VARIATIONS ON THE MONOTONE SUBSEQUENCE
THEME OF ERDOS AND SZEKERES~

J. MICHAEL STEELE!

Abstract. A review is given of the results on the length of the longest increasing
subsequence and related problems. The review covers results on random and pseudo-
random sequences as well as deterministic ones. Although most attention is given to
previously published research, some new proofs and new results are given. In particular,
some new phenomena are demonstrated for the monotonic subsequences of sections of
sequences. A number of open problems from the literature are also surveyed.
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1. Introduction. The main purpose of this article is to review a num-
ber of developments that spring from the classic theorem of Erdds and
Szekeres (1935) which tells us that from a sequence of n* + 1 distinct
real numbers we can always extract a monotonic subsequence of length at
least n + 1. Although the Erd8s-Szekeres theorem is purely determinis-
tic, the subsequent work is accompanied by a diverse collection of results
that make contact with randomness, pseudo-randomness, and the theory
of algorithms.

Central to the stochastic work that evolved from the discovery of Erdds
and Szekeres is the theorem that tells us that for independent random
variables X;, 1 < ¢ < co, with a continuous distribution, the length I, of
the longest increasing subsequence in {X1, Xs,..., Xn},

I, =max{k: X;, < Xi, <...< X;, with1< i3 <ip<...<ip <n},
satisfies

(1.1) lim I,/v/n =2 with probability one .
1Y e OO

The suggestion that 2 might be the right limiting constant was first put
forth by Baer and Brock (1968) who had engaged in an interesting Monte
Carlo study motivated by S. Ulam (1961), but the first rigorous progress is
due to Hammersley (1972) who showed I,/+/n converges in probability to
a constant C > 0. The constant C proved to be difficult to determine, but
Logan and Shepp (1977) first showed C > 2 by a sustained argument of the
calculus of variations and then C < 2 was established by Vershik and Kerov
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(1977) using information about the Plancherel measure on Young-tableaux.
The later result was subsequently simplified by Pilpel (1986) who also gave
the bound valid for all n,

EL <> 1/\/7.
j=1

More recently, Aldous and Diaconis (1993) have given an insightful proof
that ¢ = 2 by building on elementary aspects of the theory of interacting
particle systems.

In the next section we sketch six (or more) proofs of the Erdés-Szekeres
theorem. The central intention of reviewing these proofs is to see what each
of the methods can tell us about combinatorical technique, but the very
multiplicity of proofs of the Erdés-Szekeres theorem offers an indication
that the result is not so special as one might suspect. Quite to the con-
trary, the Erdds-Szekeres theorem offers us a touchstone for understanding
a variety of useful ideas. The third section looks at generalizations of (1.1)
to d > 2 and to structures like unimodality. Section four then develops
the theory of monotone subsequences for pseudo-random sequences. That
section gives particularly detailed information about the Weyl sequences,
z, = namod] for irrational «. Section five develops the theory of mono-
tone subsequences for sections of an infinite sequence.

The final section comments briefly on open problems and on some
broader themes that seem to be emerging in the relationship between prob-
ability and combinatorial optimization.

2. Six or more proofs. Perhaps the most widely quoted proof of the
Erdds-Szekeres theorem is that of Hammersley (1972) which uses a visually
compelling pigeon-hole argument. The key idea is to place the elements of
the sequence z1,2,...,Zm with m = n? + 1 into a set of ordered columns
by the following rules:

(a) let z; start the first column, and, for i > 1,

(b) if z; is greater than or equal to the value that is on top of a column,
we put z; on top of the first such column, and

(c) otherwise start a new column with z;. The first point to notice
about this construction is that the elements of any column correspond to
an increasing subsequence. The second observation is that the only time
we shift to a later column is when we have an item that is smaller than
one of its predecessors. Thus, if there are k£ columns in the final structure,
we can trace back from the last of these and find monotone decreasing
subsequence of length k. Since n? 4+ 1 numbers are placed into the column
structure, one must either have more than n columns or some column that
has height greater than n. Either way, we find a monotone subsequence of
length n + 1.

Hammersley’s proof is charming, but the original proof of Erdés and
Szekeres (1935) can in some circumstances teach us more. To follow the
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original plan, we first let f(n) denote the least integer such that any se-
quence of f(n) real numbers must contain a monotone subsequence of
length n. One clearly has f(1) = 1, f(2) = 2, and, with a moments
reflection, f(3) = 5. By using the construction that extends the example
{3,2,1,6,5,4,9,8,7} we see f(n) > (n — 1)?, and the natural conjecture
is that f(n) = (n — 1)2 + 1. The method we use to prove this identity
calls on a modest bit of geometry, but the combinatorial technique that it
teaches best could be called the abundance principle: In many situations
if a structure of a certain size must have a special substructure, then a
somewhat larger structure must have many of the special substructures.

The Erd8s-Szekeres proof is quickly done at a blackboard, although a
few more words are needed on paper. To show by induction that f(n) =
(n—1)?+ 1, we begin by considering an integer b > 0 and a set of f(n)+b
distinct points in R2. By applying the induction hypothesis b+ 1 times
we can find b + 1 distinct points that are terminal points of monotone sets
of length n. For the moment we withhold our budget set B of b points,
and we invoke the induction hypothesis on set P with cardinality f(n).
The induction hypothesis gives us a monotone subsequence of length n.
We remove the last point of this sequence from P, and we add one of the
budget points from B to get a new set P’ of cardinality f(n).
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FIG. 2.1. The dots denote the points of ST, and the shaded regiom is the region D of
points that are not comparable to the points of ST in the up-and-to-the-right order.
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Now, just to get started, suppose we took b = 2n, then since any termi-
nal point must be associated with an decreasing sequence or an increasing
sequence, we can suppose without loss of generality that there are n + 1
points S that are terminal points of increasing sequence of length n. If
some two elements of S were in increasing order, we could extend one of
the length n increasing sequences to a sequence of length n 4+ 1. On the
other hand if no two elements of S are in increasing order, then S con-
stitutes a set of size n + 1 in decreasing order. We have therefore shown
f(n+1) < f(n) + 2n, which is enough to show that f(n) < n?+1, but we
can do better by exercising a little more care.

This time we add just b = 2n—1 new points and get 2n terminal points.
If we have n+1 of either of the two types of terminals, then we can proceed
as before to find a monotone sequence of length n + 1. Therefore we can
suppose that there are exactly n terminal points of each type. If St and
S~ denote the terminals of the increasing and decreasing sequences, then
by the argument of the previous paragraph there is no loss in assuming that
S+ forms a decreasing set (see Figure 2.1). Now if any point £ € S~ were
to be up-and-to-the-right of any point of y € S*, then £ would combine
with the increasing sequence sending y to form an increasing sequence of
length n + 1. Therefore all points of S~ are in the region D. These are an
increasing sequence of length n, and the last of there points is majorized
by some y € S*, telling us St U {y} would give the required subsequence.

More will be said later about the virtue of the Erdés-Szekeres proof,
but first we want to recall what is perhaps the slickest and most systematic
proof, the one due to Seidenberg (1959) and which is naturally suggested
by dynamic programming. We take S = {p1,p2,...,pm} C R? distinct
points ordered by their z-coordinates, and we define ¢ : S — Z x Z by
letting ¢(p) = (s,t) if s is the length of the longest increasing subsequence
terminating at p, and ¢ is the length of the longest decreasing subsequence
terminating at p. We are not too concerned with algorithms in this review,
but at this point one may as well note that there is no problem in calcu-
lating ¢(px) in time 0(k) given ¢(p1), ¢(p2),. .., ©(pr-1) so the complete
computation of ¢ on S can be determined in time 0(m?), (cf. Friedman
(1975)). Now, if S contains no monotone subsequence of length n, then
e(S) € {1,2,...,n— 1} x {1,2,...,n — 1}. But ¢ is injective, since, if
P,q € S and ¢ follows p in z-coordinate order, then ¢(gq) might have at least
one coordinate larger than the corresponding coordinate of ¢(p). Hence we
see that if m > (n — 1) + 1 we find that S must contain a monotone
subsequence of length n. In other words, we have f(n) > (n—1)2+1 and
thus complete our third proof of the Erdds-Szekeres Theorem.

The fourth proof we consider is one due to Blackwell (1971) that is not
so systematic as that of Seidenberg (1959) or as general the original proof
of Erdds and Szekeres, but it serves well to make explicitly the connection
to greedy algorithms.

If S ={z1,29,...,2,} is our set of r > nm distinct real numbers, we
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say a monotone decreasing subsequence S’ is leftmost if ] = z; and each
term z; of S’ is equal to the next term of S* which is smaller than z}_;.
Thus S’ is the consequence of applying a greedy algorithm to the sequence
S.

If we successively apply this greedy process to the points that remain
after removal of the leftmost decreasing subsequence we obtain a decom-
position of S into Sy, S, ...,S; where each S5; is a decreasing subsequence.
The observation about this decomposition is that we can construct an in-
creasing subsequence {a;,2,...,a;} of S by the following backward moving
process:

1. Select a; arbitrarily from S;

2. For any j = t down to 1, select a;_1 as any term in S;_; that is
smaller than a;.

Because of the definition of the S;, 1 < j <t we can always complete
the steps required in this process. We then find either an increasing set
{a1,as,...,a:} with t > n or else one of the decreasing subsequences S;
has cardinality bigger than m. In retrospect one can see that Blackwell’s
proof is almost isomorphic to Hammersley, though the associated picture
and algorithmic feel are rather different.

The fifth proof is closely related to the one just given, but it still offers
some useful distinctions. In the solution of Exercise 14.25, Lovasz (1979)
suggests that given a set S of n? + 1 real numbers {z1,23,..., 2,241} oOne
can define a useful partition A;, A, ... of S by taking Ay to be the set of
all z; with 1 < j < n? + 1 for which the longest increasing subsequence
beginning with z; has length exactly equal to k. One can easily check
from this definition that each of the sets Ar = {i1 < iz < ... < i} gives
rise to k monotone decreasing subsequence z;, > z;, > ... > z;_, and from
this observation the Erdés-Szekeres theorem follows immediately. This last
proof has the benefit of showing that any digraph with no directed path of
length greater than k has chromatic number bounded by k.

The fifth proof is one that deserves serious consideration, but which
would lead us too far afield for us to develop in detail. The central idea
is that of the construction of Schensted (1961) that provides a one-to-one
correspondence between pairs of standard Young tableaux and the set of
permutations. This correspondence as well as its application to the theorem
of Erdds and Szekeres and to algorithms for the determination of the longest
monotone subsequence of a permutation are well described in Stanton and
White (1986). The work of Schensted (1961) was substantially extended
by Knuth (1970) to objects that go well beyond permutations. We do not
know the extent to which the correspondence provided by Knuth (1970)
might contribute to the central problems of this review.

Qur final observation on the proofs is just to note that the Erdds-
Szekeres theorem also follows from the well known decomposition theorem
of Dilworth (1950) which says that any finite partially ordered set can be
partitioned into k chains C1, Cy, . . ., Cr where k is the maximum cardinality
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of all anti-chains in S. Using our previous S with the up-and-to-the-right
ordering, we see that if there is no decreasing subsequence of length n, then
k < n and

IC1 +|Cal+ ...+ |Ck| = 15| > (n = 1)2 + 1

implies that for some |C;| we have |C;| > n. Since C; corresponds to an
increasing sequence, we have the final proof.

Dilworth’s theorem has itself been the subject of many further develop-
ments, some of which are directly connected to the issues engaged by this
review. For a recent survey of the work related to Dilworth’s theorem and
sketches of several proofs of Dilworth’s theorem, one should consult Bog-
art, Greene, and Kung (1990). A result that generalizes both the Dilworth
decomposition theorem and the digraph theorem of the previous paragraph
is the theorem of Gallai and Milgram (1960) which says that if « is the
largest number of points in a digraph G that are not connected by any
edge, then GG can be covered by o directed paths.

3. Higher dimensions. The charm of the Erdés-Szekeres monotonic-
ity theorem goes beyond the call for innovative proofs. There are several
useful extensions and generalizations, though amazingly almost all of these
have grown up a good many years after the original stimulus.

One natural issue concerns the generalization of the monotonicity the-
orem to d-dimensions. If we define a partial order on R¢ by saying y << w
ify = (y1,92,-..,92) and w = (w1, wa,...,wy) satisfy y1 < wy, Yy <
Wy, ..., Y4 < wq, then the natural variables of interest are At (y1, vz, ..., yn),
the length of the longest chain in the set {y1,y2,...,¥,} C R% and corre-
spondingly A™(y1,¥2,...,¥n), the cardinality of the largest anti-chain in
{¥1,%2,...,Yn}. After tentative steps in Steele (1977) which were never-
theless enough to settle a conjecture of Robertson and Wright (1974), the
definitive result was established by Bollobas and Winkler (1988). Their
main result is that for {X; : 1 < ¢ < o0}, independent and uniformly
distributed on [0, 1]¢, one has

lim AT (X1, Xo,..., Xn)/n*% = 5> 0

T} =r OO

where the limit holds with probability one and where ¢4 is a constant that
depends on the dimension d > 1. Further, Bollobas and Winkler (1988)
also showed that the constants ¢4 satisfy the interesting relation

oo
. 1
Iim ¢y = E — =,
d—00 n!
n=0

Since 1t 1s trivial that ¢; = 1 and since we know from Logan and Shepp
(1977) and Vershik and Kerov (1977) that ¢o = 2, we thus have in hand
three instances that support the humorous but feasible speculation due to
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Aldous (personal communication) that perhaps

d
1
W=y -
n=0

for all d > 2. The correctness of this interpolation and also the one based
on ¢g = (14 1/(d+1))%"! are placed on slippery ground by simulations of
P. Winkler and R. Silverstein (cf. Silverstein (1988)) that suggest that c3 is
approximately 2.35, a value that does not agree well with either of the two
candidates of 5/2 and 9/4. Still, as the investigators note the convergence
in the simulations was very slow, and the value of 2.35 is the result of
heuristic curve fitting. The determination of ¢z remains of interest from
several points of view.

4. Totals and functionals of totals. Lifschitz and Pittel (1981)
have studied the total number 7,, of increasing subsequences of n indepen-
dent uniformly distributed random variables. Among other results they
found

ET, ~ an~1/4eVn
where o = (24/7€)7}, and
E(T?) ~ Bon~ 4 exp(Bin'/?)

where 8, = 2(2 + v5)Y/? and S is equal to (207(2 + v/5)*/2exp(2 +
V5))"1/% ~ 0.016. These asymptotic results were obtained by analytic
methods beginning with the easy formula

E(Tn):-kfﬂ%(;l)
and the trickier
= ¥ g () ()

k+LL<n

Lifschitz and Pittel (1981) also proved that there is a constant v such that
as n — 00

n~% logT, — v

in probability and in mean. The exact determination of 7 remains an open
problem, though one has the bounds

2log2 <y < 2.
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5. Unimodal subsequences. The most natural variation on the
theme of monotone subsequences is perhaps that of unimodal subsequences,
which are those that either increase to a certain point and then decrease, or
else decrease to a point and increase thereafter. Formally, given a sequence
S = {x1,z2...,2,} we are concerned with U,(S) defined by U,(S) =
max(U7,U;) where

U,j = max{k:31 <4 <ip<...< i with

Ty KTy <. < Tip > Ty, > > TG, forsomej}
and

U7 = max{k:31<1{ <ip <...<i with
Zi, > Tiy > ...y < iy, < ...<z;, for some j}

In a remarkable tour-de-force, Chung (1980) established the result that for
any sequence S of n distinct reals, we have

(5.1) Un > [(3n = 3/4)1/% — 1/2],

and, moreover, this result is best possible in the sense that for any n > 1
there 1s a sequence of distinct reals for which we have equality in (5.1).
The complexity of the proof of this result is of a different order than that
of the Erdés-Szekeres theorem, although there are important qualitative
insights that Chung’s proof shares with the dynamic programming of the
Erd&s-Szekeres theorem that was given in Section two. The proof provided
by Chung calls instead on four functions parallel to the two components
¢ of Section two, although instead of considering only one simple injective
image contained in [1,n] x {1, n], Chung must consider several such images
that are contained in more complex domains.

With the deterministic problem resolved, Chung (1980) posed the natu-
ral problem of determining the asymptotic behavior of U, (X1, X2,..., Xn)
when the X; are independent and random variables with a common con-
tinuous distribution. This turned out to be much easier to resolve than the
problem solved by Chung, and in Steele (1981) it was proved that we have
that

Un/\/ﬁ — 2V2

with probability one. The corresponding constant when one permits k
changes in the sense of the monotonicity was also found to be k.

6. Concentration inequalities. The length I, of the longest in-
creasing subsequence of n independent uniformly distributed random vari-
ables has the property of being rather tightly concentrated about its mean.
One way to see this in terms of variance is to call on the Efron-Stein inequal-
ity which in the form given by Steele (1986) tells us that if F'(y1, y2, ..., Yn-1)
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is any function of n — 1 variables then by introducing n random vari-
ables by applying F to the variables X, X»,..., X, with the 7’th vari-
able withheld F; = F(X1,X2...,Xi—1, Xi41,---, X») and setting F =
%(Fl + Fy+ ...+ Fy), we have

Var (F(X1,Xa,...,Xam1)) SEY (F—F)%
=1

When we focus on 1,1 we first note that
I(X1, X2, X)) 14+ I(X0, Xoy oo, Xic1, Xiga, - X5)
and
I(X1, X2, Xic1, Xigr, - Xn) S I(X1, X2, ., Xn).

If we let A, denote the number of sample points X; that are in all of the
increasing subsequence having maximum length L., we then find

k13
S (I(X1, Xay o, Xp) = I(X0, X, o Xict, Xigt, - X)) < An
i1

Since A, < I, and since the quadratic sum is decreased by replacing
I(Xl,XQ, .. .,Xn) by n:l(I(XQ,Xg, .. .,Xn) -+ I(Xl,XQ, .. ,Xn) e
I(X1,X2,...,Xn-1) = I we have

SU(X1, Xay oy Xic1, Xiga, - Xn) = 1) < L.
=1

Taking expectations and applying the Efron-Stein inequality gives
Var In_1 < EI, < Cv/n

where for any n > n(e) we can take C < 2 +¢.

This bound on Var I,_; was easily won, but despite its simplicity is
enables us to circumvent some rather heavy analysis. In particular, the
variance bound, monotonicity of I,, and the asymptotics of the mean
EI, ~ 2/n give us an easy proof that I,/+/n — 2 with probability one
just by following the usual Chebyshev and subsequence arguments. This
development may seem surprising since the strong law for I, has served
on several occasions as a key example of the effectiveness of subadditive
ergodic theory (Durrett (1991) and Kingman (1973)). Here we should also
note that Aldous (1993) gives a scandalously simple proof of the Efron-
Stein inequality, making it easy enough to cover in even a first course in
probability theory.
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Lower bounds on Var I,, have been obtained recently by B. Bollobas
and R. Pemantle who independently established that there is a ¢ > 0 for
which

Var I, > cn'/®
for all n > 3. In view of the bounds just reviewed one suspects that

lim log(Var I,)/logn = «
e OO

for some 1/8 < o < 1/2. The existence of the limit may not be too difficult
to establish, but substantial new insight will be required to determine the
value of «.

The tail probabilities of I,, were first studied in Frieze (1991) using
the bounded difference method. The bound obtained by Frieze was subse-
quently improved by Bollobas and Brightwell (1992) who established that
for all € > 0 there is a § = f(¢) > 0 such that for n > n(¢), we have

P (IIn — EI,| > n1/4+€) < exp(—n®).

The work of Bollobas and Brightwell (1992) also considered the d-dimen-
sional increasing subsequences A}’(Xl, Xoy..., Xp) = AZn for X; indepen-
dent and uniformly distributed on the unit d-cube.

THEOREM 6.1. For every d > 2, there s a constant Ay such that for
all n > n(d) one has

P (1A%, = BAL,| > Man1/*logn/loglogn ) < 80X° exp(—A?)

for all X with 2 < A < n'/24/loglogn.

Large deviation results like the last one have many consequences but a
particularly valuable consequence in the present case is that one can extract
a rate of convergence result for certain means. We let N have the Poisson
distribution with mean n and define constants ¢, 4 by

n~YIEAT (X1, Xa, .., XN) = Cna-
The main result 1s that
cg—Crqa=0 (n”1/2d log®/? n/loglog n)

where ¢; = 2 and the other constants ¢g are those of the Bollobas-Winkler
theorem for d > 2 as viewed in Section 3.

The most precise result on the deviations of the length longest in-
creasing subsequence I,, is due to Talagrand (1993) and emerges from the
theory of abstract isoperimetric theorems for product measures developed
in Talagrand (1988, 1991, 1993).
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THEOREM 6.2. If M, denotes the median of I,, then for all u > 0 we
have

P(I, > M, + u) < 2exp(—u?/(4(M,, — v)))
and
P(I, < M, —u) < 2exp(—u®/(4M,)).

7. Pseudo-random sequences. If 0 < o < 1 is an irrational num-
ber and {X} denotes the fractional part of X, then the sequence of val-
ues determined by the fractional parts of the multiples of o given by
{a},{2a}, {3a},...,{na} are uniformly distributed in [0, 1] in the sense
that if [a,b] C [0, 1] then the number of the integers k satisfying {ka} €
[a,b] for 1 < k < n is asymptotic to (b — a)n as n — co. Bohl (1909) was
evidently the first to show sequence of points {na} share this property with
the independent uniformly distributed random variables X,, 1 < n < oo,
though the subsequent importance of this observation was certainly driven
home by H. Weyl and G. Hardy. The project of exploring which properties
of the X, are shared by the {na} is a natural one, of which the results of
Kesten (1960) and Beck (1991) are telling examples. The survey of Nieder-
reiter (1978) provides an extensive review of the ways that pseudo-random
numbers can parallel those that are honestly random and also articulates
ways where pseudo-random sequences can be even more useful.

There are some very simple properties that make {X,} and {na} seem
quite different, so there is particular charm to the fact that they can behave
quite similarly in the context of such a non-standard issue as the length
of the longest increasing subsequence. If we let £} (o) and £ (o) denote
respectively the longest increasing and longest decreasing subsequences of
{a},{2a},...,{na}, then £} and ¢, turn out to have behavior that echos
closely the behavior of their stochastic cousins. The first investigation of
this issue is given in Del Junco and Steele (1978) where it is proved using
discrepancy estimates that

logfi(e) 1 logli(e) 1
logn 2 logn 2
for all algebraic irrationals o and for a set of irrationals of [0, 1] measure
one.

In Boyd and Steele (1978) a more precise understanding of £} («) was
obtained by using the continued fraction expansion of «. It turns out that
nt/? is the correct order of £ and £, if and only if @ has bounded partial
quotients. Moreover, when the partial quotient sequence of « 1s known one
can determine the precise range of £f/y/n and £, /\/n. For example, in
the eternally favorite special case of the golden ratio oo = (1 +V5)/2 =
[1;1,1,1,.. ], we have

liminf £ (ag)/v/n =2/5%% =1.337481. ..
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and

limsup £ (ap)v/n = 5% =1.495349 ... .

Tomer OO

There is a non-zero gap A(ag) between these two limits, and in fact there
is no o for which one has a limit theorem precisely like that for indepen-
dent random variables, but nevertheless we see there is a close connection
between {na} and the genuinely random case.

In Boyd and Steele (1978) it is further proved that the gap A(e) is
minimized precisely for ag = (1 + +/5)/2. It is also proved there that for
all irrational a we have

limsup £ (a)é;(a)/n =2,

T e OO

and for o with unbounded partial quotients
liminf £F ()4, (a)/n = 1.

These results contrast with the analog for a sequence of independent uni-
formly distributed random variables for which we have
. + 7=
nl_LI& I7ID =4  as.
The behavior of the pseudo-random Weyl sequence {a}, {2a}, {3a},...
{na} is not unique in the world of pseudo-random sequences. There is a
remarkable sequence due to van der Corput (cf. Hammersley and Hand-

scomb (1964)) that was invented in order to provide a sequence {z; € [0,1] :
1 <7< oo} that has an especially small discrepancy

D, = su 1 z;) — zl.
n OSxI;I; [0,2)(%:) — |

To define this sequence we first note that for any integer n > 0 there is a
unique representation n = ) .o, a;2° where a; € {0,1}. The n-th element
p2(n) of the van der Corput sequence of base 2 is given by “reflecting the
expansion of n in the decimal point,” that is we have

o0

wa(n) = Z a; 27 L

i=0

The sequence is thus given by {1/2,1/4,3/4,1/8,5/8,3/8,7/8,...}, and one
can see that the sequence does indeed disperse itself in a charmingly uni-
form fashion. Béjian and Faure (1977) have shown that there are sequences
that are still more uniform but even there new sequences are conceptually
quite close to the original idea.
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Asymptotic equidistribution is perhaps the most basic feature of a se-
quence of independent uniformly distributed sequence, but one can check
that the van der Corput sequence is far more uniform than a random se-
quence. This divergence from the behavior of independent uniform random
variables is one of the facts that adds zest to the study of the behavior of
the longest increasing subsequence of {ps(k) : 1 < k < n}.

The basic results are the following:

limsup £+(p2(1), 92(2), - .-, @2(n))/v/n = 3/2

00

and
liminf £F(p2(1),p2(2),. .-, p2(n))/ VR = V2.

For any integer p, one can define a base p van der Corput sequence by
expanding n in base p and letting ¢, (n) be the analogous “reflection in the
decimal point” for p > 2 we have

limsup £ (2,(1), 2p(2), - .., pp(n))//n = p*/?

T OO

and
liminf £*(¢p(1), 2p(2). -, p(m) v/ = 21 = p~1)H/2,

Because of the interest that has been devoted to the hard won constant
¢y = 2 for the limit of £} /+/n for the case of independent uniform variables,
we should record that the last limit tells us that

plingo lizrgg}f £ (0p(1),0p(2), - -, p(n))/v/n = 2.

8. Theory of subsequences of sections. Many combinatorial prob-
lems exhibit new behaviors when they are imbedded in an infinite sequence
of nested problems. The most classical instance of this phenomenon is
offered by the theory of irregularity of distribution (cf. Beck and Chen
(1987)).

To see how this phenomenon is manifested in the context of the Erdds-
Szekeres theorem we suppose we are given an infinite sequence of distinct re-
als S = {z1,22,...,Zn,. ..}, wefocus on M (z1,22,...,%,) = Mn(S) which
denote the cardinality of the largest monotone subsequence of {1, 3, ...,
zn }. The Erdés-Szekeres theorem tells us that M, > /nforalln > 1, and,
this is the best one can say for any fixed n. Still, for any infinite sequence
S of distinct reals we can do better than /n on infinitely many blocks of

length n.
THEOREM 8.1. There is a constant v > 1 such that
(81) lirnsup M($i+1,$5+2,.. ,IL‘,.),.n)/\/?;Z Y-

i,n—o0
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Before embarking on the proof of this result we provide an example that
shows that a doubly indexed result is what one required if the intention is to
beat the Erdés-Szekeres theorem by a factor exceeding 1.We can construct
an infinite sequence of integers {z1,zs,...} such that for all of the finite
sections {1, z2,...,2n} we have M(z1,z2,...,2,) = [v/n]. This sequence
can be constructed as a concatenation of blocks

By ={(-1D)"V3F + (-1)FH(2k - j): j=0,1,2,...,2k)}

for k = 0,1,2,.... We note that [By| = 2k + 1, so |Bo| + |B1| + ... +
|Be| = (k + 1)%. Also, we note that By = {0}, B; = {-5,4,-3}, By =
{113,-12,11,-10,9} and Bs = {-33,32, -31, 30, —29, 28, —27}.

The proof of Theorem 8.1 depends on results that tell us that if
M(z1,z2,...,2,) and M(zy1,z2,...,22,) are both small, then
M(zn41,Znya, ..., T2n) must be exceptionally large. We will provide one
such result as a consequence of the next lemma, but we first require some
notation. Given any fixed sequence S, we let

a(k) = max{t:3z;, >z, > ... >z, with1<i1 <ip <...<i, =k}
bk) = max{t:3z;, <z;, <... <z, with1<d1 <ip<...<i =k}
en(k) = max{t:3z;, >, > ... >z, withk =4 <iz<...<i4 <n}
dn(k) = max{t:3z;, <z, <...<zj, withk =14 <ip <...<4, <n}.

To 1lluminate these definitions, we note a(k) is the length of the longest
decreasing sequence terminating with zj, and c,(k) is the length of the
longest decreasing subsequence beginning with z; and ending before the
nth element of the sequence. Thus, the sum a(k) + ¢, (k) is the length of
the longest decreasing subsequence of {z1, zs,...,z,} that contains .
LEMMA 8.1. For any 0 < € < 1/2 and n > no(¢), if we have the bound
M(zy,22,...2,) < (14 €)/n, then there exists 1 < k < n such that

alk) > (1 6)/m
and
b(E) > (1 - 6}V

provided that 6% > 2¢.

Proof. The mapping k — (a(k),b(k)) is injective since if k¥ < k' then
we have a(k) < a(k’) or b(k) < b(k’), or both, because z: will extend at
least one of the monotone sequences ending at z;. The set of integers (s, 1)
with 1 < 5, < (1 4+ €)v/n and min(s,t) < (1 — §)\/n has cardinality at
most (1—68)?n+2(e+6)(1—8)n < (1—6%+2¢)n and the n distinct points
(a(k), b(k)) are among the lattice points [1, M,]% C [1, (1 + €)/n)?, so for
62 > 2¢ the pigeonhole principle yields the lemma. O
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PRrROPOSITION 8.1. For 0 <& < 1/2 and all n > no(e), the inequalities

M(zy,29,...,2,) < (1+¢e)vn
M(.’L’l,l‘g,...,mgn) < (1+€)\/2n

mmply
M($n+1, (Un+2, c ey IL‘Qn) Z (1 - 256) V 2’1’1

provided 6% > 2¢.

Proof. Even before beginning, we note that the factor of 25 given above
can be improved, but it suffices for our main point and allows for simple
computations. By the preceding lemma we have 1 < k < n such that

a(k) > (1 - 6)/n and b(k) > (1 - 6)v/n.

By considering subsequences that go through z; and continue from z; with
n < j < 2n we see that

M(zy,z2,...,29,) > (1 — 8)v/n + min{ca,(7), d2n(4)},

so, by the bound on M(z,z2,...,2Z2,), we find
(8.2) min{con(§), d2n(5)} < (1 +€)V2n — (1 = 6)y/n

for all n < j < 2n. Now, unless the conclusion of the proposition holds we
also have

(8.3) max{can(j), d2n(§)} < (1 — 256)v/2n,

so the issue is to estimate the number of n < j < 2n that can satisfy

(5.2) and (5.3). Since the mapping g — (c2n(J), d2(J)) is injective, the

proposition follows if there are fewer than n solutions of (5.2) and (5.3).
We need to count the number of positive lattice points (7, j) with

min{i, j} < {(1+ V2 -1+ 6}V
and
max{i, j} < V2(1 - 258)v/n.

A calculation shows that the area of the L-shaped region defined by these
inequalities is bounded by n{l —é} < n. O

To complete the proof of the main theorem of this section, we first
note that setting 62 = 2¢ and solving 1 +¢ = (1 — 2560+/2 we are lead to
a value of § = 0.117118. This tells us that in the theorem we can take any
§<1+46%/2<1.00014. :

The key problem that remains open at this point is the determination
of the best possible value of j.
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9. Subsequences along cycles. We say that a sequence of integers
(31,72, .-.,%k) has d descents if it can be written as the concatination of d
monotonic blocks but cannot be written as a concatination of fewer than d
monotonic blocks.

For example, the sequence (5,9,11,2,3,8,4,1) can be written as the
concatination of four monotonic increasing blocks (5,9, 11), (2,3,8), (4),
(1) and thus the sequence has d = 4 descents. We let

0 (d;z1,20,...,2n) =
max{k : z; < z;, <...< z; where (i1,%s,...,%;) has d descents}.
We define £~ (d; z1,z2,...,2,) as the corresponding maximum length d-

descent monotone sequence of z;’s. The purpose of introducing these
quantities is that they lead to a quite natural analog of the Erdés-Szekeres

theorem.
THEOREM 9.1. For any n distinct real numbers, we have

£ (d;z1,20,. .. 207 (d; 21,22, ..., T5) > dn.

Proof. We first remark that the case d = 1 is the usual Erd&s-Szekeres
theorem. Further in the trivial case d = n, we have equality since £+ =
£~ =mn. 0

10. Common ascending subsequences. If 7 and o are two per-
mutations of {1,2,...,n}, we say they have a common ascending subse-
quence of length r if there are indices 1 < 23 < 43 < ... < ¢ < n and
1<j1<j2<...<jr <nsuch that n(i;) = o(js) forall 1 < s < 7.
The notion of the longest common ascending subsequence A(w, o) was in-
troduced in Alon (1990) for the purpose of derandomizing the randomized
maximum flow algorithm of Cheriyan and Hagerup (1989). The connection
between A(w, o) and the central theme of this review is made most explicit
by noting that A(w, ) is equal to the length of the longest increasing subse-
quence of ¢~ 7w(1),07 7(2), ..., 7(n). The main result of Alon (1990)
is the following theorem.

THEOREM 10.1. For every two integers k and n with k > n, one
can construct in time O(kn), a sequence of permutations wy, 7y, ..., Ty of
{1,2,...,n} such that any permutation o satisfies

1 k
EZ Ao, ;) = 0(n?/3).

The fact that this result is reasonably sharp can be deduced from the
probabilistic results of the first section. For any fixed w1, 72, ..., 7,, we
have for a random ¢ that

k
1
E ; w(o,m) = EL, > (2 —¢e)v/n
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for any ¢ > 0 and n > n(¢). Combining this observation with Alon’s

theorem with & = n we find that there is a constant ¢ > 0 such that the
functional

1 n

A, = maxmin — Ao, m;

A o nz1 (o, i)

satisfies
(2 —e)v/n < Ap < en?/3.

The main point of reviewing this information is to point out the problem
of determining the true order of A,.

11. Optimal sequential selection. One of the intriguing themes of
sequential selection is that one sometimes does surprisingly well in making
selections even without knowledge of the future or recourse to change past
choices. One illustration of the theme is the “secretary problem” of Gilbert
and Mosteller (1966) that tells us that given X;, Xs,..., X, independent
and identically distributed random variables, there is a stopping time 7 =
T, such that

-1
P(X, = 11%1%)%)(0 >e .
There turns out to be a parallel phenomenon that takes place in the theory
of monotone subsequences.

The problem is to determine how well one can make a sequence of
choices from a sequentially reveal set of independent random variables with
a known common continuous distribution. To put this problem rigorously,
we call a sequence of stopping times 1 < 71 < 73 < ... a policy if they are
adapted to X1, X5,... and if we have X; < X,, < ... < X, <.... We
let & denote the set of all policies. The main result about such policies is
given in Samuels and Steele (1981).

THEOREM 11.1. For any sequence of independent random variables
with continuvous distribution F' and associated set of policies S, we have

u, = sup E(max{k: 7 < n})~V2n
s

as n — oo.
This theorem thus tells us that there is a policy by which we can make
sequential selections from X;, Xs, ..., X, and obtain a monotone increasing

subsequence of length that is asymptotic in expectation to v/2n. Since the
best one could do with full knowledge of {X;, Xs,...,X,} is to obtain a
subsequence with length that is asymptotic in expectation to 2\/n, we see
that a “mortal” does worse than a “prophet” by only a factor of V2.

It was observed by Burgess Davis (cf. Samuels and Steele (1981), Sec-
tion 7), that if one lets £, denote the expected value of length of the longest
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increasing subsequence that can be made sequentially from a random per-
mutation of {1,2,...,}, then one has £, ~ u,, and consequently £, ~ /2n.
The importance of this remark comes from the fact that the “natural” se-
lection studied in Baer and Brock (1968) is just “sequential” selection as
studied here. Thus, the results of Samuels and Steele (1981) coupled with
the key observation of Burgess Davis resolve the main problem posed in
Baer and Brock (1968).

12. Open problems and concluding remarks. Erdés (see Chung
(1980), p. 278) has raised the question of determining the optimum values
associated with various weighted versions of the monotone and k-modal
subsequence problems. Specifically, let W = {(w,ws, .. SWn) T ow; >
0 and w1 +wo+...+w, = 1} and for w € W and for 0 < k let U (w) denote
the set of k-unimodal subsequences of w. The problem is to determine the
values

rn )= mip e, 3w
To illustrate, we note that it is easy to show that r(n,0) < n'/2, since by
considering a perturbation of uniform weights that have the same order-
ing which yields a longest monotone subsequence of length [u!/?], we see
7(n,0) < n~1[n}/?].

One surely suspects that 7(n,0)/n — 1 as n — oo, but this has not
yet been established, though it might be easy. By similar considerations
using Chung’s theorem, one sees that limsup 7(n,1)v/n < /3 while we
expect that actually r(n,1) — /3.

Erd&s posed the problem of determining the largest integer f(n) such
that any sequence of m = f(n) distinct real numbers z1, zo, ..., 2, can be
decomposed into n monotonic sequences. Hanani (1957) proved that

f(n) =n(n+3)/2.

A question posed by Erdds (1973) for which there seems to have been no
progress is the following:
Given z1, 9, ..., 2, distinct real numbers determine

maxg Z;
M

where the maximum is over all subsets of indeces 1 < i1 < is < ... < i <n
such that z;,,z;,,...,2;, is monotone.
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