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TRANSIENT BEHAVIOR OF COVERAGE PROCESSES
WITH APPLICATIONS TO THE INFINITE-SERVER QUEUE

SID BROWNE,* Columbia University
J, MICHAEL STEELE,** University of Pennsylvania

Abstract

We obtain the distribution of the length of a clump in a coverage process where the
first line segment of a clump has a distribution that differs from the remaining
segments of the clump. This result allows us to provide the distribution of the busy
period in an M/G/o queueing system with exceptional first service, and applications
are considered. The result also provides the tool necessary to analyze the transient
behavior of an ordinary coverage process, namely the depletion time of the ordinary
MGl system.
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1. Introduction

If {S;:1=i<ow} denotes a sequence of non-negative random variables, and
{7;: 1 Si<oo} denotes the points of a homogeneous Poisson process on [0, co} with
arrival rate A, the associated coverage process consists of the sequence of half-open
intervals [t;, 7; + S;). The union of this set of intervals can be written uniquely as a set of
disjoint half-open intervals that we call the clumps of the process. The gaps between
successive clumps are called spacings.

In the queueing context, S; is the service required by the ith customer, who arrived at
time 1, to a service facility with an unlimited number of servers (the M/G /o queue). The
clumps are then equivalent to the corresponding busy periods of the system, and the
spacings are the idle periods. The clumps also model the dead times in a type Il counter
(see [7], Chapter 2 for further details).

There is an extensive literature for coverage processes where one assumes that all line
segment lengths are independent and identically distributed (see [7], Chapter 2), but the
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590 SID BROWNE AND J. MICHAEL STEELE

situation where these properties do not hold has been largely ignored with respect to the
clumping aspect (but see [14], [4]). Here we focus on models that permit the first line
segment of each clump to have a distribution that differs from those of the remaining line
segments. The resulting exceptional coverage process is quite important in the queueing
context, where the clumps would correspond to busy periods in an M/G/« queue where
the first customer in every busy period has an exceptional first service requirement.
Queueing service systems with this important modification have been studied widely in
the literature for the case of a single server (see [5] for a variety of applications and
references), but this is the first such study for multiple servers working in parallel. In
Section 4 we use our results to analyze a recently proposed model for a database system.

One of the more compelling charms of the exceptional coverage process, though, is
that it also gives us an effective tool for studying the transient behavior of ordinary
coverage processes. Our main illustration of this principle concerns the determination of
the distribution of the so-called depletion time of the ordinary coverage Drocess.
Specifically, we consider an ordinary coverage process with independent segment
lengths {S;} and common distribution G. For 1 = 0 we let X(¢) denote the number of
segments that cover the point ¢. For y > 0 we define D(y) to be the distance to the next
uncovered point

D(y)=inf{t Zy: X(t)=0}—»,

and we refer to D(y) as the depletion time at y. In the queueing context, D(y) is the
remaining busy period at time y in an ordinary M1G/w system. The corresponding result
for the single-server system is discussed for example in [8].

Theorem 1. The Laplace transform 8,(s) = E(exp(— sD(y))) is given by
ys © y+x
1) 5,(5) = —— exp{——sx—-lf (1 ~G(u))du}> dx
u(s)Jo 0

where u(s) = A j;" exp( — st)p(t)dt and p(t) = exp{ — 4 fé (1 —Gu))du}.

The stationary regime Laplace transform do(s)=lim, ., 6,(s) follows from our
representation of 4,(s), but d.(s) is really simpler than d,(s) and could have been
obtained from previously known results. Thus the novelty of the present method rests in
the ability to provide information about the genuinely transient case y < o, rather than
the stationary case y = 0.

One can obtain considerable information about D(y) from its transform J,(s), and,
although we will collect more detailed information in a later section, we note here that
our representation for d,(s) gives us the first two moments of the depletion time D(y).

Corollary 1. For the depletion time D(y) of an ordinary coverage process, we have

Q) E(D(y))=f0°° [exp{zfxw(1~0(u))du}—exp {x J;:(I—G(u))du}]dx,

and
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E(D(»)) = 2E(D(»)) fo ) [exp {A f “a- G(u))du}— I}dx

(3) © . e )
+2f0 x[exp{,{fx (1 ~G(u))du}—exp {),fxﬂ(l —G(u))dqux.

Modified coverage processes. Our approach to the exceptional coverage process and
the depletion time problem call on a loosely related coverage process that is built upon
independent random variables {S,, S,,- - -, S,,- - - } such that

P(S,=u)=Hu) but P(S, =u)=Gu) fori=2.

We call the resulting coverage process the modified coverage process. The key obser-
vation is that the length B, of the first clump in the modified coverage process has a
distribution that differs from that of the lengths B, of all later clumps, yet all of the
clumps of the exceptional coverage process have distribution equal to that of B,. The
result that makes this observation effective is the following:

Theorem 2. For ﬁ(s)EE(exp( — sB))) we have ﬁ(s) = | — w(s)u(s) where
w(s) =4 f: (1 — H(z))exp { —sz—2 f;u - G(u))du} dz

and

u(s)=,1f0co exp{—sz—lfoz(l —G(u))du}dz.

The derivation of Theorem 2 as well as some associated results is given in the next
section. In Section 3 we return to the depletion time of an ordinary coverage process and

prove Theorem 1. In Section 4 we survey the relationship of our results to queueing
theory and other fields.

2. Derivation of main results

It is useful to have expressions for the clump length that are valid for all three of the
coverage processes studied here. We set W, =0 and for n = | we define

Z,=inf{t =z W,_: X(1)>0}
and
W, =inf{t > Z,: X(t) = 0}.

We see therefore that Z, corresponds to the end of the nth spacing and W, corresponds
to the end of the nth clump. The variables of central interest here are [, = Z, — W, _,
and B, = W, — Z,, so that I, denotes the length of the nth spacing and B, denotes the
length of the nth clump.

2.1. Distributions for the modified coverage process. Our determination of /f(s)
depends on finding two different expressions for the Laplace transform of the clump

counting process. We then solve the resulting relationships for the Laplace transform of
the clump length.
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First expression. Let M(t) denote the number of clumps started in the interval [0, ]
by the modified coverage process. We have M(0) = 0, and writing the indicator function
as 1{ 1}, we find for ¢ =z 0 that

MO =1L <ty+1{[,+B+L=t}+ % 1{11+B]+12+ I+
n=13 =3 i

= [ =

- A<1
EZB’:f'

1

We next consider the associated (delayed) renewal measure and its Laplace transform

() = EQM(1)) and ji(s)= L " exp( — st)di ().

We will use the corresponding hatless expressions B;, M(¢), and u(s) in the case G = H.
Since the gap length variables I; are independent and exponentially distributed with
parameter A, we have for §(s)==E(exp( — s/;)) that §(s) = A/(A + s5). Since the variables
I, B, L, B, I,, B, - - are independent we have

(s) = 3(s) + 85)B(s) + B S)BIB() + -+ - + S(SBEB Hs) + - -+,
and by summing the geometric series we find
__/i(i)é(_ﬂ_}
1—8(s)BGs))

Now, the expression just derived for general G and H remains valid if we set G = H, and,

in that case, we would have fi(s) = u(s) and /f(s) = B(s) so we find for the ordinary
coverage process that we have (see [15], [7]

1(8) = 6(s)/(1 — 6(s)B(5))-

By using this relationship to clear §(s) from the preceding general identity for a(s), we
find the first of the two required expressions:

(s)=25(s) {l +

Lemma 1. X
(s) =61 + B(s)u(s)].

Second expression. We obtain our second expression involving ,é (s) by exploiting the
fact that the process M(t) is a delayed (alternating) renewal process. We first recall that

for such a process the delayed renewal measure #1(t) = E(M(¢)) has a basic relation to a
renewal density given by

P(M(t +dt)— M)z 1) = dm(t) = Ap(t)dt

where p(¢) is the probability that ¢ is not covered in the modified clump process. What is

needed now is an expression for p(¢) in terms of G and H. An effective one is given in the
following result.

Lemma 2.

5(t) = (1 i fo " H(z)exp {A f(, ’ G(u)du} dz) exp( — A1),

Proof. If we condition on the value of the first Poisson point 7,, we find
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- t -~
p(=PX(t)=0)=exp{— At) + f P(X(t) = 0|1, = x)L exp( — Ax)dx.
0

To evaluate P(X(¢) = 0| 1, = x), we condition on the number N of Poisson points in the
interval [x, t]. Given N = n the Poisson points are uniformly distributed in [x, ¢], and
we find using the exchangeability of the S, for i = 2 that

P()?(z)=0!rl=x,N=n)=P(S}§t—x)P<2 max {Si+r,»}§le=n>

sisn+i

= H(t —x)P( max {S;+ U} = t)

2sisn+l

where the U, are independent and uniformly distributed on [x, ]. For n = 1 the second
factor is just

1 t
——f G(t —y)dy,
t—XxXJx

so in general, we find by the independence of the S; + [, for2 =i = n + 1 that

) 1 ;
P(X(t)=0[q=x,N=n)=H(t-—y)(;—:;fx G(t—y)dy) .

Finally, we use the fact that N is Poisson with parameter (¢ — x)4 and collect terms. The
lemma follows after a light computation.

2.2. Completion of the proof of Theorem 2. By expressing fi(s) in terms of the
renewal density and applying Lemma 2, we find

as) = fo * exp( — st)dri(t) = A fo ® exp( — st) p(1)dt
~1 f: exp( — (s + A)1) [1 +2 fo' H(z)exp (/1 L G(y)dy) dz] dt.
After completing the ¢ integration, we find
w0 == (14 7 HEews( — 52) pier),

and when we specialize to the case of H = G we find

u(s) =21 f: exp( — sz) p(z)dz.

Finally, on writing H(z) =1 + (1 — H(z)) in our expression for ji(s) we see

A(s) = I%Cs (1 +u(s) — A fo ® (1 — H(z))exp(— sz)p(z)dz)

=0(s)(1 + u(s) — w(s),
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where u(s) and y(s) are just as specified in the formulas in the statement of Theorem 2.
Substituting this into Lemma 2 completes the proof of that theorem.

Our next goal is to use our Laplace transform [?(s) to obtain information about the
moments of B. This is provided in the following result.

Corollary 2. Let [)3,( denote E(BY) fork = 1,2, - -, then we have
(4) ﬁl = W{0)exp(la)/i = fx (1 — H(z))exp <)L fx (11— G(u))du) dz
0 z

and

~ 2 iO{ x a
(5) ﬁ2=—3’%——3{w(0> fo (exp (A f (1 —G(u))du)— 1)dz~w'(0>}

where o = E(S,)=| ;c (1 — G(x))dx is the mean length of an ordinary line segment and
v =2 [ * (1= He) pydx
and

w0)y=-1 fow x(1 — H(x)) p(x)dx.

Proof. First, an application of the Abelian theorem in [17], p. 182, shows
lin‘} su(s) = Aexp(— Aa),

since

lim . " exp(— 1) p(0)dt = ATim p(t) = Ap(e0) =1 exp( — 4a).
5 Q w0

Next, we need the following lemma which will also be useful later in obtaining bounds.
This can be established by writing wis)=24 §§° (I — H(z))exp( — sz) p(z)dz and then

using the fact that p(z) is continuous and monotonically decreasing (from 1 to
exp( — Aa)) in z.

Lemma 3. Let h(s) denote the Laplace transform of the modified line segment
length, i.e. h(s)=E(exp(— SSI))EL;” exp( — sz)dH (z), then for Re(s) = 0 we have

(6) Amm-x@l":“) L=hGs)

Syps)=A4

s
In particular, if we let § = E(S)={7 (1 — H(z))dz, we have
(7 Adexp(— Aa)d = w(0) = A6.

It follows therefore, that since

,8} = lim ! _ﬂ(s)-——:lim v(s) ,
50 Ky =0 su(s)
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we have ﬁ, = y(0)exp(Aa)/A, which reduces to the form of Equation (4) after some
algebraic manipulations.

To establish Equation (5), note first that since
sp, )
I —B{s)=s ( — 0
/8 (s)= ﬁx 25, + o(s)

W€ may write

L1 B
1—/§<s)"sﬁ1+2ﬂl+ ot

and since 1/(1 — E(S)) = u{s)w(s), we have

ps) 1 B
8 — = — 4 =+ 0(1
® w(s) B 2B} * ot

The previous lemma shows that w(s) admits the expansion (around 0) w(s) = w(0) +
sw’(0) 4+ o(s), and therefore

1 _ w’(0)
wis) w0  (w(0))?

Since o(s)u(s) is o(1) we have

-+ 0(5).

u(s)  u(s) w’(0)
9 — = 1
) o)y MO )< oy oW
After equating (8) and (9) and rearranging, we find
B A = v'(0)
5;,?—;—!!/—(5) . exp(—st)[p(t)——exp(—xandt—-su(s)( o oW

where we used the fact that pﬂ = w(0)exp(Aa)/i. Now let s —0 to obtain the exact
relationship

B+ _ v(0)
(10) =75, 10 —ex(— 2~ o
Upon multiplying both sides by 2,é, = 2[exp(Aa)w(0)/A]? and using p(t) — exp( — Aa) =
exp( — Aa)exp(4 | t‘” (1 — G(u))du) — 1), we recover (5), thereby completing the proof.

Aexp( — Aa).

Remark 1. If we let §, denote the second moment of the ordinary clump length (i.e.
the case when H:=_ G), then we find that the second moment of the modified clump is
related to B, by 8, = w(0)B, — w’(0)2 exp(Aa)/A, where (see [16], p. 211)

B, =z—e%@ f: (exp (,1 ft“’ (1 G(u))du) - 1) dt.
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Therefore, if we let ¢ and &? denote, respectively, the variance of an ordinary and
modified line segment length, then the condition for 8, to be finite is that both ¢* and &2
be finite. This can be seen by noting that after integrating f, by parts, we get

By =2 exp(2ia) fo “ 11— G p(t)dt,

and since p(t) is monetonically decreasing, we can bound f, by (see also [10}),
exp(Aa)(o? + a?) = B, = exp(Aa)(o? + a?).

Now, since we have —y/(0)=2A j: tH1—H(@)p(t)dt we can bound Ait by
Aexp( — Aa)(0? + 0%)/2 = — w(0) = A(0% + 0%)/2 1o get the following bound on f;:

w(O)exp(La)(o? + a?) + (8 + 69 = f, < exp(Aa)[w(O)exp(Aa)(a? + a) + (82 + 63)].
Combining this with our previous bound on w(0) gives finally
(11)  A8(a? + ) + (8 + 6%) = B, < exp(Aa)(A0 exp(Aa)(o? + ad) + 2+ &2).

Remark 2. The constant y(0) has the following interesting interpretation: if M(¢)
denotes the number of ordinary clumps started by time ¢ in the ordinary coverage
process, with M(0) = 0, and S is an independent random variable with distribution H,
then w(0) = E(M(S)). This means that w(0) equals the number of ordinary clumps
started in an ordinary coverage process in the random interval [0, S). This follows upon
observing that since M (¢) has intensity Ap(¢), we have

. N © t
E(M(S))zE(/lf0 p(u)du)=,1fo (fo p(u)du) dH (t).

Interchanging the order of integration reveals this as w(0). If we put H = G into the
above, we find that the expected number of ordinary clumps that start during an
arbitrary line segment length in an ordinary coverage process is in fact the stationary
probability of coverage, i.e. when S ~ G we find that E(M(S))=1 — exp( — Aa). This
relationship is of interest in queueing theory because it can be rewritten as

(12) Aexp(— Aa)- E(B) = E(M(S)),

where B denotes an ordinary busy period in an M/G/« queue, with mean E(B)==f, =
{exp(Aa) — 1)/A. Since Ap(t)— A exp(— Aa), this states that in an ordinary M/G/w
model, the stationary arrival rate of busy periods, times the expected length of a busy
period, is equal to the expected number of busy periods that start (arrive) during the
service time of an arbitrary customer. (This is somewhat different from the usual
implication of Little’s law L = AW even when the busy periods are viewed as customers
in a single-server queue with a single buffer. See for example [6].)

Remark 3. Tt seems hopeless to try to invert the transform ﬁ (s) to obtain the explicit
distribution of B, as even the ordinary clump distribution remains intractable in this
regard (except for the very special case of constant segment length; see [7], p. 88 and
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[12]). However, expanding the exponential term in the integrand of Equation (4) shows
that 8, admits the expansion

. < Al o« 20 i
fimo+ 55 (IvH(Z)}{‘Ji (1—G(u))du] dz.

i=1 10

Elementary calculations then show that if ordinary line segments are exponentially
distributed with mean 6, this reduces to

(a)all — h(ila)]
il '

/§1=0+ Z
i=1

If the first line segment is also exponentially distributed with mean «, then this reduces
further to

N S {)Va\i
=0+6 M ,
A "‘Eliz(awe)

which has the following representation in terms of the incomplete gamma function
y(a, x)=[j exp(— )t*~dt,

B, =6 + a(Aa) ~“*y(a/0, Aat) — O/a].

3. Applications to depletion times

The key to the derivation of Theorem 1 is that we can show that D(y) has the same
distribution as B, in a modified coverage process in which the initial segment length S
has a special distribution that we can specify in terms of G. This identification then
brings the conclusion of Theorem 1 within the reach of Theorem 2.

For y > 0 and all i such that 7; < y, we introduce new variables L, =1, + §; — y, and
we call L, the remaining forward length after Y of the ith line segment started before y . If
we set T(y)=max{L;(y): 7; =y}, we have the following key fact:

Lemma 4. For any y = 0, the distribution of D(y) in an ordinary coverage process
determined by {S,, Sy, - - } is equal to the distribution of the length B, of the first clump in
a modified coverage process determined by {S,, S,, Ss,- - -} where S, is chosen to satisfy
PSS, =t)y=P(T(y)S1t)forallt z 0.

Proof. For i =1,2, let {M(t)} denote independent ordinary coverage processes
governed by independent and identically distributed Poisson processes with intensity 4,
and with the same line segment length distribution G, with M;(0) =0 for i =1, 2. If we
let W denote the end of the nth clump in the ith coverage process, then a little thought

shows that we can write (where we use < to denote equality in distribution)

- d ~
B, = max{S},, Wisnsy}
as well as

D(y) = max{T(y), Wiaaon}-
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Since M (1) L My(t) for every t 20, Wiy, < Wi for every ¢, and the lemma
therefore follows for S, £ T(y).

Completion of t{ze proof of Theorem 1. By this lemma, the required Laplace trans-
form d,(s) equals f{s) if S, is chosen to have the same distribution as 7(v). To bring this
to the explicit level required by Theorem 1, we need to express the distribution of 7(y)
in terms of G.

P(T(y)=z|max{i:t;=y)=n)
=P(L(y)szforalllsisn|max{i:1,Sy}=n)

=P(t;+S;sy+zforalll si=<n|max{i:t, Sy} =n).

If {U;: 1 £i = n} denote independent random variables that are uniformly distributed
on [0, y], we have

P(t;+S,Sy+zforalllsi=n|max{i:t;,2y}=n)
=P(U,+ S, Sy+zforalll 2i =n).

Since the sums U, + S; are independent with distribution

1 r»
—f G(u + z)du,
yJo

we find the basic conditional probability
1 n
P(T(y)Sz|max{i:t,2y}=n)= [—f G(u + z)du} .
yJo

Now, since max{i: 7, =y} has the Poisson distribution with parameter Ay, the law of
total probability and a brief calculation give us

P(T()=2)= exp{~l 706w+ z))du}.

Finally, by Theorem 2, and an explicit calculation using this last expression for H, the
proof of Theorem 1 can be completed after a brief calculation. The proof of Corollary 1
is similarly completed when we use this for H in Corollary 2, and then simplify.

4. Connections including queueing theory

Our Theorem 2 generalizes a result of Takécs [15] on particle counters and builds on
his elegant idea of obtaining two expressions for the Laplace transform of the renewal
measure of a counting process (see-also [2]). The novelty here rests in three places:
(1) seeing that the counting method comfortably generalizes to the modified coverage
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process, (2) noting that the modified clump provides a tool for obtaining the clump
length distribution for the exceptional coverage process, and (3) identifying the distribu-
tional identity that permits the calculation of the distribution of the depletion time D( )
as a special clump length distribution.

The clump length in an ordinary coverage process is equivalent to the busy period in
an ordinary M/G/«c queueing system, where the line segment lengths are viewed as
service times (see [7], [13], [2]). The distribution of T(y) was obtained previously for this
system (see [1], [11]) and is commonly referred to as the occupation time, so-called due to
the fact that this is equivalent to the amount of time after y the system remains
‘occupied’ if no future arrivals are allowed into service after time y. The results of our
Theorem 1 are new and extend this result considerably, as the depletion time, D(y), is
then the amount of time the system remains occupied when all future arrivals are
allowed to enter into service.

As observed previously, the modified clump is equivalent to a busy period in an M/G /oo
queue with exceptional first service, that is, a system in which every customer who enters
an idle system — hence every busy period initiator — has a different service distribution
from those customers who arrive to find the system already busy. Models incorporating
this modification have found wide use in single-server systems, and are commonly
referred to as ‘vacation models’ (see the references in [5]), but systems with multiple
servers seem to have been overlooked in this regard. One of the most important
applications of such models is to the study of systems with ancillary service requests of
secondary priority that are still attended to by a common service unit, such as a ‘polling
system’ (see e.g. [3]).

One recent application that makes use of our Theorem 2 is a model of a database
system that processes two types of transactions: the read transaction, and the write
transaction. The read transactions are processed in parallel, while the writes are
processed serially. In [9], a new locking protocol is proposed that ensures that all read
requests that arrive during a read transaction proceed directly into service, while all read
requests that arrive during a write transaction must queue up until that write transaction
is completed (i.e. the reads have non-preemptive priority over the writes). The read
requests are all assumed to be i.i.d. from a c.d.f. G(x), and to arrive according to a
homogenous simple Poisson stream with rate 1.

Thus there are essentially two types of read sessions that take place in the system, those
that are initiated by a read request that arrived to find no ongoing transactions, and those
that are initiated by read requests that arrived during a write transaction. A read request
that encounters no ongoing transactions upon its arrival initiates a read session whose
distribution is equivalent to an ordinary busy period of an M/G/« system, while a read
session initiated by requests that arrived during a write session is clearly equivalent to a
busy period in an M/G/w queue that is initiated by K customers, where K is the random
number of read requests that arrived during the write transaction.

If we let w be the (fixed) time it takes for a write transaction to be concluded, and
suppose that at least one read request arrived during the write transaction, and let B,
denote the duration of the ensuing read session, then as a direct consequence of Theorem
2 and its corollary, we have the following result.
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Corollary 3. E(exp(—sB,))=1— o(s)/u(s) where u(s) has been previously defined,
and

© 1 —exp(— Aw(l — G(x)))

(13)  gs)=4 fo exp < —sx—A f: (1 —~G(u))du> dx,

1 —exp{ — Aw)
and
(14)  E(B,) = f : L= e’ipi'e'xl“(’(_l ;W()?(x)» exp (/: fx (1 — Gu ))du) dx.

This can be proved by first realizing that B, is equivalent in distribution to the
modified clump B, considered earlier, where the distribution of the first line segment is
equal to the maximum of all the service requests of all the queued read customers that
enter simultaneously into service at the end of a write transaction. (This can be

established by the same argument as in the proof of Lemma 4.) As such, Theorem 2
applies directly with

H(x)=P(max(S,, Sy, -+, Sk} = X);

where S; ~ G and K Z 1 denotes the number of (truncated) Poisson arrivals during a
time w, i.e. P(K = k) = (exp(Aw) — 1)~ Y((Aw)*/k"), for k = 1. Elementary calculations
then show that

_ exp(AwG(x)) — 1

H(x)
exp(Aw) — 1
and one may now substitute this form for H into our previous results to complete the
proof.
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