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ABSTRACT

The three technologies that are surveyed here are (1) wavelet approximations, (2) hid-
den Markov models, and (3) the Markov chain Renaissance. The intention of the article
is to provide an introduction to the benefits these technologies offer and to explain as far
as possible the sources of their effectiveness. We also hope to suggest some useful rela-
tionships between these technologies and issues of importance on the agenda of biological
and medical research.

INTRODUCTION

The purpose of this article is to review some of the most significant recent progress in
statistical theory and to focus attention to the extent that is possible on the assistance
these advances offer to biological and medical technology.

The first topic we engage is the theory and application of wavelets, which is possibly
the most far-reaching development in all of applied mathematics over the last ten years.
The emerging technology has important implications for all domains of signal process-
ing, or wherever one works to reconstruct a sound, an image, or a more elaborate object
such as a three-dimensional representation of a human organ. The roots of the theory
of wavelets can be traced to sophisticated questions of harmonic analysis, but the explo-
sive development would never have taken place if the basic ideas were not simple, easy
to implement on computers, and demonstrably superior to earlier technologies in some
important instances. The features of simplicity and broad impact are common to all of
material of this review. ,

The second topic we take up is the technology of hidden Markov models. These models
offer a natural tool for dealing with one of the fundamental problems in stochastic mod-
eling: many naturally generated stochastic processes exhibit temporal heterogeneity that
is driven by an underlying (but unobservable) change in the signal generating system.
Because of substantial changes in computational technology, we now find that the range
of uses for the methods of the hidden Markov model (HMM) are much more substantial
than had previously been imagined.
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The source of the strength of the HMM seems to be due to its ability to acknowledge the
relationships between changing regimes where on a short term basis one could adequately
model the observed data by a homogeneous process. A second source of the strength of
HMM?’s are their exceptional ability to incorporate structural features of the phenomena
under study into the structural features of the model. Often the topology of the HMM (the
number of states, the transition matrix structure, and the observed sequence distribution)
is designed to incorporate as many features of the observed sequence as the underlying
science can justify. Although such modeling is not a priori effective, history has done
much to support the practice. The HMM has been applied with telling success in a variety
of scientific contexts.

The third topic we explore is actually a broader development that nowadays often goes
under the banner of the Markov Chain Renaissance. There are two particular subjects in
this domain that help focus our review: simulated annealing and the Gibbs sampler. Each
of these topics has been subjected to intensive study over the last ten years. Together with
some closely related developments - like the uses of Markov chain simulation methods in
the theory of algorithms and the theory of random walks on finite structure like groups
- simulated annealing and Gibbs sampling have lead to a rebirth of research interest in
discrete time, finite state space Markov chains, whence the notion of a Renaissance.

The method of simulated annealing offers an approach to optimization problems that
are particularly common in computationally intensive statistical problems such as those
provided by image analysis and related inverse problems. Still, the method is exception-
ally general and also gives insights into many problems of combinatorial optimization.
Similarly, Gibbs sampling is a broadly applicable tool for the analysis and understanding
of multivariate distributions that had been viewed as computationally intractable. The
most notable successes in the application of the Gibbs sampler have been in making pos-
sible a numbers of natural Bayesian procedures, including some that are of importance in
imaging.

All of the work review here has the capacity for further theoretical development and
more extensive application. The collection of applications of these tools to issues in
biological and medical technology is already extensive, but the natural expectation is
that we have seen only a small fraction of the important possibilities that lie ahead.

WAVELETS

The purpose of this section is to introduce the central ideas and the main benefits that
come from wavelet analysis. Although these notions are per force mathematical, our inten-
tion is always to keep one eye trained on suggestions for the empirical sciences, especially
for those that are dependent on effective imaging and image storage. The development
recalled here of wavelet theory substantially follows the notation and conceptualization
of Daubechies (1992) and Chui (1992a) both of which offer a down to earth initiation to
the practical study of wavelets. The much anticipated volume of Meyer (1993) also can
be expected to offer an excellent starting point. -The recent survey given in Strang (1993)
offers many useful insights on the relationship of wavelets to Fourier and fast Fourier
transforms.

The mathematical high road to the study of wavelets if offered by the three volume
treatise of Meyer (1990) and Coifman and Meyer (1991). There are also two recent
edited volumes by Chui (1992b) and Ruskai, M.B. et al (1992) that focus substantially on
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applications. In fact, any electronic bibliographic search of the recent scientific literature
tends to yield an almost oppressively large number of current contributions. Although
for the moment wavelet analysis may seem exotic, the likely expectation is that wavelet
application will evolve to become part of the tool kit one is expected to bring to any
problem in signal analysis.

Scale and Location

The scientific benefits from wavelet analysis come principally from their ability to
help us focus on an object at many different scales of resolution. The implementation of
this idea is illustrated most clearly by consideration of the continuous wavelet transform,
though eventually one finds that the exciting applications almost all evolve from the
discrete cousins.

The continuous wavelet transform begins with a “suitable” function ¢ and then creates

the scale location family ;
I —

%6(1) = ]al_%w( )7

where the scaling normalization |a|~'/? has been chosen so that all of %, have the same
L? norm. The features of ¢ that qualify it for suitability are not cut in stone; but the
mother wavelets ¢ that have proved to be most useful are typically smooth, have compact
support, and have the property that m of its moments vanish for some m > 1. A big part
of the art of wavelet analysis remains the choice (or construction) of the mother wavelet
that is most suitable for the task at hand.

The wavelet transform is given by the mapping f — (f,%as), or more explicitly by

a

T4 (a,8) = la|+ [~ f(z)p (3=

-0 a

)dz.

Just as one has an inversion formula for the Fourier transform, there is a formula that
lets us invert the wavelet transform:

o oo dadb
f(z) = c% L ) /0 TWAY (g, b)d;ab(z)—zz—,

and where the normalizing constant Cy is given by

© 1 .
Cyp = /_w m]w(u){zdu <

where % is the Fourier transform of .

Source of Power

Even if one agrees that the source of technological power in the wavelet transform is
the fact that the wavelet coefficients (¥as, f) weigh f over different scales “a” and locations
“b”, there are still mysteries to be resolved concerning the sources of efficiency of wavelet
transformations and representations. Still, three key points emerge:
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(1) Wavelets are responsive to the empirical fact that some natural phenomena are
related to scale. This fact is observable in the natural occurrence of scaled similarities
(as in snowflakes) and also in more diverse phenomena, such as ranges of validity of
approximations, averaging methods of differential equations, and renormalization methods
of statistical physics.

(2) Wavelets can take advantage of sharper localization and smoothness properties
than traditional Fourier (or windowed Fourier) methods. The availability of both scale
and location parameters provides an extra degree of freedom that provides some relief
from constrictive phenomena of Fourier analysis that say in essence that f and f can not
both be too concentrated; for example, f and f cannot both have compact support.

(3) Wavelets also seem to have aspects of redundancy that provide useful robustness
properties. This redundancy turns out to be useful in several respects, and, in particular,
it permits substantial data compression for images by permitting the wavelet transform to
be stored with limited precision. This fact is one that suggest there may be an important
role for HDTV image compression and transmission.

In the next few subsections, we will take a look at some of the mathematics that under-
lies the technological effectiveness of wavelet representations. Each of these subsections
calls of the lectures of Daubechies (1992) for notation, organization, and insight. The
first of these details some simple and calculations that show rather generally how approx-
imation properties of some discrete series are usefully abstracted through the language of
frames that goes back to Duffin and Schaeffer (1952).

Frames and Practical Inversion

Any set {¢; : j € J} of elements of a Hilbert space H is called a frame provided there
are constants 0 < A, B < oo such that for all f € H we have

AllFIP < 3219 < BIIFIP.
JjeJ
Certainly, if {¢; : j € J} is a complete orthonormal basis for H, then {¢; : j € J} isa
frame with A = B = 1, but the reason for bothering with this notion is that there are
frames that exhibit a much different character than bases. One example to keep in mind
consists of three vectors in JR? with 120 degree angles; for such a set {11, %;,%3} one can
check that in the required inequality we have A = B = -g- This frame is certainly not
a basis, and it also helps us see that when A = B > 1 the frame carries a measure of
redundancy.
Given any frame, we define a frame operator F : H s £2 by taking

(Ff); =c; =(f, %),

and we note that the adjoint operator F* : 2 — H defined by the relationship (Ff,c)e =
(f, F*¢c)n can be given explicitly by the formula

fre=3" civh;.
jed
One can check using the definitions that F*F is invertible and that we have the bounds
AId< F*F < Bldand B'Id < (F*F)™' < A™'Id.
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Now, if {¢; : j € _J} is any frame and F is the associated frame operator, we can
define a new frame {v; : j € J} by taking

= (F*F)_l‘l/)j.

This dual frame turns out to be the key to a practical ir}vera’wn formula, since one can
check just from the definitions that the frame operator F' associated with {¢; : j € J}
satisfies

FF=1d=FF,

or, in long-hand, we have the Frame Resolution of the Identity:

S Afiddi = F =D _(fr i)

jeJ jeJ

This last formula offers many suggestions of how to approximate f, and despite the
abstract simplicity of the result, the technological implications are substantial-even in a
world where closely related identities have been known for more than a hundred years.

Reconstruction Calculations

The bound AId < F*F < BId suggests that one may think of F*F as a crude
approximation of 3(A + B)Id. When. we replace ®; = (F*F)™'¢; by the approximation
2(A+ B)~'%; in the first equality in our resolution of the identity equation and work out
the remainder term we find the First Frame Approzimation:

So(f.¥i); + RS,

f'A+BJE_,

where we have introduced a remainder term Rf that is explicitly defined by

R=1d—- —-—-F"F
A+ B
Now, the norm of R is less than 1, so we do have an approximation of some sort, but
one needs to judge how good the approximation may be and to explore the ways in which
it might be improved. The first step is to consider the operator inequalities

B-4A B-A
—BTId R<B AId

from which a traditional argument gives the norm bounds ||R|| < (B — A)/(A+ B) =
7/(2 + r) where r = -1 + B/A.
The fact that R is linear with norm less than one carries the seed of self-improvement.
By the definition of R we have
2

(0™ = 738

Id—- R)™
so we get a series representation for 'J;j by

b= (F"F)™'¢; = A+B ZR'W)J
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This suggest how we can do better than just approximate ¥; by 2¢;/(A + B); we can
take as many terms of the geometric sum as we like. Specifically, we can create an N + 1
term approximation by taking

) k . k N+1
& A+B’§R b= ;= A+Bk_%1R ¥; = [Id — RN*'Jy;.
There is a simple, instructive computation of the error that is made by using gl;jv in
place of ;Zj in the resolution of the identity. First we note
jeJ I€J

so expressing ¢; — wjv in terms of R gives

AN = Z(faw >RN+1¢

jeJ

= RV Y (£ 4% = BV,
jeJ
where the last step invokes the resolution of the identity. Finally, taking norms we see
|1Aq]] < [IRIN*1||f]l, so using the approximation ¥ in lieu of ¢; gives us an approxi-
mation that conveys geometrically fast.
An important feature of the ¥ is that when we write out z/;jv in an expansion in
terms of ¥, we can get a simple recursion for the coefficients. In particular, if we write

v =2 o

teJ

we find
N J—
oy =

2
A+ B A+B,§Ja (m, %),

As Daubechies (1992, page 63) points out, this expression may look “daunting” but in
practice many of the (¥, %) are negligibly small.

N-
6@_7' + ajz

Closing the Loop

Our excursion into the theory of frames serves to give a sense of the organizing role
that Hilbert space methods give to the theory of wavelets, but eventually one has to leave
the soft analysis of Hilbert space to engage the hard analysis that provides us with mother
wavelets 3 for which the doubly indexed set of functions given by

d’m,n(z) = a«—m/zd)(a_ml - nb)

provide us with honest frames with useful scientific approximation properties.
The easiest example to write down is the Sombrero Function given by the second
derivative of the Gaussian hump % /2:

¥(z) = %71’_1/4(1 — o)e2,
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For ¢ = 2 and b = 1 this function provides a frame that has A = 3.223 and B = 3.596.

This particular frame is not as nice as one would hope; specifically, ¥ does not have
compact support. Still, even this function yields a frame that is quite useful, since the
tails of the Gaussian decay so rapidly. The world’s catalog of good mother wavelets and
associated frames is increasing rapidly, and some useful general principals are starting to
emerge about how one “designs” a good wavelet.

Designer Wavelets

Mallat (1989) and Meyer (1990) used the idea of incrementing the information needed
to represent a picture at one level of resolution to a more refined level of resolution
to articulate a set of concrete mathematical ideas that are evolving as instrumental in
the design of wavelet approximations. The emerging theory goes under the name of
multiresolution analysis. The abstract set up requires a set of approximation closed
subspaces V; of L?(IR) that satisfy the four nesting and self-similarity conditions:

VWV CWCVa Vo Cer,

UrezV; = LX(R),
mJ'EZVj = {O}a

and finally the condition that adds teeth to this abstract structure by tying the V;’s all

together _
fe vV, f(2)eV.

The moral principal of multiresolution analysis is that whenever one finds a collection
of subspaces satisfying the four preceding conditions, then there is an orthonormal ‘wavelet
basis ¥, = 279/24(277z — k) such that the projection operators P; onto V; satisfy the
key identity

Pioi =P+ ) {fibin)bin-
keZ

Beyond mere morality, there is a process that is quite often successful in finding a mother
wavelet that accommodates the multiresolution. This process is not simple enough to
recall here but it is simple enough for one to take seriously in the context of any scientific
problem for which there are logical subspaces V; satisfying the conditions detailed above.
This is also the path by which the first basis of compactly supported wavelets was devel-
oped in Daubechies (1988), the work that perhaps most pointedly initiated the current
flurry of wavelet activity.

Last Wavelet Steps

The preceding review has been reasonably complete in detailing the most basic defini-
tions and properties of wavelet analysis. With luck there is also some suggestion of where
one is likely to find effective applications, though the most compelling process is to review
those collections of applications that have been edited and the current applications as
they appear. Still, there is one more conceptual step that even an introduction like this
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should address, and that is wavelet constructions for higher dimensions. The bottom line
is that there are at least two trustworthy constructions, one based on tensor products and
one based on the use of lattices in JR? for d > 1. For further discussion of these points
one should consult Gréchenig (1991), Grochenig and Madych (1992), and Kovagevié, J.
and Vetterli, M. (1991),

HIDDEN MARKOV MODELS

We have already described the key qualitative feature of HMM’s — they accommo-
date the relationships between differing regimes of homogeneity in processes that are only
locally homogeneous. This feature is evident in almost all of the important HMM ap-
plications including (1) speech recognition (cf. the survey and extensive bibliography of
Juang and Rabiner (1991)), (2) the study of DNA composition where one uses sequences
of bases in 2 DNA molecule to identify types of molecule segments (Churchill (1989)), (3)
hypothesis testing in the study of different haematopoiesis theories, where data on counts
of specific bone marrow cells are used to determine the number of unobserved active stem
cells from which all blood cells develop, and information on the number of active stem
cells is essential for the determination of a correct haematopoiesis model (Guttorp et al.
(1990)), (4) modeling of ion channels (or large proteins that span cell membranes), where
data on electrical single channel currents in neuronal membranes are obtained to study
the multiple conductance levels of the ion channel (Chung et al. (1990), Fredkin and
Rice (1992)), and (5) electrocardiology, where sequences of electrocardiac wave patterns
that represent different states of the heart are recognized from EKG data (Coast et al.
(1991)). The variety of these applications surely suggests that HMM’s are a flexible tool,
but to understand how HMM’s actually serve in these contexts we naturally need to en-
gage the mathematical details of the model. As a first step, we need to lay out some basic
definitions.

Model Definition

Let A = (a;;) be an N x N Markov transition matrix, and let Il = (m),1 < ¢ < N
denote an arbitrary probability distribution. If we view II as an initial distribution, we
can define a discrete-time finite-state Markov chain {Q;}32, by (II, A). We further denote
the N possible states of the Markov chain by {Si,S2,...,5~8}, and for each 1 <i < N,
we associate a probability density function &;(-).

For the triple (A, B = {b;}},,II) we observe a stochastic process {0:}2;. Given
that Q; = S;, the random variable O; has density b;(-) and are assumed independent of
{Os: s # t}.

The sequence {O;} is referred to as the observed sequence or observation sequence,
while the sequence {Q.} is unobserved and referred to as the hidden, or unobserved se-
quence. The probability density function for the sequence O = (Os,...,Or) is given by

Pupm(O1=o01,...,0r=0r)= Y. Pasm(0,Q)=

1<q1,.97EN

Z To qu (ol)amz qu (02) ©rtGgry quqr(oT)'
1<q1,-97<N
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One often has to distinguish the situation where the b;(-) are probability mass func-
tions, and in such cases we refer to the discrete value model. Typically, one assumes that
there is a set of parameters of interest that determine the distributions assumed for the
hidden and observable processes. Here we will assume that there is an n > 1 and an open
subset A of the Euclidean n space such that for each A € A we have a one-one correspon-
dence A < (A(X), B()),II(A)). The set A is defined to be the parameter space of the model.

After having defined and parameterized the model, we turn to the three fundamental
questions that arise when applying HMM’s.

1. Probability Evaluation Problem. Given the observation sequence O = (01, 0,,...,
Or) and a model A = (A, B,II), how can we compute P,(O) in the discrete value
model? Correspondingly, how do we compute the likelihood function in the con-
tinuous value model?

We have obtained an expression for the likelihood P5(O), but the expression is
only of theoretical value for it contains far too many summands to be evaluated
numerically.

2. Parameter Estimation Problem. Given the sequence O, how can we estimate the
model parameters A = (A, B,II)? Moreover, if we proceed by maximum likelihood,
how do we calculate A to maximize P,(0)?

3. State sequence Identification Problem. Given the observation sequence O and the
parameter set A, how can we compute a state sequence ¢ = (g1, 92, ...,¢r) that has
maximal conditional probability P\(Q | O)?

Maximum likelihood is the main estimation principle that has been used in the solu-
tions to the parameter estimation and the best sequence of states determination problems,
but there are other estimation principals that have been successfully used for these prob-
lems, such as the state optimized likelihood criterion in Juang and Rabiner (1990). Here,
the usual likelihood objective function is replaced by the state optimized likelihood func-
tion

T
mqa'x Z Tq bl(ol) 1_]; Qge1q: bq:(ot)'
q t=
However, we shall not elaborate on alternative methods for maximum likelihood estima-
tion.

Except in some trivial cases, one cannot provide a closed-form solution for the maxi-
mum likelihood estimates of the parameters or hidden sequence associated with the hidden
Markov model. Hence, one has to call on algorithms that were developed to address the
three problems mentioned above. Each of these algorithms offers computational challenges
that must be met for the method to be effective.

In addition to the computational difficulties in applying HMM’s, there exist a number
of theoretical and implementational HMM problems. We next list a number of HMM
limitations and some suggested solutions.

Identifiability Identifiability has been studied extensively in connection with mixture
distributions. A closely related problem is the identifiability of the HMM parame-
ter. Identifiability makes the estimation of A an unambiguous problem, and it is a
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N
Be(i) = 3 aibi(001) B (5), with Br(i) =1,

j=1

where 2 <t<T,1<:i:<N.
Finally, we obtain the following formulae,

N
PA(O) = ZQT(i)a

i=1

PA(0,Q: = Si) = eu(i)By(i), forany1<¢<T,

PA(Oa Qt = 5:'7 Qt+1 = Sj) = at(i)aijbj(0t+1)5t+1(j)-

The first formula can serve as a tool for likelihood based model comparisons. Under a
given model ), the last two formulae provide a method to obtain e posterior: estimates

P QO
' Ef:l aT(j)’

T ai(6)aijbi(041) B (4)
i (8)Bi(2)
for the initial and transition probabilities. Also, note that we can find the most likely state

at time ¢ by §; = arg max; P)(Q: = S;|0). The sequence (¢1, ¢z, ..., gr) is often called the
Mazimal Aposteriori Probability, or MAP, estimate of (q1,42,--.,qr)

a;;

The Estimation Problem

The most widely used optimization technique for the maximum likelihood estimation
of the HMM parameters is known as the Baum-Welch algorithm. The key observation,
noted originally by Baum and Eagon (1967) in the case of a discrete value model, is that
there is a transformation 7 : A — A of the parameter space such that the transformed
parameter 7()) is guaranteed to increase the likelihood L(-). There exist several ways
to arrive at the form of the transformation 7, such as standard constrained optimization
techniques or the a posteriori approach illustrated above, but the one that proved to be
the most useful is based on an auxiliary function that is closely related to the Kullback-
Leibler number introduced in Kullback and Leibler (1951). Baum et al. (1970) derive
the explicit form of the transformation 7 for the continuous value model with log-concave
density functions b;(-), 1 < ¢ < N, and prove that fixed point solutions of 7 are locally
optimal points of the likelihood function.

Formally, define the auxiliary function

QA N)=3_P\(0,Q = q)ln Py(0,Q = g),
q
where the summation is over all feasible paths ¢ through the state product space. Let

riA- A argmax Q(A, X).
AI

210



The Baum-Welch algorithm begins with a feasible initial estimate of the parameter values
A = Ao, to which the transformation 7 is applied to obtain a new estimator A. The process
is iterated by replacing the old values in A by the newly obtained values :\, until a fixed
point of 7 is approximated. For this procedure we have the following important result
established in Baum et al. (1970).

Theorem Under the above assumption on the densities b;(-), we have for all X €
A that L(7(A)) 2 L()X). Moreover, equality can hold if and only if ) is a critical point of
L, or equivalently, A is a fized point of 7.

The significance of this result can be brought out in several ways:

1. The explicit form of the transformation 7 is given by a set of so called reestimation
formulas that express the new value for each parameter as a function of its old
value. These formulas are obtained by differentiating Q(A, \") with respect to each
one of the primed parameters and equating the derivatives to zero. Part of the
usefulness of the Baum-Welch approach is the form of the auxiliary function that
greatly facilitates the manipulation of the primed parameters. also, note that only
first derivatives are required by the Baum-Welch algorithm.

2. The reestimation formulas involve probability expressions of the sort handled by
the Forward-Backward procedure. Hence, to reduce the computations to a feasible
order, one usually invokes the Forward-Backward procedure within each iteration
of the Baum-Welch algorithm.

The Identification Problem

We are often interested in uncovering the true state sequence that led to a given ob-
servation sequence O. Although the probability measure P5(O) does not explicitly involve
a specific state sequence realization it can often provide useful insight into the structure
of the mechanism that generates the observations.

When the HMM has state transitions with zero probabilities and we choose to maxi-
mize separate state subsequences, the optimal state sequence resulting from this process
may not even be a valid state sequence. The Viterbi algorithm overcomes this problem by
maximizing over the entire state sequence. Prior to discussing the algorithm, we describe
a trellis structure that captures the features of the problem.

Consider an NV x T vertex trellis structure whose vertices are arranged in T columns
corresponding to time slots 1 through T and N rows representing the N states of the
Markov chain. Directed edges connect between all possible pairs of edges with positive
transition probabilities. Clearly, this construction has the property that for every possible
state sequence there is a unique corresponding path through the trellis and vice versa.
For a given model A, we attach weights to the edges and initial vertices in a way that
our problem becomes to find the longest path through the trellis. Denote the jth vertex
in the tth time slot by S%. The edge of the trellis connecting vertex i at time slot ¢ — 1
with vertex j at time slot ¢ have weight a;;b;(0:), 1 < 7,5 < N, 2 <t < T and the initial
weight for vertex S} is m;b;(01), 1 < ¢ < N. We will calculate the weights of partial state
sequences, as we move along the time slots, by multiplying the weights along the edges
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of the path. For a particular complete path ¢, the weights product along the path’s edges

results in
T

T bg, (01) IIzaq,_;ngq,(Oz) = P\(@ =¢,0).
i=

Let ¢(S}) denote any path segment from time 1 to t, ending at state S;, 1 < j <
N. Let §(S%) denote the longest such path segments, also called the survivors. Assume
for simplicity that §(S}) is uniquely defined for any (j,¢), or else choose one such path
arbitrarily. Then for any time ¢t > 1 there are N survivors in all, one for each possible
terminating state (vertex) of the partial path.

The main observation is that the longest complete path must begin with one of these
survivors. If it did not, we could have found a longer path segment from time 1 to ¢ which
would be a contradiction. Thus, at any time ¢, we need to remember only the N survivors
§(S%), 1<j < N and their lengths. To get from time ¢ to ¢ + 1, we need only extend
all time-¢ survivors by one time unit. This is done by selecting for each time-(¢ + 1) state
Si*!', 1 <k < N, the time-t survivor that is longest when extended . The length of the
new survivors is recalculated by multiplying the length of its last edge times the total
length of the corresponding old survivors. The algorithm proceeds indefinitely, advancing
one time unit at a time, without the number of survivors ever exceeding N. As was the case
for the Forward-Backward procedure, computations are on the order of N? x T operations.

Recent Advances in HMM’s

The popularity of HMM’s continues to grow rapidly both in applied and theoretical
work. On the theoretical side an important part of the research focuses on inferential
properties of likelihood methods. Leroux (1992) established under mild conditions the
consistency of the maximum likelihood estimate for the continuous value model, and
thus complemented the pioneering work by Baum and Petrie (1966) and Petrie (1969)
where the consistency and asymptotic normality of the maximum likelihood estimates
had been established under the discrete value model. Another important step was taken
in Bickel and Ritov (1993) where the log-likelihood for continuous value HMM'’s is shown
to obey the local asymptotic normality conditions of LeCam as a consequence of which
asymptotically efficient analogs of the maximum likelihood estimates can be constructed
and the information bound that gives their asymptotic variance can be estimated.

Aggoun and Elliot (1992) consider the case of a continuous time Markov chain ob-
served in Gaussian noise. Finite dimensional normalized and unnormalized predictors are
obtained for the state of the chain, for the number of jumps from one state to another,
and for the occupation time in any state.

In the hidden sequence estimation area, some simplified estimation procedures for both
the filtration and interpolation problems in a two-state HMM are proposed and analyzed
in Khasminskii, Lazareva and Stapleton (1993). These estimates have been designed to
perform well for the case where ag; = €}, a0 = ep;€ — 0 and 0 < A, < 1, thus creating
a similarity to the change point detection problem. Kogan (1991) gives conditions under
which the estimated chain, as given by the Viterbi algorithm, has a lower recognition
error rate than the alternative MAP estimated chain, for the two-state HMM case with
symmetric transition matrix.
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An extension of the basic HMM paradigm to the regression setting is proposed by
Fridman (1993). The hidden Markov model regression offers a way to extend the benefits
of HMM'’s to problems that are naturally studied through regression analysis. In general
terms, it is assumed in HMM regression that the regression parameter values depend
on the Hidden Markov chain state. As a result, given that the state at time ¢ is S;,
we have that Y; = X,B; + 0i¢;, where the error terms ¢, are i.i.d. N(0,1). There is a
connection to the switching regression model introduced in Quandt (1972) and Quandt
and Ramsey (1978) is a special case of HMM regression for a Markov transition matrix
with the property a;; = a;.

MARKOV CHAIN RENAISSANCE

The subject of discrete time discrete space Markov chains have receive greatly in-
creased attention over the last five years because of several developments in the theory of
algorithms. One of these developments concerns simulated annealing, which we introduce
in the next section. Two other potentiating developments were the Gibbs sampler and
the invention of Markov chain methods for making uniform selections from large discrete
sets, like the set of all matchings in a graph. Only the first of these is engaged in this
survey.

An Algorithm for All Problems

A bewildering variety of substantial computational problems can be cast in to the
framework of determining the minimum of a real-valued function on a finite set, f : S —
R. For example, if {z1,232,...,z,} denotes a set of n points in the plane and S denotes
the set of permutations of the n-set {1,2,...,n}, then by taking

F(0) =3 [Zo(k) = Toksn)
we see that the determination of an element of the set of minimizers of f,
S*={s"€S5:f(s*) = min{f(s) : s € S},

is the same as solving the famous traveling salesman problem, or TSP . Naturally, it is no
surprise that the TSP is only one of a hord of problems that can be put into the specified
form —the form is so general as to seem to impose virtually no restriction. Rather, the
surprise comes from the fact that we can still say something useful, even at so great a
level of generality.

Naturally, one has to cut some slack. The TSP, like many of the interesting problems
of combinatorial optimization, can be regarded as computationally intractable. It is an
element of the class of NP-Complete problems, and, as a consequence, it is extremely
unlikely that one can ever obtain a good algorithm for the TSP, if one regards a good
algorithm as one that can provide an optimal solution in an amount of time that grows
only polynomially in the size of the input. Because of this natural barrier of intractability,
many problems like the TSP have been studied in the context of approximate solutions.

It is remarkable that one can give anything like a general recipe for making progress
toward the general problem of determining an element of 5*. We can in fact provide a

213



sequence of such recipes. We begin with one which is not quite practical, but it still offers
some genuine insight, and —even in its naive form -it is cleverer and more practical than
the often useless idea of exhaustive search.

A skeletal version of the recipe is simple. First, we introduce a probability measure p.

on S by defining
pi(s) = exp(—tf(s))/Z(t)

where Z(t) is chosen just in order to normalize everything properly, i.e.

Z(t) = 3_exp(—tf(s)):

s€S

Second, we select a “large” ¢. Third, and finally, we just choose an element of S at random
according to the measure p;.

This is a phony recipe in a couple of ways; but it has something to it, and its faults
can be substantially ameliorated. But even before seeing how it can be made honest, we
should get an idea why it might work. The essential point is that as t — o0 the measure
p: becomes increasingly concentrated on the states for which s is small. Formally, it is
not hard to prove that

fizg p(57) =1

so ultimately p(s) is concentrated on the best choices for s. This limit result would have
to be supplemented by more precise continuity statements if we were to try use it to
justify our recipe along the lines presented thus far, but a wiser course —and one the
development of the theory has actually taken— is to improve our recipe at least a couple
more times before aiming at the convergence theorems that offer an honest justification.

An Honest Version

So, how do we honestly pick an element of S according to the measure #:?7 The
denominator Z(t) in the definition of y; can have many billions of summands in even an
“easy” problem, so naive methods of drawing a sample according to p; are meaningless.
Luckily, there is a brilliant trick due to Metropolis, Rosenbluth, Rosenbluth, Teller, and
Teller (1953) that provides the key. As an incomplete historical note, it is interesting to
record that the fifth of these authors is the Edward Teller who is an acknowledged father
of the hydrogen bomb.

The essence of the trick is that one can make progress by viewing p; as the stationary
distribution of a Markov chain with state space S. For this to buy us anything, we need
to be able to simulate the steps of the chain, but we have lots of room to maneuver in
this aim, because, after all, we get to invent the chain.

To restrict our search for a good Markov chain to particularly tractable situations, we
will impose a graph structure on S, and we will only consider Markov chains were one
always moves to a neighbor in the graph (or else stays still, as is sometimes useful in a
Markov chain to guarantee aperiodicity). In many applications, the set S has a graph
structure is naturally at hand, but in any event the restriction is modest since all it really
means is that for each s € S we have a set N(s) C S — {s} that we call the neighbors of
s. :
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As we start our hunt for chains that have y, as their stationary measure, we might also
pay particular attention to those that are reversible, since the stationarity equations then
can be replaced by the much simpler total balance equation. As a first step, we may as well
also restrict our attention to chains for which the graph on S is regular, i.e. |[N(s)| = N,
some constant, for all s € S. By making sure that the cardinality NV is feasibly small, we
will be able to simulate the behavior of any Markov chain that only makes transitions to
neighboring states.

To make matters precise, we need transition matrix p;;, where p;; = 0 except for
j € N(2) and for which . is the stationary measure. Hunting, as we are, in the con-
text of reversible chains, we want our transition probabilities to satisfy the total balance
condition:

pa(8)pi; = pe(5)pji
Determination of a suitable p;; is now pretty easy, but instead of continuing with more
heuristic groping, it seems better to look at one good answer and its associated story.

Before writing down the transition probabilities, it is useful to indicate first how to
simulate the behavior of the required Markov chain {X,,n > 0}. The story goes like
this: (1) if the current state X, is equal to , first choose a neighbor j of ¢ at random,
(2) if the value of f at j improves on the value of f at 7, then move to the chosen state 2.
but (3) if the value of f would not be improved by the move (so that f(j) > f(7)), then
make the move with probability exp(—t(f(j) — f(¢))) while otherwise staying at the state
i. Formally, for 7 # ;7 we have

o N it £(7) < £(0)
PXnp=j | Xn=19)= { (1/N)exp(=t(f(7) — f(2)) otherzvise

The transition probabilities in case : = j are just those needed to pick up the leftovers:

P(Xpp1 =i | Xn=0)=1=3 P(Xpy1 =7 | Xo=1).

Ju#E

A useful point to check at this juncture, is that a chain with the transition function given
above does satisfy the total balance condition, so to make a choice from S according to
the measure y; all we need to do is start at an arbitrary point Xo = s and run the Markov
chain for a “long time” after which X, will be a realization from a distribution that is
approximately equal to y;.

To see how simulation of X, can be practical even when direct simulation of g, is not,
just reconsider the TSP. In an n-city problem the cardinality of S is (n — 1)!, the number
of cyclic permutations, but we can introduce a natural graph on these permutations where
the degree of each vertex is bounded by n. The graph is defined by saying that two per-
mutations are considered adjacent if we can go from one to the other by a an “interchange
operation” given by picking two non-intersecting edges of the cycle, breaking the cycle
at each of these edges, and building a new cycle by reconnecting the two disconnected
components of the cycle in the opposite way from their initial connection. ‘

At this point we have in hand a method for “solving” all problems in combinatorial
optimization—but, of course, it solves some problems better than others. After the next
section, we will review the performance of the method, but even as it sits, it has some
victories. One of these that is entertaining to code is the famous “Eight Queens” problem:
How can one place eight queens on a chessboard in such a way that no pair of queens are
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mutually attacking? This problem is one that is often assigned in programming courses
where backtracking algorithms are studied, but it is also a nice one to study with our
naive sampling method. Once one chooses an appropriate reduction of the problem (say,
to “rook good” configurations of queens) it is not hard to find an appropriate graph on
the set of configurations ( pick a pair of queens and switch the two in the only way that
preserves “rook-goodness”).

A More Honest Version

The only scurrilous part of our recipe that remains is that of our choice of ¢ and our
choice of how long to run the Markov chain. To many people it is unsatisfying to say that
the choices are simply up to them, and luckily the search for a more adaptive procedure
turns out to be a source of insight, and there is a fortuitous charm in combining the two
problems into one.

Specifically, we consider a sequence of values ¢, such that ¢, — oo as n — oo, and now
let {X, : n > 1} evolve as before except on the nth step we use ¢, in place of ¢. Letting
the ¢, grow to infinity, provides us a way to combine the issues of picking large ¢ and a
suitably large ». The issue now is to obtain the conditions on the sequence {¢, : n > 1}
that suffice to provide us some proper assurance that the method is effective.

A central result in this direction is due to Hajek (1988). In addition to answering the
basic question as asked, it also provides us with some special insight. A key notion in
Hajek’s theorem is that of a height. Specifically, we say a state s communicates with S*
at height h if h(s) is the smallest number such that there is a path from s to some state
of ¢ € S* for which each state u on the path satisfies

F(u) < £(s) + h(s).

Theorem If A~ is the largest of the set of heights {#(s): s € S}, then we have
lim P(X, € §7) =1,

if and only if
> exp(—tah™) = 0.
n=1

One consequence of this result is that the choice t, = log(n)/h is sufficient to provide
convergence if and only if & satisfies A > h*. As a practical matter one seldom knows A*,
but still taking ¢, = log(n)/h for a speculatively chosen h is a common occurrence, or
at least 1t it is common among those bother with changing ¢ as n evolves. Many people
have found that in their application the change provided by t = log(n)/k is too slow to
be worth- the trouble and hence they fall back on the naive process of just picking a “big”
t. This approach makes one miss out on a lot of engaging theory; but, as a matter of
practice, it can work out well, and picking ¢ directly is not substantially more ad hoc than
picking A.

Origins and Aspects of Metaphor

There are three ideas that were stirred together to make the theory just described.
The first idea is that we might get a small value of f(s) if we pick a point at random
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according to p;. The second idea— an old but wonderful one—is that a simple Markov
chain can be use to help us make the selection process practical. The third idea is that
we can link the processes of letting X, “run for a long time” and of “picking a big ¢” by
letting X, evolve as a time inhomogeneous.-

The final algorithm that combines all of these ideas goes under the engaging name of
Simulated Annealing. It was introduce independently by Kirkpatrick, Gelett and Vecchi
(1983) and Cerny (1985), and it was first described in the context of a physical analogy
that has continued to exert considerable influence. It is traditional nowadays in the dis-
cussion of simulated annealing to a call on the language of statistical mechanics: (1) p;
is called the Gibbs distribution, (2) Z(t), the partition function, (3) T = K/¢t, temper-
ature, and (4) the sequence T, = K/t,, the cooling schedule. There is a certain beauty
in this way of describing the optimization process, and the metaphor brings with it a
rich collection of intuitions and experience from statistical mechanics. Still, there is some
merit in taking a bare-bones look without introducing language which - though apt and
properly evocative — can make simple ideas look more mystical than they otherwise might.
A second benefit of the less fortified description is that it offers us a different set of op-
portunities future for development than those offered by the physical insights. Finally,
the usual presentation does not pick apart the three steps as thoroughly as we have done
here, so the bare-bones route also suggests opportunities for innovation that precede even
the proto-simulated annealing algorithm.

How Well Does One Do?

The jury is out on many aspects of the simulated annealing algorithm, and it is unlikely
that a definitive understanding of its merits will come about anytime soon. One difficult
issue is that there is no single simulated annealing algorithm. One has a whole family
of algorithms for every problem one might study because of the need to choose (1) the
graph structure to be used (2) one candidate from among many f that would yield the
given S* of interest, and (3) some specific values for {t,}, or the equivalent.

It seems almost impossible to make all of these selections in a way that would lead
to a definitive evaluation, but some reliable experience has evolved. In particular, the
papers of Johnson, Aragon, McGeoch, and Schevon (1990,1991,1992) provide many useful
comparisons.

Metropolis-Hastings Algorithm

The method sketched above for generation of an observation from the Gibbs distri-
bution has an extension that has the benefits of being less ad hoc , more general, and
providing a connection to the final topic of this review: the Gibbs sampler. The extension
is due to Hastings (1970) and it tells us how an arbitrary Markov chain can be modified
to provide one with a specified stationary distribution. Quite simply, to provide a Markov
chain {X, : 1 £ n < oo} that has stationary distribution 7 on the state space S, the
Metropolis-Hasting Algorithm begins with an arbitrary transition function ¢(z,y) and
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makes modifications. In particular, a new transition function defined by

e =4 9@ y)alz,y) ifz#y
P(z.y) ‘{ 1-3.q(z,2)a(z,2) o=y

where a is defined by

alz,y) = { min{:w}‘):("lil;)} if 7(z)q(z,y) > 0
L if 7(z)q(z,y) = 0.

The Gibbs Sampler

The Gibbs sampler shares with simulated annealing the feature of being a Monte Carlo
integration method that proceeds by a Markovian updating scheme. The product that is
delivered by the Gibbs sampler is an observation from a multivariate distribution, and the
raw material that is required for the algorithms is a collection of conditional distributions
from which one can easily draw observations.

Suppose that we have a collection of k real, possibly vector-valued, random variables
U1,..., Uk whose full conditional densities, denoted by fy,(-|U;;7 # i),1 < i < k, have a
simple known form. By that we mean that the full conditional densities are available for
sampling, given values of the appropriate conditioning random variable.

Our interest is to simulate an observation from the joint density fy,,.. v,) Wwith the
eventual intention of gaining insight into the joint density or some other quantity that
can be estimated using such observations, such as an estimate of the marginals fy,.

The idea is to generate a sample of k-tuples from the joint density using only the avail-
able full conditional densities. By simulating a large enough sample, any population char-
acteristic can be approximated to a desired degree of accuracy. Before we formally describe
the method, we introduce some simplifying notation from Gelfand and Smith (1990). Den-
sities are denoted generally by brackets, so joint, conditional, and marginal forms appear
as [X,Y],[X]Y], and [X] correspondingly. Multiplication of densities is denoted by * and
marginalization by forms such as [X|Y] = [, [X|Y, Z, W]* [Z|W,Y]* [W|Y]. We assume
that the joint density exists and is strictly positive over the product sample space. Besag
(1974) shows that this condition ensures that knowledge of the full conditional densities
uniquely defines the full joint density.

The Gibbs sampler algorithm generates an approximation to an observation from
step of a Markov chain. Specifically, given an arbitrary set of values (U{”, U, ..., Uul®)
we draw

LY ~ U2, U9,. . U

U~ [Uu®, UL, ..., U9

UISI) ~ [UklUfl)a U2(1)7 [ERE) U(1.)1 .
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Upon completion of this first iteration of the algorithm, we obtain the vector U =
( U, ,U;El)). Next, we generate U(?) using conditioning values taken from U,
After 7 such iterations we arrive at (Ul(i), UQ("), cee, U,Ei)).

The great usefulness of the algorithm comes from the following theoretical results,
established by Geman and Geman (1984). Under mild conditions,

(Ul(i)a U2(i)7' K Uk(l)) _d> [UI’ e UL]

as ¢ — oo, and hence for each 1 < 5 <k, U}i) 2 [U;). The rate of convergence here (in
the sup norm) is geometric in . Furthermore, for any measurable function G of U3, ..., U
whose expectation exists, an ergodic theorem holds, namely

limi? S GUP. U, UMY S B(G(Uy, . ..., Uk)).
k] l“

=1

As a result, Gibbs sampling through m replications of the aformentioned : iterations
produces m i.i.d. k-tuples of the form (Ul(;), ey U,Ef,)), 1 < r < m, with the desired joint
density. Gelfand and Smith (1990) recommend a density estimate for [U;], 1 < 7 < k
having the form,

[0} = m™* S[U|U. = US; ¢ # j].
r=1

The the Gibbs sample can be viewed from many directions, but one fruitful perspective
is to consider it as an adaptation of the Metropolis-Hastings algorithm (Metropolis et
al. (1953), and Hastings (1970)). The Gibbs sample seems to have been first formally
developed by Geman and Geman (1984) in the context of image reconstruction, though
as with most good ideas the roots of the Gibbs sampler can be traced to many suggestive
sources.

In the statistical framework, Tanner and Wong (1987) used a similar technique in
their substitution sampling approach to missing data problems. Gelfand and Smith (1990)
showed the applicability of the Gibbs sampler to general parametric Bayesian computa-
tions and a variety of other conventional statistical problems. The Gibbs sampler ap-
proach, along with several other computer-intensive statistical methods, are reshaping
many traditional methods in statistics.

Further reviews of uses of Monte Carlo Markov Chain (MCMC) methods for Bayesian
computations and inference can be found in Besag and Green (1993), and in Smith and
Roberts (1993). Tierney (1991) gives an outline of MCMC methods for exploring poste-
rior distributions. Geyer (1991) explores the use of MCMC in likelihood based inference.
A Gibbs sampler approach to generalized linear models with random effects is given in
Zeger and Karim (1991). Hierarchical Bayesian analysis of changepoint problems are ap-
proached using the Gibbs sampler in Carlin, Gelfand and Smith (1992). The simulation
tool of Gibbs sampling is employed in Albert and Chib (1993) to generate marginal pos-
terior distributions for all parameters of interest in an AR model subject to Markov mean
and variance shifts that is closely related to HMM’s. This method is expedient since the
conditional posterior distributions of the states given the parameters, and the param-
eters given the states, all have form amenable to Monte Carlo sampling. A variety of
applications of the Gibbs sampler in Medicine are reviewed in Gilks et al. (1993).
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An important question that has been recently given a considerable amount of attention
in the literature is what is the “best” way to extract information from a Gibbs sampler
sequence? More specifically, the two issues at steak are,

Convergence What is a “long enough” run of a Gibbs sampler?

Sampling How can we design an efficient Gibbs sequence, or sequences, sampling strat-
egy?

As was the case in choosing a cooling scheme for the simulated annealing procedure,
different ways of extracting information from a Gibbs sequence have been suggested,
and it seem unlikely that there exist one optimal solution to this problem. An excellent
bibliography on the Gibbs sampler, and the convergence rate and output sampling problem
can be found in the special discussion paper of Smith and Roberts (1993).

CONCLUDING REMARKS

We have reviewed the theory and applications of wavelets, of hidden Markov models,
of simulated annealing, and of the Gibbs sampler. This is almost a litany of the major
steps in statistical science over the last ten years, so perhaps one has done about as well
as possible just to get a taste of the possibilities for applications. Still, because the ideas
behind these developments are fundamentally simple, perhaps also just enough detail has
been given so that the central mathematical facts might be honestly understood.

The work reviewed here is far from done, and the best is surely years ahead of us.
Pointers have been given throughout the review to many articles and books that develop
our topics with much greater detail, though the most compelling work is not to be found
in the books but rather in the marriage of the most basic parts of these technologies to
problems of importance in science.
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