+eA]k
. 1/2
and %= B(loglog nk+l/nk+l)

where

. . < 1
. By our previous estimates Pk < 7k7k

26



<X
1l

: T l 2 2 .
1+cB loglog nk+l(log nk) (nk/n ) / exp(B“(loglog nk+l) nk/Mxnk+l)

k+1
1/2)

7é exp(~B({loglog moq log1°é nk)l/g'(D+€)(nk/nk+l)

For any 8> 0 we can choose A = A{e) such that 1-3 < nk/nk+l S 148

for all k. Further we note

1/2
(loglog n, ., loglog nk) / < loglog(nk+l) + N
A a constant. We therefore have

2
B (1+8) /b
Y <1+ cB(l+6)l/2 loglog nk+l(log nk)T(log nk+l) (1+8)/

1/2
7p < eXP(-BK(D+e)(l-5)l/2)(log nk+l)-B(D+€)(l—8) '

The remaining choices are easy; by taking B and D such that
T+ B2/4a - BD = -1 and then choosing A to meke B small we see
that §>Pk < ®, PFinally calculus suggest that B = V (v+1)/ha  is
the optimal choice of B, so D = (l+T)l/2((ma)l/2 + (ha)-B/g) is

a sufficient choice to prove the theorem,

Theorem 2.6. Let S denote the class of open half spaces and suppose
the random variables X, have absolutely continuous distribution.

Then the random variables Y =n sup(n(A) - y&(n)) and
AeS '

Z,=n sup(yé(n) - AM(A)) are submartingales with respect to the fields
AeS

?n = G(Xl) X2’ eee o Xn)o
Proof. If p = (s, Pys Pos eee pd) € 22 x]Rd, then p 1is associated
in a natural way with an element AP of 8§ as follows: the Pi:

i=1,2, eeo , & denote the intercepts of BAP the boundary of Ap
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with the axes and s = 1 if AP is the region above aAP (and

s =0 1if Ap is the region below aAp). We see then by the absolute
continuity of A that k(Ap) - y& (n) will for each ® attain it's
supremum on a set Ap(n,w). Also by continuity and the fact that
?A(n) assumes only finitely many values, we can show that p(n,w)

is a random variable measurable with respect to f?;. It is now easy

to check that Yn is a submartingale:

n+1l
E(Yn+113‘fn) > E((nrMAy 0 - i§l 1A(p(n,w))(xi)l o)

<y o+ E(N(A (x

+
p(n,w) L

p(n,e)) ~ 1

>Y, .

Hence we obtain that (Yn,f%;) is a submartingale. The same proof
also shows (Zn,‘Qi) is a submartingale, so the proof is complete.
The preceding work can now be brought together to provide the

principal result of this chapter.

Theorem 2.7. Let S = {Ag -8 d} be the class of polynomial
- 2
regions in IRd of degree not greater than n. TFor random variables

Xi’ i=1,2, ... with bounded density and finite nth moment we have
2 1/2
P(yﬁf‘w > D(loglog %) i.0.) =0

where D = (2‘1/2 + 23/2)(1 N (n;d)e)l/z‘

Proof., All that remains is to assemble the collected pieces. By

Theorem 2.6 and the Veronesi mapping we see that
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Y = n sup(P(X
D pes T AeS

submartingales. The estimate of Theorem 2.4 is applicable to both Yn

€ A) - y&(n)) and Z =n sup(y&(n) - P(Xl € A)) are

and Zn which are then subject to the conclusion of Thedrem 2.5 and
then yields the present result.

The assumptions of bounded density and the existence of moments
in the preceding results may at first seem like a significant restriction
compared to the corresponding results for the classical empirical
distribution function. To understand how our result differs from the

classical case, consider the class

d . d
1Y <x.,1i=1,2,...,d}; x = (Xl’x2""’xd) eR}

s={A:a=1(yem 1

which provides the correspondence

ﬂﬁ = sup ]Fn(x) - F(x)|

erRd

between Wﬁ and we note that the empirical distribution function Fn(x)
has some very special properties. 1In particular, this class is invariant
under monotone transformations of the coordinates X, 5 i=1,2, . , d.
By a familiar device, this reduces the study of distributions F with
absolute continuity to the study of the uniform distribution on the

cube. This observation together with the trival fact that

A?(xl, Xps eee s XZ) < (£+1)d shows that the proof of Theorem 2.7 is

sufficient to yield the following result:

Theorem 2.8. ITet F(x) be an absolutely continuous distribution
function on IRd and iet Fn(x) be the corresponding empirical dis=-

tribution function. We have

29



P(VFE sup ]Fn(x) - F(x)] > DVloglog n i.0.) =0

xemd

for D = (2“1/?' + 25/2)(1 + dg)l/g.

We note that our constant D is not best possible,and indeed
the best possible value of D has already been shown in this case
to be 21/2 by Kiefer [13]. Since our method attacks a much more
general problem than this last result, there is good reason to expect
sone imprecision in its application to some special cases. In fact,
it seems remarkable that one can come so close to such a delicate
result as Kiefer's by such a general attack., In this regard it is
of interesf to note that in the case d = 1 Chung [4] was able to
determine completely the upper and lower classes of funciions for the
law of the iterated logarithm so at each stage of generalization there

has been a corrssponding loss of precision.
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CHAPTER IIT

COMBINATORIAL RESULTS AND APPLICATIONS

The combinatorial function A?(xl, Xpy ese s xz) has been seen
in the preceding chapters to have a critical relationship to the proba=-
bilistic behavior of pﬁ and Wﬁ. Experience quickly leads one to
discover that A?(xl, Xpy soe s xz) may be difficult to compute,
and for this reason it is of importance to discover other functions
which are easier to compute yet which provide information about‘

S,

A'\xl, X5s ees s xﬂ). We therefore introduce a new combinatorial

function Ks(xl, Xy see s xﬂ) defined by

S k
5 e ,XZ)=maX{k:A(Xi’Xi, eeo e ’Xi)=2 ,‘

1 2 k

Ks(xl, X

2

(X, 5 X. 5 oee 5 X, 1€ {Xy Xy oee 5 X,}} o
i, i, i, 1’ 2 £

This definition can be otherwise expressed by saying that

Kg(xl, Xps ese s xz) is equal to the order of the largest subset

of {xl, Xps eee xz} such that § partitions the subset in all
possible ways. After some purely combinatorial work (which entails

a new proof and generalization of a theorem of N, Sauer [17]) we obtain
the rather surprising result that the limit behaviors of

log A?(Xl, Xos eee s Xz) and KS(Xl, Xnr vee s XZ) are essentially
equivalent. We then provide an explicit calculation of

£im KS(Xl, X5s eee s Xﬁ) when § 1is the class of convex subsets

L >
of ]Rd. This calculation then provides as a corollar& a result of
Glivenko=Cantelli type for the class of convex sets which was proved

earlier by R. Ranga Rao [15]. Next we are able to estimate
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KS(Xl, X2, e Xz) where S 1is the class of lower layers in ]Rd.
This enables us to make a positive step toward the conjecture of
Robertson and Wright [16] concerning the law of the iterated logarithm
for lower layers. We do not prove the conjecture but we are able

to provide the first result which goes beyond the level of the law

of large numbers. Finally we show that the theory of lower layers

can be applied to obtain results for the class of convex sets.

We now begin our combinatorial work.

Theorem 3.1. Let M be an £ X ¢ matrix with entries from
{1, 2, ve. , 8} and let A be the number of distinct columns of M.
If k is the largest integer such that there are k rows which form

a matrix with Sk columns, then we have
A’ 2-j
A<sT = ) (C)(s-1)7T0 .
j=k I

Further we note that for any values of s, £, and k there is a matrix

M such that equality holds.

Proof. We first provide an example which shows this result is best
possible and which suggests the specific form of the inequality. We
define M by deleting from the £ X sE matrix all columns with k

or more 1l's. The resulting matrix is readily seen to have
£
£ 2 B=3
s" - % (s
R S

distinct columns, yet we see that no matrix formed by k of its rows
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can have sk distinct columns since any such matrix lacks the column
consisting of all 1's.

We proceed to prove the theorem by showing that the only way
equality can hold is if a consistency analogous to that in the example
holds among the missing column vectors.

We let C,, i=1,2, ..., (f{) = T be a list of the k subsets
of {1, 2, ... , £} and we write M(Ci) for the matrix formed by
the corresponding rows of M. By the hypothesis of the theorem we
may assume that none of the matrices M(Ci) has sk distinct columns,
and for each i we select a vector v, = (vi(l), vi(2), cen vi(k))
which is not a column vector of M(Ci)° This allows us to define a
function f; : ¢y = {1, 2, «e. , s} Dby letting fi(j) = vi(r) if
j 1is the ! element of C;» Next we define Z, = Zi(fi) to be the
get of all column vectors w = (wl, LY ...”,'ﬁz) of the £ X s
matrix such that @, = fiQx) for o ¢ cse We can assume that M
consists of the matri% formed by all column vectors of the £ X s
matrix except those in Zl.u Z,\J *** UZ,, and the observation allows
us to assume that A = s¥ - ]zlu ZoU +t UZ.|. We will say that
Zi’ i=1,2, ... , T are consistent if fi = fj on Ci(ﬂ Cj5 the

theorem is then seen to be a consequence of the following lemma,
L P fai
Lemma. |z, U Z,U *** Uz > 3 ((s-1) J for all choices of
j=k

fi’ i=1,2, o , T and equality holds if and only if the Zi

are consistent.
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Proof. If the Zi' are consistent, there is a column vector

Y/ . .
vV = (Vl’ Vo ese s vz) of the £ X s” matrix such that fi(o) = vj

for j e Ci and 211 i =1, 2, ... , T. We see then that

Zl U Zexj o LﬁZT is the collection of all column vectors of the

£ x sg matrix which agree with v in k or more places. This then

Y/
[} t eee ! g Z-j 2
proves that ]Zl\J Z,'J u)ZTl = jgi (j)(S—l) if the 7, are

consistent.
Suppose now the Zi are not consistent. For any B e {1,2,...,5}

we define QB(Z) to be the collection of columns of the £ X sz

A
matrix given by fi(j) where

Ao ]5Q) 4B dec
fi(3)=
l j=B ieci.

and where 7 =32, U Z,y *** UZ . It is immediate that |<1>B(z)| < |z
and that @TQT_l cee @l(Z) is a consistent system. We can assume
therefore that the original Zi’ i=1,2, «eo , T fail to be con-

sistent in exactly one place PB. With this assumption we will prove

|®B(Z)l < |z| and thus prove the lemma. To carry this plan out let

A = Qj’ Z, and A'= | Z, andwrite Z =A_\J Al. Next
B i:BeC; + B i:BéCi * B~ B

we have

A, = CzUC U ZOY e U U ZL)
B (i:BgCi 1 i:pec, J ispec;

£, (B)=1 £, (B)=2 £, (B)=s

is a disjoint decomposition of Age Further we note that ®B(Aé) = Aé
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{nt
and © \Aﬁ\AB)

6 Aé\.AB. The critical point is that

I%(Aﬁ)l < IABI

since &, maps a disjoint union into a non-disjoint union. This

B
Troves ]@B(Z)[ < |z| and completes the lemma.

B,
)y (j) where

S
Corollary. A& (Xl, X5 eev s Xz) < &

B = Ks(Xl, Xos voe s Xz) .

Proof. We define a matrix M by taking as columns all of the vectors
v = (vl, Vos eee s vz) where v, =1 if X; €A and v, =0 if

Xi £ A and A € S. The corollary is the direct consequence of
Theorem 3.1,

This corollary shows the usefulness of Theorem 3.1 and will be
the only way Theorem 3.1 enters into the succeeding work. The corollary
has been proved before and as stated is due %o N. Sauer [17] who pro-
vided the result in response to a question of P. Erdfs. Quite
independently the logician, S. Shelah, had proved the corollary but
did not publish his proof, as the paper of N. Sauer would appear at
essentially the same time. Thirdly, we come toc this theorem via the
work of Vapnik and Chervonenkis [21] and [22] where a similar result
is proved but which is not quite as sharp as the above. Regarding
the possible merits of Theorem 3.1, we note that our method is the
only one which seems to work for matrices with other than {O,l)
entries, and that our proof gives a complete understanding of the

circumstance when equality can occur. Even in the known case of
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{O,l} entries our proof is perhaps of interest as it provides a proof
without the use of recurrence relations and inductions, but instead is
an explicit constructive analysis.

In the next theorem we collect the basic properties of
KS(Xl, X2’ ees Xz) in much the same way as we collected those of
A?(Xl, X2, cee Xz) in Theorem 1.1l. In fact, the methods are so

similar and easy we omit the proof.

Theorem 3.2, Let KS(Xt, Xt+

l, ece XV) = Y'b,v, then we haVe the

follcwing properties of the process {Yt v t >0, v> t}:
J

(1) Yf v is stationary, that is, the process defined by
2

' —_ . - . . - . .
Yt,v = Yt+l,v+l has the same finite dimensional distributions as
Yt,v‘

. el . <
(2) Yt,v is subadditive, that is, Yt,v < Yt,u + Yu,v for

any t<u<w,

(3) Each Y, has finite expectation, in fact, 1<Y < v-t.
,V - t,V -
(%)  2im Z'lE(Yl z) = 4im z'lE(Yl Z) =k >0, k constant.
z - 00 ’ ) Z - 00 > - -

(5) #£im 25y =k>0 a.s.
l,z -

f >
We can now show explicitly how the limit behavior of Ks(Xl,XE,...,XE)
and that of log A§(Xl’ X2, ces Xz) can be considered as equivalent.
This gives the basic link to applications of KS(Xl, X2, cee Xz)

to our original probabilistic concerns.
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Theorem 3.3. Let

. =18
C = ‘eﬂlm l A (Xl, X2) eeo0 9 Xz)
- 00
and
k. = ﬁim ﬂ- K (Xl) Xe, eese 9 Xz) .

f >

Then ¢ =0 if and only if k = O. Further, if k > 0, then

-
k < ¢ < ~log(k*(1-k)*7¥)

2KS(X1,X2,. . .,Xﬂ)

Proof. Since iAS(Xl, Xps eee s Xz), we have

immediately that k < ¢ for any value of c. Next suppose & > 0
and that KS(Xl; X2, cee Xz) <af on a set E. By Theorem 3.1

S [22]
we have A& (X5 Xps eee s Xz) < % (j) on E. Also
J=o
(2] , 0
) < (x£)(;.,7) and by Stirling's formula we have
j5 - [af]

1

—___lﬁ) + 7 for a constant 7 > 0 and all £,

1og((§“) < £ log|—

a (1)

1

Hence we obtain 2im £ ~log AS(Xl, Xp5 eve s Xz) < -log(aa(l-oc)l-a).

f >
This estimate and the definition of k +then complete the proof of
the theorem.
As promised in the beginning of this chapter, we show that

£2in 13-]'1(8()(1, Xps eee s Xz) can be explicitly calculated for several

£ - o

important classes S. The first such calculation is provided in the

following result.
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Theorem 3.4, TLet Xss i=1,2, ... be a stationary ergodic process
with values in IRd. If S is the class of convex ,Borel subsets of

:Rd, then £im .B-IKS(X]_, X5 ees s X.Z) = sup P(X, e OA).

£ - AeS 1

Proof. For any convex set A we have

y)
KS(Xl, Xps see s xz) > 121 15A(Xi)

s k
since if {yl’ Vpr eve s Vk} Cc OA we have Ks(yl, Yps oee s yk) =2,

By the ergodic ‘theorem we then have

Lin J&"l;(s(xl, X

i 55 eee 5 X;) 2 P(X; € OA)

for all A € S.

To prove an inequality in the opposite direction, we employ a
compactness argument based on the famous Blaschke selection theorem
(see Eggleston [9], p. 64). To make this result available, we first
require a truncation lemma which will allow us to focus on a compact

subset of ]Rd.

Lemma., Suppose Xi = 1, 2, «o. 1is a stationary ergodic process which

takes values in ]Rd. Let Bm be the ball about O of radius m.

Then let
c = Zim z'llog AS({X X - > X,}NB)
m o e s R-L A A
and
k, = ‘in KS([Xl, Xo5 eee s xz}n Bm) .

L -
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Then we have

£im c =¢ = Zlm £ 1log A (X ) Xe, eees XE)
m - b = o

and
ﬁim k = k = Eiln z.‘:LI(S(Xl’ XE, cee Xz) .
m - o L »

Proof of Lemma. We note that

c <c< fim £ llog A8 ({X s Xps eee 5 X, In B ) + £im 27 Z} 1 (X ).
m - 2 - 2 p
- - co i=1 B
Hence ¢ <c<ec + P(X € B;) and we thus obtain £im c_ = c.
m -> o

The proof that Jfim km =k is similar.

m ->

We. now return to the proof of the theorem. TFor each integer
r > 0 we obtain by Blaschke's theorem a finite set 8(r) of convex
subsets of Bm such that the following holds:

If C is a convex subset of Bm’ then there is an element A

1

of S(r) such that

oC C{x : inf (s-y) < 1/r} = 7(4, 1/r) .
yeaA

(Here we introduce the thickened boundary T(A,8) = {x : ing (x=y) < 8}.)
yeoA
By the definition of S(r) we have

KS({X,X,...,X}nB)_max 1(x)
1’ 2 Ces 1?1 de

CCBm

£

SR YL U
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On applying the ergodic theorem we obtain

(1) k < max P(X; e T(a, 1/r)) .

~ Aes(r) 1

To take advantage of (1) we choose for each r an A, € S(r) such

that
(2) k, < P(X, e T(A,, 1/r)) for all r .

Now again by Blaschke's theorem, there is a convex subset A% of

Bm such that we have the following:

Given & > 0, there is an R = R(8) such that for r >R we

have T(A, 1/r) € T(A',3).
This proves by (2) that
1
k S P(X; € T(a",8))

which shows by an application of the dominated convergence thecrem
that

(3) k SP(X; e OA') < sup P(X; € ) .
AeC

Since the last inequality is independent of m, the theorem follows
on letting m go to infinity.
We now consider an immediate consequence of the preceding theorem

working with the earlier Theorems 1.5 and 3.1.
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Corollary. {(R. Ranga Rao) Let Xs5 i=21,2, eeo be i.i.d. with

values in IRd and let § be the class of convex Borel sets in ]Rd.
£

We have T - 0 a.s. if and only if

sup P(Xl €edC) =0.
CeS

The virtue of Theorem 3.4 does not rest so much in the new proof
of the theorem of R. Ranga Rao ([15], p. €74) as in its relation to
subzdditive ergodic theory. In fact, the above corollary was provided
by Re. Ranga Rao in the ergodic stationary case where we require inde-
pendence. What Theorem 3.4t particularly accomplishes is the specific
identification of a 1imit obtained in general by the theory of sub-
additive processes, and according to J. F. C. Kingman such identifi-
cations hold the "pride of place among the unsolved problems of sub-
additive ergodic theory" (see Kingman [14], p. 897).

A result which is completely analogous to Theorem 3.4 can also
be given for the class S of "lower layers" in = This class is
certainly less well known than the class of convex sets, yet it enters
naturally into several probabilistic and statistical contexts. We
say A is a lower layer in IRd if A 1is a Borel subset of ]Rd
such that y = (yl, Vor e s yd) € A implies x = (xl, Xps ves s xd) € A
if X, S.yi for i=1,2, «eo , d. 1In particular, we see that if

d = 2, the class of lower layers is exactly the class of sets

]

B [(xl, Xx,) @ X, < f(xl)} where f is a monotone decreasing
function. One should note that there are many lower layers which are
not convex and vice versa. We now state our result concerning this

class.
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Theorem 3.5. Let Xi, i=1,2, ... be a stationary ergodic process
with values in IRd. If S 1is the class of lower layers in ]Rd,

then

Zim z'lxs(xl, Xys +ee 5 X,) = sup P(X, € ) .

£ =0 AeS 1

We omit the proof of Theorem 3.5 since it exactly duplicates our proof
of the corresponding result for convex sets. The crucial ingredients
of the proof are (1) the fact that KS({yl, cee yk}) = 2% if ana
only if vy i=1,2, ... , k are on the boundary of a lower layer
and (2) there is a compactness result due to Brunk, H. D., Ewing, G. M.
and Utz, W. R. [3] which performs the same function for the lower layers
that Blaschke's theorem does for convex sets. The truncation lemma
and the assembling of the pieces is easily checked to follow in the
manner of Theorem 3.4. PFurther we note that we obtain a corollary to
Theorem 3.5 just as we obtained one from Theorem 3.4, This time the
result is essentially a Glivenko-Cantelli theorem due to J. Dehardt [T].
Our main concern with the theory of lower layers does not rest
so much in Theorem 5.5 as in the conjecture of T. Robertson and F. T,
Wright [16] that the law of the iterated logarithm holds for ﬂﬂ.

Explicitly it is conjectured that

1/2 L ‘
) sup| £ > lA(Xi) - P(Xl eA)| = \[5 =1,

£
o| T (-——-
£ - w1088 £ A€S i=1

In our approach to this problem we will consider only the case
d = 2, and our principal objective will be to obtain good estimates

on the tails of Wﬁ and pz. Such estimates are very likely to have
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value in any attempt to prove the above conjecture. Although we make
only modest progréss in this direction, it is nonetheless the first
step to go beyond Theorem 3.k, |

Our tools are actually best designed for the study of pz SO
we first point out a general relationship between 77_1?, and pz. If
S 1is any class such that 7Tz and pz are measurable, then

2 2
T < E(p IXl, X2, cee XZ) a.s. To see this fact, we note that

), L 24
gt i§1 1, (X,)=P(x, ) = B(e~t i?l 1A(Xi)-/z‘l i=§+l 1, (%) X X500 5%))
so we obtain immediately that
sup(£~+ f‘} 1 (X.) - P(X. € A))
Aes  d=1 A1 1
< E(sup(£~t f\j 1(x,) - 27t ﬁ} 1, (x N x,, x X,)
A e &t Koy e 0 Xy
and
inf(2~t ;‘ 1 (x,) - P(X € A))
Aes  im A1 1
> E(inf(£~t f} 1 (x.) - £t %z 1, x)NIx,, X X,)
= hes -1 AR AR

These two inequalities are in fact stronger than our ascertion that
o S_E(p'elxl, Xos eee 5 X,)e

From this observation we see that any upper law of the iterated
logarithm we prove for p'z carries over to 7rz with the constant
unchanged. In general, howeverA, to carry an upper law for 'ITZ to

one for pz one has to double the constant.
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We can now state our basic estimate on lower layers.

Theorem 3.6. Let X;5 i=1,2, «o. be i.i.d. random variables with
absolutely continuous distributions. If § is the class of lower
layers in IR2, then there are constants Cl’ 02, and O > 0 such

that
£ _ .2
P(p” > ) < cy exp(a log £ £ = A\°L) + Cs exp(-V7) .

Proof. We begin by showing that the Xi may be assumed to be uniformly
distributed in the cube [O,l]d. This is done by noting that the Xi
have absolutely continuous distribution; we can define the conditional

distribution functions

and then define the one-one mapping of ]Rd onto IRd by

N
]

1= Fp(x)

Z, = F2(x2lxl)

I o oo

Z4 Fd(xdlxl, Xp5 aee 3 xd) .

We call the map obtained in this way ¢ :IRd *]Rd. One can check by
direct calculation that the random variables défined by Zi = ¢(Xi),
i=1, 2, ... are independent and ﬁniformly distributed. So far we
have only repeated a trick which is familiar in the study of the
classical empirical distribution function. The usefui observation

is that the class of lcwer layers is invariant under coordinate-wise
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monotone mappings. This provides us with the fact that

2 2
P(p (X5 Xpp vee 5 XE) >\) = P(p (295 Zps =ee s zz) > A) and completes
the proof of the claim that it suffices to consider uniformly dis-
tributed random variables which take values in the cube.

Now we begin our estimations by observing that

@ e’ > )

)/
P(p > }\. 3 AS(Xl} X2’ LN F} X,Z) i 2

S Y/
+ P(A (xl, Xp5 eee s X,e) >27)

Ks(Xl,XE: L) ’Xﬂ)
Y 2 4
< 3+2 "exp(-n (£-1)) + P( E} (j) 22

j=o

8£)

where & 1is any positive real number. This last inequality follows
from the Vapnik-Chervonenkis lemma in the first part and the corollary

to Theorem 3.1 in the second.

L) X
Next since 3, (i) <1+ £, we obtain
j=o
Ks(xl,xz,...,xz)
y; Y)
(2) ¥( P (j) >277) < P(Ks(Xl,Xg,...,XZ)log 4 > (d£-1)log 2).
j=o

Thus we have a need to compute the tail probability of the random
variable KS(Xl, Xy5 eee s XZ).

The crucial fact is that one can prove that
2 2ry,\-1
P(5(Xys Xps wee 5 Xp) > 28) < (D1

where r is any positive integer. This inequality is essentially
equivalent to a result of Hammersley, but it is as brief to use his

argument as to apply his result (this method is used and clearly given
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in Kingman [14]). We let X(i)’ i=1,2, ... be the Xi reordered
in such a way that the first coordinates are increasing. Next denote
by Yy the second coordinate of X(i)’ i=1,2, ... . We define a

random variable v as the number of sequences il < 12 < eee < ir <

such that y, >y. > °°¢ > y. and where r 1is a fixed integer.
1 2 iy
By the uniform distribution of the Xi we have

E(v)

1l

Py, >y, > +ee>y. )
. . . i i i
i, < i, <oo oL i | 1 2 T

ey ~L
(=)™ .

If KS(Xl; Xe, eee Xz) >2r, then v> (gi) so by Chebyshov's

inequality
n ,/21" -1
(K3 (Xy5 Xps oo 5 Xp) 2 20) < (1IN

We then obtain by Stirling's formula that

(3) Ry Xys eee 5 %) > 20) < ) V26 E/2)

Finally, the choice of & = Le log 2/\/7— and the inequalities (1),
(2), and (3) directly provide an inequality which is somewhat stronger
than the one claimed in this theorem.

The usual Borel-Cantelli argument provides one immediate consequence

of our estimate.

Corcllary. If Xi’ i=1,2, ... have density and take values in ]Re,
then on letting S be the class of lower layers, we have

P(pl > B(log z)l/zz'l/“ i.o.) = 0 for some constant B.
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This corollary is, of course, only the crudest means of employing
the inequality given by Theorem 3.6. There is a martingale which can
be directly related to pz and thus make available the more elaborate

methods of Theorem 2.5. By this attack I have proved that
P(pz > B(loglog ﬁ)l/e,@-l/llL i.o.) = 0,

but since the factor B-l/h is probably not near the best (recall
~1/2 . . .
£ is conjectured) we do not pursue the point here.
Since the class of lower layers does not at first seem as natural
as some of the classes we have considered, it is of value to note that
many results for lower layers have a direct application to the class
of convex sets. The source of the connection is easily seen in two
dimensions: If a convex set has n extreme points, then there is

a subset of [n/4] of these whose graph is the graph of a monotonic

function. This translation immediately provides the following result.

Theorem 3.7. If S 1s the class of convex Borel subsets of IR2,
then Tim 4~V EKS(Xl, Xy5 eee 5 X,) = C2 0 for a constant C
providﬁdaizat the Xi’ i=1,2, «¢o are i.i.d. with densities.
Further, since P(KS(Xl, Xps eee > Xz) > r) can be estimated
by first looking only for monotone subsets, the procedure of Theorem
3.6 can be used to estimate the tail of ps for the class of convex
Borel sets in IR2. Here we remark that we do not need that the class

of convex sets is invariant under the map & of Theorem 3.6. (Indeed,

it is not invariant.)
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This sketch and the preceding work on lower layer thus provide

the following results which we state for the record.

Theorem 3.8. Let X, 5 i=1,2, .o be i.i.d. random variables with
absolutely continuous distribution. If S is the class of convex

Borel subsets of IRQ, then

(1) 2, Xy oee 5 Xp) > 80) < ()

(2) There are constants C and & such that

l) 02,
P(p’e >2) < C, exp(a log £ \/7&—- )\.22) + Cy exp(= ﬁ)..
(3) There is a constant B such that
P(pz > B(log 2)1/22‘1/lL i.0.) = 0 and

prt > pliog 0)Y2 Y 1.60) < 0.

Here is perhaps an appropriate place to remark that this last
result is the only result for even so basic a class as that of the
convex sets which goes beyond the level of the law of large numbers.
The fact that the result is given only in IR2 is a reflection of the
cleverness of Hammersly's argument given in the proof of Theorem 3.6.
It would be by generalization of that argument that the above result

could be extended to IRd a> 2,
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CHAPTER IV
ANALYSTIS OF TWO ENTROPIES
The more one regards h(F, S) = 4£im P log A?(Xl, Xos oee s Xz)
as an entropy, the more compelling itzi;‘zo compare h(S,Xl) with the
entropy of Kolmogorov. The most direct means of pursuing this compar-

?A, .e.} where A is a measurable set

ison is to let § = {aA, TA, T
and T 1is a bimeasurable transformation. Once this class is considered,
there is an immediate question: If T 1is taken to be rotation on the
unit circle by an irrational multiple of 2w, do we have that S is
a uniformity class for all choices of A? In the first theorem of
this chapter we prove in a very strong way that the answer to this
question is no. Although the construction given in Theorem k4.1 is
quite elementafy, the result is so strong as to be surprising.

The vein opened by‘Theorem 4.1 is then worked until its limits
in generality (Theorem 4.5) and in precision (Theorems 4.3 and L4.k4)
are reached. The result given in Theorem 4.4t is of a very classical
type although as best one can tell it is new. It is, in any case,
the product of P. Erd8s? curiosity in the limits of my Theorem 4.1
and his kind insistence that I find those limits.

Finally, in the last part of this chapter the motivation for
considering S = {A, TA, TgA, «os} 1is revisited and Kolmogorov's

‘entropy is compared with that of Vapnik and Chervonenkis.

Theorem 4.1. Iet T(x) = (x +d)mod 1 for x e [0,1) and «

irrational. For any 8 > 0 there is a Lebesque measurable set A
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with A(A) < & and the following property: For any finite set J

there is an integer j = j(J) such that J‘C-TJA.C

Proof. We construct sets Ak which are the union of finitely many

intervals such that for any set S8 of k elements there is an n

so that Sc THh,. Also, the Ak have measure less than 62'k S0

k
o]
the theorem follows by setting A = U Ak’ Since the construction
k=1
of the Ak for k > 3 is analogous to the construction of A5’ we

restrict ourselves at first to this case.
Let Ny, Ny, n5 be integers such that 6 < ny < n, < n5 which
will have Just one further restriction placed on them. Now we can

define the basic set,

nl-l nlpe-l
A3 = [0,6/1'11:! U {k:_}o [k/nl)k/nl+6/nln2 ]} U ( ];io [k/nlne)k/nlng%/nln.QHB ]} .

Weinote that k(AB) < 6(l/ni + l/n2 + l/nB), so choosing n, large
guarantees that X(A3) < 82-3, and allows n,, n,, Dy to be fixed.
Let [xl, X535 x3} denofe a three element-subset of [0,1). We
choose a real number T so that (xl + T)mod 1 = 5/nl. We have now
three more choices:
(1) Choose T, such that (x2 + T+ Tl)mod 1= k/nl + 5/nln2

1
and with ITl] < l/nl.

(2) Choose 7, such that (x3 T T+ T,)mod 1 = kq'/nln2
+ 3/nln2n3 and with ]Tgl Sbl/nlnz.
(3) Choose T, such that (7 + Ty H Tyt 13)mod 1=~ and

5

with |73] < l/nlnenB.
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Finally, the fact that {xl, X5) XB} € T'A follows from the
inequalities lTl + 72 + T3l < B/nl, lTe + le < B/nlne, and
]T3] < B/nlngn3 together with the definition of A, T, and Ti.

For the general case we have the representation

n -1

A, = [0, 2/, UL U [3/n), 3/n, +2K/nn,)

j=o

(nyngeeomy y)-1
=ee U{ U [3/ny++omy o 53/n s o + 2k/nj«een ]

j=o

where the restriction on the ni are that
2K<n, < **<n_ and 2k(1/n. + +++ +1/n) < 82"% .
1 g 1 Tk

The verification that A, has the desired properties proceeds just

k

as it did with A3'

The higher dimensional analog of Theorem 4.1 is valid and so is

a converse. This is made explicit in the following:

Corollary. Let T be a translation on the n-~torus C}n. T is a
periodic if and only if for each & > 0 there is a measurable set A
such that m(A) < & and with the property that for any finite set
JC ©" there is a j = j(J) such that Jc .

We note that Theorem 4.1 is best possible in the sense that we
certainly can choose a countable set J such that J 1is not contained
in any of the sets TjA, no matter what A provided m(A) <1. To
give such a J one just chooses xg_e(TiA)c and sets J = {xl,xz,...].
It is nevertheless possible to give a strengthened version of Theorem

4.1 which is potentially useful.
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Theorem h:@' Given any € > 0 there is a ILebesque measurable set A
with m(A) < € such that we have the following:
For any & dirrational and any F with only a finite number of

limit points, then F € (A + n@)mod 1 for infinitely many integers n.

Proof, We first observe that given € > 0 there exist a set Bk
which is a finite union of intervals, m(Bk) < ¢, and there exist a
constant Sk so that we have the following:

For any k set F = {fl, o9 eee fk} and any o irrational
there exist an n such that (fi -8, T, + Sk)tz (Bk + n0t)mod 1
for i=1,2, ... , k. To prove this observation we note that as
in Theorem 4.1 we can construct a set B! so that {fl, cee fk}

k

is contasined in (B£ + no)mod 1. Let & be the length of the length

k
of the smallest interval in the construction of Bﬁ. Now define Bk
as the set obtained by expanding each interval in the construction
of Bﬁ by a factor of 3 about the midpoint of that interval. This
Bk then has the property asserted by the first observation.

The first observation will help us catch the limit points; now
we observe how to catch the remaining point once the limits are caught.
More explicitly, we observe that given an € >0 and any 3 > 0,

there is a set C a union of intervals, such that m(C8 j) <e
2

8,3’
and with the following property:

For any R and any j set P = {pl, Doy +ee s pj} there is
an interval (rl,r2)<: (0,8) such that for any r ¢ (rl,re) we have

PcC (C6 greot R)mod 1. The proof of this second observation is
3

already contained in the proof of Theorem k4,1,
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Now to conclude the proof of Theorem 4.2 we first choose sets

o With m(Bk) < el2-k and such that we have

the characteristic property of our first observation. Now by the

Bk and intervals &

second observation we choose sets C(Sk/Q, j) such that

n(c(8,/2, 3)) < 2™

and finally let A = B, U c(sk/e, i),
i,d

We have m(A) < € * e, sO m(A) < e if e < e/2, & < e/2. By
the observations, Bk(fi -8, £, - Sk) c (Bk + nt)mod 1 for some

n, and all i=1, 2, ... , k and where {fl, f2, cee s fk] is the
set of limit points of F. Let P = {pl, Dys wee s pj} be the points
of F not contained in any of the sets (fi - 6k/2, £+ Sk/2),

i=1, 2, ;.. > k. Now by the second observation

P < (¢(3, SK/Q) + no + r)mﬁd 1 for all r e (rl, r2) c (0, ak/e),

and hence also F c P Uy (igl (fi - ak/z, £, - sk/z)) c (B, v C(J, ak/z)
+m o+ r)mod 1 since r < 6k/2. Choosing r € (rl, r2) such that

r = 0 mod 1, and noting there are infinitely many such m, we have
FcC (Bk U (3, 6k/2) + (n+m)a)mod 1 ¢ (A + (n+m)X)mod 1 as required.
Theorems 4.1 and 4.2 also have their analog on the line IR, which

we state without proof since the same method is involved as in Theorem

l".l.

Theorem 4.3, Given any e > 0 there is a measurable set A such
that m(A) < ¢ which has the following property:
Given any dense set D of IR and any set F with only a finite

number of limit points, then there is a d € D such that FC A + d.

We remark that the set D could, of course, be IR, and in fact an

interesting situation arises with this choice. It is no longer clear
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that one could not by some other method construct a measurable A
with m(A) < € and such that for any countable set F there is an
r e R such that P CA + r. This presents a problem: Given a meas-
urable set A < [0,1] construct a countable set F such that
F & (A+r)mod 1 for all r.

This problem is not solved. The result we provide in this
direction is given in the corollary to Theorem 4. We are indebted to
P. Frd8s for his suggestion that a construction like the one in

Theorem 4.4 should be tried.

00

Theorem 4.h. Tet ozi > 0 such that Z\, oti =<1 be given. Then

i=1

there is a closed subset F of [0,1] such that m(F) = 0 and

[>2]
F¢ U I, for any set of open intervals I, with mI, =0..
.=l 1 1 1 1

Froof. We will construct sets Fk’ k=1, 2, ... such that each Fk

is closed and Fk oF We will require that F satisfy the property

k+1® k

(o]

that de‘ U I, for any set of open interval with ml, =Q,. By

i=1 )
making m(Fk) converge to zero, we have by taking F = Fk that
o k=1
m(F) = 0. We now consider any union \U I, = G’ where mI; = Q.

i=1

Supposing the Fk have been constructed, we have Gk = Fkn -}c £ 9

o] o]
and the @, are nested and compact, so Fo (| G_#0, so F& U I..
K k=1 © =1

It remains to construct the Fk‘

The Fk will be defined inductively and their definition will

require an increasing sequence of integers Ny, Do) N,y see o« We
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n., =1l

1
define Fy by U [j/nl, j/nl + l/2nl]. Then F, is constructed
J=o
by dividing each of the intervals of Fl into 2n2 equal sections

[»]
of length 1/2Ln and then taking F, to be the union formed by

172 2

taking every other one of these sections. In general, is formed

Ly

from Fz by dividing each interval of Fz into 2n£+l equal prices

and then taking ¥ to be the union of every other one of these.

2+1
We list now the important properties of the Fz:

(1) F, consists of n.n. *** n

18 intervals of length
-1
)

£

eese 1

)/
(2 n,n, U

(2) If gg(X) denotes the maximum number of sections of Fz

which can be covered by an interval of length X, then we have
g,(X) <Xnn, seen, + 1.
(3) Fyp>Fyp-

These properties are immediately verified and all that we are required
-]

to show is that n., n,, ... » n, can be chosen so that F,¢ U T,
17 B2 2 1% 200

for any Ii such that mIi = ai. The proof depends on the observations
that small intervals and large intervals are used with different
effectiveness to cover F,. To make this explicit let N(£) ©be the
méximum number of intervals of Fﬂ which can be covered by Ii with

m(Ii) = @;. We have

N(2) < ( > a,) o’nn, +een

12 y)
y) U /- R
oy < (2 n,n, nz)

* Z (@500 = ov my + 1)

2 -1/2
o, > (2 nln2---nz)

25



This estimate follows from the consideration that the most efficient

use of an interval of length ai less than (2zn1n2 s n2)-l/2

would be made by having all such intervals to be of length (Egnl"'n)e)"l

and using each one to cover an interval of FZ' The second term in
the estimste is of course from property (2) above.

In the case £ =1, the estimate reduces to

N(l)/nl <2 > o, + > (o, + l/nl)
a, < (enl)'l/z : a > (2£nl)-l/2 i

<2 | > + (1 + (nl)‘l/g)a
a, < (Enl)"l/2

-1/2

oo
where we used the fact that E} 0. = o and that l/n <n a. for
i 1 1 i

i=1
all ai in the second sum. Now it is evident that nl can be chosen

so large that N(l)/nl < 1. Hence, n, can be chosen so that Fl

is not covered by intervals I, with m(Ii) = Q.

The general case is not so different. Our estimate yields

2

2 -1/2
N(z)/nln2 n, <2 >, o, + a(l+(n n, n,) .

£ -1/2
a; < (2nynyeny)

Hence, we can choose n, so that N(ﬁ)/nl *ecn, < 1, hence construc-

ting Fﬂ which cannot be covered.

Corollary. Given any measurable set A with m(A) < 1, then there
is a closed set F of measure zero such that F ¢ (A+r)mod 1 for

any r <IR.
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o] o]
Proof. Since AC VU I, with m( U Ii) <1 and I, disjoint, it
i=1 | i=1
suffices to construct F so that F & (U I, + r)mod 1. A much
i=1

stronger statement has been proved in Theorem 4.4, since m(Ii) =

o] [ee]
with 7 o, <1 and (U I; + r)mod 1 is a union of intervals Ii
i=1 i=1

with m(I:fL) =0y

Since the conclusions of the preceding theorems concern specific
countable sets, our results on -rotations and translations cannot
possibly carry over to a measure preserving transformation which may
not be defined except up to null sets. It is possible, however, to
introduce a notion of "almost every finite subset of Q" which allows
a general complement to the preceding work. To define this notion
we suppose that Xi, i=1,2, 3, «o. 1is a sequence of measurable
functions from a probability space (ﬁ; 55, P) +to a probability space
(@, 2,5 n), such that P(X;l(A)) = u(A) for A e, and such that
the functions X i=1, 2, ... are independent. Now for ® ¢ Q
we have that {Xlﬂaﬂ, Xg(a), cee Xk(a)} is a k element subset
| of & which is intuitively a random sample from Q. We say that

a property holds for almost every finite sample of 9 if the property

holds for (Xl(a-)) , XQ(Z_D) 5 eee s Xk(a)} for almost every « and every
k> 1.

Before proving the next result, it is necessary to recall some
definitions and results from the theory of measure preserving trans-

formations.
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A bi-measurable, measure preserving transformation T on
(Q, 3>, u) is aperiodic if for any B e E: with m(B) # O there
is a B'c B such that P(B'AT 'B') £ 0 for some n.

We note that any ergodic transformation is aperiodic and thus irrational
rotations are aperiodic. TFor an example of an aperiodic transformation
which is not ergodic, take the transformation T(x,y) = ((x + a)mod 1, y)
on the square where & 1s irrational.

We also recall that a measure space (9, Z}, n) is called a
Lebesque space if it is measure theoretically isomorbhic to [0,1].

An enormous number of the measure spaces in probability theory are
Lebesque spaces.

We require one lemma from the general theory.

TIemma. ILet T be an aperiodic transformation on a Lebesque space
(@, E, w). Given € > 0 and an integer n > 1, there is an E ¢ E

n .
such that E, TE, TQE, ees , T'E are disjoint and (U T™E) > 1 - e

1=0

This lemma is often called Rohlin's theorem. As stated, it is
due to Jones-Kringle [12]. A proof of a closely related result (for

antiperiodic transformations) is given in Halmos [11l, p. T71].

Theorem 4.5. Let T Dbe a measure preserving transformation on a
Lebesque probability space (Q, E}, u)e T is aperiodic if and only
if for each 3 > 0 there is an A ¢ z> with p(A) < 8 and the following
pProperty:

For almost every finite sample J of & there is an integer

3 = 3(J) such that J& T YA.
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Proof. Suppose first that T 1is aperiodic. We will construct sets

A, and B_ in >, such that for each ®e & with Xi(w) e B for

1, 2, oo , k there is a j such that TJXi(B) ¢ A, for

1, 2, oo , k. Further, we will have u(a,) < 527% and
0
K

i

I

i

g(Bk) >1-2"", sobysetting A= \J Ay the first half of the

k=1
theorem is proved.

The sets Ak are defined via a sequence of zeros and ones which
are used to label the levels of a Rohlin tower. To define this sequence,
we will use k + 1 integers denoted by 22, z3, ces 4 zk, L and N
whose properties will be specified later. If S 1is a finite string
of zeros and ones, then ISI will denote the length of that string.
Also, if Sl and 82
string of length ]sll + lszl obtained by following §; with S,.

are two strings, then (sl)(sz) denotes the

Similarly, (S)l denotes the string of length £4|s| given by s
repeated £ times. Now we define nested strings as follows:

)
(11)(o1) 2

o’
Il

b

Y/
3 (kN - |b2l ones)[ (N - |b2| zeros)(bg)] S'

and in general

)/

b, = (kN » lbt-ll ones)[ (N+ lbt-l] zeros)(b, .)] © .

t t-1

This allows the definition label(A,) = (bk)L.
By Rohlin's theorem we select a set B such that

7715, T-QB, eee » T B are disjoint with n = Ilabel(A3)| and

Now A, 1is defined by Ak = U T'B where § is

ieS

n . e
(U TTB) < 8

121 k

l.
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the set of integers such that the ith element of the string label(Ak)
is one.

The construction of Ak is complete once the selection of the
constants appearing in its definition are made. We note first that
u(Ak) is less than the percentage of ones appearing in bk’ SO
u(Ak) < 1/N + k/ﬂk. To begin, we choose N such that 1/N < 1/2(82'k),
and we then construct 22, ﬂB, cee zk sequentially in such a way
as to assure that most samples are well separated with respect to the
block structure of label (Ak)' To make this explicit, let z(x) =1
if x ¢ TB and let £(x) be infinity if x f A,. Consider then

the folloWing conditions:

(1) Iz(xi('a'))) - ﬂ(Xj(ZB))Imod(222) >1 for i#3§, 1<i,j<k

(@) l2(x; (@) - 4(x,(@)) [mod|b | > wlv, , |

for 143, 1<i,j<k, and 3<t<k

We first choose 22 so large that (1) holds for all ® except

a set of measure 82 + 61. The choice of z2 determines |b2I so

then 4, is chosen so large that (2) holds for t =3 for all ®

5
except a set of measure 83 + 61. Continuing this procedure, we obtain
Ly £3, ees > 4 sO that (1) and (2) hold for all ®© except a set

of measure & < kal + 62 + ocee + Sk. Since Ek can be chosen arbi-
trarily large, we choose £, so that k/,@k < 1/2(52'k) and hence
guarantee that u(Ak) < 62-k. The last choice we make is of I, and

we choose 1 so large that

(3) £(x, (@) < llabel(Ak)l - Klbkl
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for all except a set of measure 61 + 52. Now we specify that
(K+l)61 + 8§ 4 eee + ak + SL < 2-k, and it remains only to show that

2

for each ® such that conditions (1), (2), and (3) are fulfilled

we have a j such that TJXi(ED €A for 1=1,2, «oo , k.

Let xi(a), cee s Xﬁ(&) denote the sample Xl(&), cer Xk(a)
resubscripted in such a way that Z(Xi(a)) < z(xé(ﬁ») < eoe < ﬁ(xﬁ(E)).
First chcose j(1) so that Tj(l)Xi(a) is contained in the first
level of a bk block; this is possible by condition (5)- Next choose
j(2) so that 'Tj(g)(Tj(l)Xé(E)) is contained in the first level of

a b block and such that j(2) < N]bk_ll; this is possible by

k-1
conditions (2) and (3). Continue inductively for 3 < t < k-1 choosing
j(t) so that Ta(t)(T3(1)+3(2)+"'+J(t"l)x£(5)) is in the first level
of &

block and j(t) < N|B Finally, choose j(k) so

Py b4l et |

that
Tj(k)(Tj(k'l)+'"+j(l)X{:(“))) is in A, and j(k) <2 ;

This is possible by condition (1).

Now set j = j(1) + *++ + j(k). We already have that
Tj(Xiﬂaﬁ) e A, sosuppose 1<t < k-1 and consider Tj(Xé(E)).
By the definition of j(t) we have Tj(l)+"'+j(t)x%(w) is in the
first level of a bk-t+l block. Such a block begins with kNlbk_tI
levels labeled with a 1, and by the bounds on the j(S) we have

J(e+1) + 3(542) + o+ + 3(k) < kNlbk_tl. This proves that

T3(1)+"'+J(k)(xt(5)) is in A, and completes the first half of

the theorem. The converse is much easier, and, as it is not involved
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with our basic construction, is pointed out as a ccnsequence of the

following lemma.

0
Lemna., If for any 8> O there is an A ¢ z> such that p( U T-;A) =1,
i=1

then T is aperiodic.

Proof. Suppose T 1is not aperiodic and let B € Z) denote an invariant
set with 0 < u(B8) <1 for which there is an n such that

W(BAT 'B') = 0 for all B'C B, B' e€), If A is chosen as in the

o]
hypothesis, then p(BA U T 7(AN B)) =0 since B is invariant.
i=o

But p(A N BAT (ANB)) =0 so p(U T‘i(A N B)) <nu(An B), and
i=o

consequentially u(B) < nu(A n B) < nu(A). Since p(A) can be chosen
arbitrarily smaill this gives a contradiction.

We are now able to show quite simply that the Kolmogorov entropy
can differ in almost every éualitative combination from the Vapnik-
Chervonenkis entropy.

We first consider the cése of a transformétion with zero Kolmogorov
entropy. The simplest such ergodic transformation is irrational rotation.
We note that by Theorem 4.1 there is measurable set A such that if
Xi, i=1,2, ... are i.i.d. with any distribution that the Vapnik-

2
A, ooo}o

Chervonenkis entropy h(F, S) # 0, where S = {A, TA, T
Moreover, we see that if T is any ergodic (hence aperiodic) trans-
formation, it is still possible to have h(F, S) # O by taking X;

to be uniformly distributed in the sense described in the preliminaries

to Theorem 4%.5.
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In the other direction, we provide an example where the Vapnik-
Chervonenkis entropy is zero, and so is the Kolmogorov entropy. Again
tﬂe transformation is taken to be irrational rotation on the circle,
but now A is chosen to be an interval. Setting S{A, TA, T2A, ceel

it is easy to see that A?(Xl, X » XI) </ + 1 and consequentially

2, LN
hF, 8) = fin £7'E log A5(xy, X

L - x

2, ) ’Xﬂ)_—‘O-

Only one qualitative comparison remains between the two entropies:
Is there an ergodic transformation T and a measurable set A such
that

(l) the Kolmogorov entropy of the transformation T with the
partition P = (A,Ac) is positive

and

(2) the Vapnik-Chervonenkis entropy of the class S = {A,TA,T?A,...}

with some i.i.d. random variables X., 1 =1, 2, ... 1s equal to zero.
l, ) J

If the random variables Xi’ i=1,2, ... are taken to assume
only countably many distinct values, then the Vapnik-Chervonenkis
entropy 1s seen to be zZero no matter what the class S 1is taken to
be. This provides an answer to the question asked and completes the
comparison, but it does not strike the heart of the matter.

In fact, we close with the conjecture: If T : [0,1] - [0,1]
is ergodic, and P = (A,Ac) is a partition of positive Kolmogorov
entropy under T, then the class S = (A, TA, T2A, «ee) has positive
Vapnik-Chervonenkis entropy when Xi’ i=1,2, ... are uhiformly

distributed on [0,1].
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