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The worst-case behavior of greedy matchings of # points in the unit d-cube, where d = 2,
is analyzed. The weighting function is taken to be the «’th power of Euclidean distance,
where 0 <a<{d. It is proved that the asymptotic growth rate of the weight of such a
greedy matching is exactly Bn?~ - where B is a positive constant that depends on the
parameters a and d. Included in the analysis is a minimax theorem equating the worst-
case behaviors of matchings resulting from greedy algorithms that, when ordering edges
for the greedy process, break ties in different ways.

1. INTRODUCTION

The purpose of this paper is to determine the asymptotic behavior of the
total weight of a worst-case Euclidean matching obtained by the greedy algo-
rithm. Before reviewing the results that motivate this investigation, we will first
make our problem precise and state the details of our main results.

A matching of the graph G=(V, E) is a subset M of the edges of G such
that a vertex of V is incident with at most one edge of M. Since all our matchings
will be subsets of the complete graph on V,, = {x,, x2, . . . , X}, a set of n points
in the unit d-cube, we will refer to a matching as a maiching of the point set
V.

A simple heuristic for computing an approximate minimal matching of a
given set of points is the greedy algorithm, which iteratively forms a matching
M of the point set V,, by initializing M as the empty set and considering the
edges of the complete graph on V,, in order of nondecreasing weight. At each
iteration, a candidate edge e is placed into M if neither endpoint of e is incident
with an edge of M. A matching formed using the greedy heuristic is called a
greedy matching. In cases where there exist more than one choice of orderings
of candidate edges in nondecreasing order, we will often find it beneficial to
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consider the specific ordering of candidate edges to be independent of the
greedy process, in which case we will refer to applying the greedy algorithm to
a given candidate edge sequence. Although the greedy heuristic can also be
applied to form an approximate maximum-weight matching in an obvious way,
we shall always use the term greedy in the context of minimal matchings.

Let e = {x;, x;} denote an edge of the complete graph on V,,. We will use |¢|
to denote the usual Euclidean length |x; —x;|, and we will be concerned with
the edge weighting function w defined by w(e) = |e|*, where 0 < a <d. Power-
-weighted edges are edges whose length is weighted according to the weighting
function w. Our study of power-weighted edges is motivated by simulations in
which squared Euclidean edge weights are used in lieu of Euclidean lengths.
Such weights are often used to avoid the extra computational overhead of
square-root calculations. Although the case a=1 is still of primary concern,
the study of the more general case 0 < oo <<d has independent interest, and, in
addition, this increased genérality helps to illustrate some key features of our
method.

In particular, one should note that the edge weighting function w typically
fails to provide a metric on V,, since the triangle inequality can fail to hold for
all @# 1. The features of w that turn out to be essential are that w is a
homogeneous, monotone function of Euclidean length. Because of the key role
played by rescaling and approximate self-similarity, homogeneity is critical.

Our fundamental object of interest is

pe(n)=sup max{ > le|]*: G is a greedy matching of V,,}. (1.1)
vrc50,1]d G leeG
Val=n

We think of p,(n) as the maximum possible total weight of a greedy matching
of n points in the unit d-cube. For €> 0, we will call a greedy matching having
total weight at least p,(n) — e an e-worst case greedy matching with power-
weighted edges. We will subsequently refer to an e-worst-case greedy matching
simply as a worst-case greedy matching, and the set of points producing such a
matching will be called a worst-case point configuration.

The internal maximum in the definition of p;(#) is a consequence of the fact
that if there exist edges of the complete graph on V,, that are of identical length,
then there can exist more than one greedy matching of V,,.

Our main asymptotic result for p, is summarized in the following theorem.

Theorem 1. There exists a positive constant B, depending on the dimension

d =2 and the edge-weighting function w(e) = |e|*, where 0 < a <d, such that as
n—>0,

pa(n) ~ Byn@=e. (12)

This result provides the first determination of the exact asymptotic rate of
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growth of the function p,, and it also represents the first investigation of greedy
matchings under power-weighted edges.

Some analogous results for the minimal spanning tree and for the optimal
traveling salesman tour of n points in the d-cube are given in Steele and Snyder
[12], but the lack of minimality of a greedy matching and the fact that there
can exist more than one greedy matching of a given set of points force one to
tackle a number of new issues in the analysis of the greedy heuristic.

An issue that must be addressed is that of tied edges, or edges of identical
Euclidean length in the complete graph on V,,. Different lists of the edges of
the complete graph on V,, arranged in order of nondecreasing Euclidean length
can produce greedy matchings of significantly different weights, so we obtain a
family of greedy matchings of V,, that depend on the resolution (or ordering)
of the ties.

The definition of p, in (1.1) considers the worst-case weight of a greedy
matching formed by an algorithm that breaks ties in the worst possible way,
forming a maximum-weight greedy matching of V,,. We can also define the
worst-case performance of an optimal greedy algorithm in the sense that the
algorithm resolves ties so as to attain the cheapest-possible greedy matching:

fe(n)= sup min{ > le|*: G is a greedy matching of V,,}. (1.3)
VI,,C[lo,ud G LleeG
Vaul=n

Fortunately, the resolution of ties turns out to be of no consequence for worst-
case point configurations; this is indicated by the following result.

Theorem 2. For all n=1, one has that

Fu(n) = py(n). (1.4)

All told, it may be somewhat surprising that the two quantities of Theorem 2
are equal. In addition to telling us that one has more than the asymptotic
equivalence gy(n)~ py(n) as n—>o, the result tells us that the worst-case
weighted matchings of all greedy algorithms are equivalent for all n=1.
Previous work on greedy matchings has focused on bounding the quantity
pg(n). For example, Avis [1] used a hexagonal lattice sphere packing to show
that in d =2 we have that p,(n) =0.8474Vn, and by developing upper bounds
on the minimum distances between points of the unit square, Avis [1] showed
that p,(n) <1.074Vn + O(logn). It is essential to note, however, that these

big-O and Q) bounds on p,(n) do not address the issue of convergence of p,(n)/
n‘“=* to a constant.

The only known exact asymptotic results for greedy matchings is the proba-
bilistic result of Avis et al. [3]. If we let G, be a greedy matching of
{X1, X>, ..., X} C[0, 1]%, where the X; are independent, identically distributed
random vectors and where d =2, then Avis et al. established the following:
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Theorem. With probability one as n-—«, one has
G, ~c(dyntd-1rd J [f(x)]d-1rd gy, (1.5)
Rd

Here, ¢(d) is a constant depending on the dimension d and f is the density of
the absolutely continuous part of the distribution of the X;, where 1=i=n.
We note that the rate of growth of G, in this theorem is similar in form to the
rate of growth of p, in our Theorem 1, and, indeed, the existence of this
probabilistic result motivates our investigation of the corresponding worst-case
problem.

The survey of matching heuristics given by Avis [2] goes further into the
* history and motivation of our problem than we can here, but we should mention
some salient aspects of earlier work. Euclidean greedy matchings have been
used in applications such as plotting a graph using a mechanical pen plotter
[2,8,10] and as a heuristic in Christofides’ algorithm for finding an approximate
traveling salesman tour of n points whose edges satisfy the triangle inequality
[4]. For graphs with large numbers of vertices such as those from applications
in VLSI, the well-known O(n*) minimal matching algorithm of Edmonds [5]
and even the O(n>) refinement of Gabow [6] and Lawler [9] are too slow for
large numbers of points, making faster heuristics desirable.

In what follows, we will at all times focus on worst-case results for points in
[0, 1]4, without any probabilistic assumptions. In the next section, we spell out
the precise properties that are needed by p, in order to establish the asymptotics
reflected in Theorem 1. The heart of the matter is to show that p, satisfies the
approximate recursion relation (2.1(b)) of Lemma 2.1. The first step of this
verification is the construction of a point set for which a greedy matching nearly
obtains the worst-case weight; this is accomplished in Section 3, and it leads to
a preliminary recursion that works together with the geometric inequalities of
Sections 4 and 5 to verify the hypotheses of Lemma 2.1. Section 4 bounds the
maximum number of relatively long edges of a greedy matching in the unit d-
cube, and Section 5 bounds some incremental rates of growth of p,. These
ingredients are brought together in Section 6 to prove Theorem 1.

The proof of Theorem 2 is handled in Sections 7-9, and Section 10 offers
concluding remarks, including some comments on open problems.

2. TARGET RECURSIONS

Before attacking the analysis of p,, we need a couple of general lemmas that
are not directly related to matchings. Although the first lemma looks technical,
it tells us just which properties of p, must be established. The first such target
recursion, relation (2.1(a)), expresses a slow incremental rate of growth con-

dition, whereas the second, (2.1(b)), guides the majority of the subsequent
work.

Lemma 2.1. If p(1) =0, 0 <a<d, and there exists some ¢ = 0 such that for all
m=1land k=1:
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(a) p(n+1)=p(n)+cn=* and @1
(b) ma=ep(k) — ma~kld=Y4r (k) = p(m?k), '
where r (k) —0 as k— o, then as n—x,

pln) ~ P

for a constant B=0.

Proof. From the hypothesis (2.1a), we first note that for 1=i<j<o we
have

o) = o) = 3 {p(k+ 1) = p(k)}

j—1
=c Xk~ (2.2)

k=i

=1
=c f x4 dx

i1

=c'

(d— (d—
d~a{]( a)/d_l(d a)/d}’

where the constant ¢’ depends on «a. Letting i=1 and j=n in Inequality

(2.2) and using the fact that p(1)=0 shows us that p(n) satisfies
p(n) =c'(di(d — a))n'd=4 5o if we define

iy =2 23)

we see that W(k) is bounded. This allows us to set

v = lim sup ¥(k) <. (2.4)

k— =
Dividing Inequality (2.1(b)) by m9~ k@~ gives us the simplified relation
(k) — ro(k) =¥ (mik) (2.5)

for all m=1 and k= 1. Now, given any positive real number €, we can choose
a k. such that y— e=<W(k,) and r.(k.) < ¢, from which (2.5) becomes

v—2e=V(mk,) (2.6)

forallm=1.
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We now consider the intervals j,, = n =j,,.1, where j,, = m%k,. To bound the
absolute difference |¥(n) — ¥(j,.)|, we first use Inequality (2.2) to check how
much p(n) can differ from p(j,.):

sup |P(n)"[3(]m)1 =lp(jm+1) —p(]m)l

Jm = E [m+1

=c' d Kd—old{(m+ 1) *—mi =}, (2.7)
d-a«

Using the mean value theorem, we then bound (m + 1) — m?~ <« obtaining
two cases that depend on the size of the parameter a, namely,

(m+1)d—a_md*a<{(d_a)(m-l—l)d_l_a’ lfasd'—la (2 8)
~ (d - a)ymd—17e, if a>d-1. '
We can then express the bound (2.7) in terms of ¥ to get:
p g
. |(n) = p(in )
() = Y(jm)| = e
1 (m+1Y
cd—{— o ifa=d-1;
= . 2.9)
C'd -, lf o> d - 1
m
Sch'd—l-
m

for j,,=n=j,.+;, where we have bounded (m + 1)4~*/m%~* by 29~=, Hence,
1
~24c'd ~=W(n) =Y. (2.10)
m
for j =N =4
Returning to (2.6), we now see that
1
y—24c'd ~—2e=W¥(n) (2.11)
m
for any j,, =n=j,+;. Thus liminf, ... ¥(k)=y—2¢, and since €>0 is arbi-
trary, we can conclude that

y=lim inf W(n), (2.12)

n—x

which implies that W(n) — 7y as n — % and completes the lemma with g=vy. B
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Our next lemma tells us that from any » points in [0, 1] we can always find
a pair of points that are relatively close together. Even though this is a well-
known fact, we present a brief proof here for completeness.

Lemma 2.2.  There is a constant ¢, such that for any {x,,x2, ..., x,} C[0, 1]¢,
where n=2, one has

X — x| =cm Ve 2.13
]
for some x; and x;, where 1 =i<j=n.

Proof. We proceed using a simple packing argument. Cover each point x;
with a d-ball of radius r and center x;. Such a ball has a volume of w9,
where w, is the volume of the unit d-ball. Suppose that all these balls were
nonintersecting. Then, each ball would cover at least 29w r? of [0, 1]¢ (even
if the ball was centered at a corner of the hypercube). The n balls would cover
at least 279w, rn. Since [0, 1]9 has unit volume, we have 2 9w 9n = 1. Hence,
|x; — x;| = 4wz V¥n~V4 for some x,; and x;, where 1=<i<j=n. This proves the
lemma with ¢; = 4w; V4. m

One can improve the constant of this lemma, but the simply derived constant
¢ is sufficient for our purposes.

In the next section we partition the d-cube to construct a point set that attains
a nearly worst-case greedy matching. This will give us an initial recursion that
is a first stab at the second target recursion of Lemma 2.1.

3. CONSTRUCTION OF A NEARLY WORST-CASE GREEDY MATCHING

The asymptotic analysis of p, will be obtained by giving a recursive construc-
tion that demonstrates that p, satisfies the second target recursion of Lemma
2.1. Although the construction itself is easy to lay out, the verification that
the construction suffices will require a rather detailed understanding of the
combinatorial geometry associated with Euclidean greedy matchings.

We begin the recursive construction by dividing the d-cube Q = [0, 1]¢ into
m? equally sized cells Q;, where 1=i=<m? and each cell has side length 1/m.
The union of the boundaries of the Q; will be denoted by H; in other words,
H= U700, Also, for & satisfying 0 < 8 < 1/m, let H® denote the set of points
of [0, 1]¢ that are within 8/2 of H; in other words, H? is the grating H fattened
to a width of 8. From this, we can define a subcell Qf of each Q; by Q%=
Qi - HS.

Now, by the definition of p,(k), for all €>0 there is a set of k points § =
{x1,%2, ..., x¢} in [0, 1]¢ for which the greedy algorithm yields a matching of
total weight at least p,(k) — €. By scaling and translation, we can therefore
produce for each 1=i=m? a set S§;C Q? of k points such that the greedy
algorithm applied to S§; can produce a matching of weight at least
(m™ — 8)(py(k) — €), since each side of Q? has width (m~1 - 8). To do so, the
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greedy algorithm must break ties to form an ordering that yields a maximum-
weight greedy matching on the point set S;. Let M; denote this greedy matching.
Next, we will construct a specific greedy matching M of the m?k points
U7, S, that is closely related to the matchings M; of the individual §,. The proof
that p, satisfies the second target recursion of Lemma 2.1 will come from
building a relationship between the total weight of M and the total weight of
the collection of the M;, where 1 =i=<m<

We form M by applying the greedy heuristic to a special ordering o of the
edges of the complete graph K on the m@k points in [0,1]9. To begin the
definition of ¢, we first place the edges of K in order of nondecreasing Euclidean
length, and we resolve any ties that may occur by the following sequential
process.

The first step in the tie resolution process focuses on the edges that lie entirely
within subcells; in other words, all edges e such that e is contained entirely in
the union U™, Q2. For any set of edges of K that have the same length A, i.e.,
for

E,={e€K:|e|= A, eCQ?, for some 1=i=m},

the edges of E, are first ordered according to the index of the subcells in which
they are contained. Thus, the edges of Q% appears first, the edges of Q3 appear
second, and so on, concluding with the edges of Q3.

The ordering o of the edges of K will be completely determined once we
specify an ordering of E, N{e:e C Q?} for each 1 =i=m? and for each A such
that A= {|e|:e is an edge of K}. To do this, we recall that each matching M;
of §;C Q? is precisely the greedy matching corresponding to a given ordering
o; of {e:eC Q?}. Since elements of E, N{e:eC QF} can appear in the same
order in o as they do in o; without violating the nondecreasing ordering of o,
we choose for each i and each A the ordering of E, N {e:e C Q?} specified by
o; to complete our specification of o.

The main consequence of this construction is that if e and e’ both are edges
of the complete graph K on Um S, and if eC Q? and ¢’ C Q? for some
1=i=m“, then e precedes ¢’ in the ordering o if and only if e precedes ¢’ in
the ordering ;. In addition, if e C Q? and ¢’ C Q? for i # j, then if |e| <|e’|, we
have e preceding e’ in the ordering o. Finally, if e C Qf and ¢’ C Q7 for i #j
and if |e| = |e’|, then e precedes ¢’ if and only if i <j.

We now consider the process of simultaneously forming the matchings M;
and M using the orderings o; and o, respectively, where 1=i=m¢“. Consider
first a smallest edge e of o, and note that if |e| < 8, then e must belong to M
and also to some M;. Proceeding successively, we note that any edge e that
satisfies |e| < & and is chosen for some M; must also be chosen for M, by the
construction of the ordering o. Consequently, we arrive at the basic inclusion

U M;C M U {e:e € UZ I M; and |e| = 8}, (3.1)

which tells us that the associated edge weights must satisfy
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mi(m™ = 8)(py(k) =)= 2 fel"+ 2 [e[*=py(mH)+ X Jel, 3.2)

where F=U7"{e:e€ M, and |e|= 8}. The second inequality in (3.2) comes
from the fact that p,(mk) is an upper bound on any greedy matching of m?k
points in [0, 1]%.

To turn the key recursion (3.2) into the inequality that can serve to justify
the second target recursion of Lemma 2.1, we need to find an upper bound on
the total weight that a greedy matching can assign to its long edges, such as
the members of F. This is the task of the next section.

4. A BOUND ON LONG GREEDY EDGES

In this section, lemmas leading to a bound on the number of relatively long
edges of a greedy matching in [0, 1]¢ are developed. The first lemma shows that
there is an a priori bound on the total weight of any subset of k edges of a
greedy matching.

It will be convenient henceforth to use L.(E) to denote the sum of the
weights |e|* for all e € E, where E is any subset of the edges of the complete
graph on V.

Lemma 4.1. There is a constant c; such that any subset E of the edges of a
greedy matching of {x1, x2, . . . , x,} C [0, 1]¢ satisfies

Lo (E) = cs|E|@-, (4.1)

Proof. Lets=|n/2|. We label the edges ey, e,, . . . , e; of a greedy matching
M by the order in which they are chosen by the greedy algorithm that forms
the matching. If we let k=|E| and e;, €5, . . . , €, be the edges of E, then by
the relabeling of the e; we have that

k s~—1
LE)= 21 leyJo= 2 ) P (4.2)
j= i=s—
For 0=i=<s—1, before e;+; is chosen by the greedy algorithm for inclusion
into M, there are exactly n — 2i points of {x;, x5, ...,x,} yet to be matched.
By Lemma 2.2, we thus have
s—1

2 ‘e,u,ll"‘SC% Si (l’l"Zi)_a/d

i=5—k i=s—k
k
<cg 2 (2
i=1

k
= C%Z‘“’d(l + J x o dx> (4.3)

1

= csk(d—ed,
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where ¢z = d/(d — a) 274 cg. L

Although we will not make use of the following fact, one should note that
Lemma 4.1 cannot be significantly improved. In particular, if n points of [0, 1]
are laid out in a regular hexagonal lattice, then any set of k edges of any
matching will have weight on the order of kn~ %9, which is Q(n~*?) when k
is of order n.

Our next lemma bounds the number of edges of Euclidean length x or greater
in a greedy matching of n points of the cube. We first define 1,(x, n) to be the
largest j such that there exists some point set V, ={x;,Xs,...,X,} having a

greedy matching with j edges greater than or equal to x in Euclidean length,
1.e.,

vg(x,n)= max max|{e€ M:|e|=x and M is a greedy matching of V..
Vacf0,1]9 M

(Val=r (4.4)

The internal maximum, of course, is necessitated by the possibility of more
than one greedy matching of a given point set V.

An intriguing fact is that v,(x, n) can be bound independent of n, the number
of points.

Lemma 4.2. There is a constant ¢, such that, for all x>0,
vp(x, n) = cex ™. (4.5)

Proof. Let M be a greedy matching of {x;, x>, . .. , X}, and set ¢p{x) =
[{e € M:|e|=x}|. Label the edges of M having length x or greater in the order
of their selection by the greedy algorithm as e, ez, ..., €¢ux), 1-€.s
les] =lea] =+ =legpenl-

By the nature of the greedy algorithm, for any 1=i= ¢(x), we can choose
an endpoint p of e; so that a sphere of radius x centered at p contains no
members of the set of endpoints of the ¢;, where i+ 1=j= ¢p(x). Therefore,
if we consider spheres of radius x/2 for all e;, where 1=i= ¢dns(x), then none
of the spheres can intersect.

If w, is the volume of the unit sphere in [0, 1]¢, then we have ¢ (x) spheres,
each of volume wy(x/2)?. Consider the sphere associated with the edge e;, and
let A; be the portion of sphere that intersects with [0, 1}%. If 1(A;) is the volume
of A;, then Z#4™ u(A;) = dar(x)w27%(x/2)¢, where the quantity on the right
assumes that each A; is centered at the corner of the d-cube. This yields
dr(x) w27 4(x/2)* = 1, which proves the lemma with ¢4 = 4% w,. ]

Using this bound on the maximum number of long edges along with the
bound of the previous lemma on the total weight of any subset of k edges in a
greedy matching, we are now in a position to exploit the relationship between
M and the M, given by Inequality (3.2). To bound the total weight of the edges
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in the set F=U7" {e:e € M,and |e| = 8}, we note that M, is a matching of k
points in a cube of side length m~" — 8. By scaling, we see from (4.1) that

2 lelr=cs(m~t = 8)*|{e:e € M;and |e| = 8}~ 4, (4.6)

Now, if we let 7,(x, n) be the maximum number of edges of length at least x
in a greedy matching of n points in [0, 7]¢, then we have the identity

F(tx, n) = vg(x, n). 4.7)

Letting t=m~" — 8 and x = 8/, we see from (4.7) and the bound of Lemma 4.2
that

Hete € M, and |e| = 8} = 7,(8, n) =48 “(m™} = 8)°, (4.8)

so (4.6) becomes

S lel* = csclt— @ (mL - §)d-a s, (4.9)
P

Using (4.9) to bound Z.cr|e|*, we can now simplify our key recursion (3.2) to
obtain

ma(m=1 — 8)*(pg(k) — €) — e3¢~V dmA(m~* — 8)78*~ ¢ = p,(m?k),(4.10)

and, since 8 and € are positive, we conclude that
ma(m~ = 8)*py(k) — cack?™ 48>~ < p(m7k). (4.11)
In Se‘ction 6 we will show that 8§ can be chosen so that the relation (4.11)

satisfies our second target recursion. The next section deals with the incremental
rate of growth of p, in order to satisfy our first target recursion.

5. LEMMAS ON GREEDY INCREMENTAL GROWTH

The first of the two target recursions required by Lemma 2.1 is a bound on
the incremental rate of growth of the function pg. The next lemma establishes
an incremental rate of growth “by two’s,” while allowing for a nonmonotonicity
of p,.

Lemma 5.1. There is a constant cs such that for all 0 < a<d one has

pe(n+1)=py(n—1)+csn 4, for all n=1; (5.1)
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and

pe(n+ 1) = p,(n), for all n=2, where n is even. 5.2)

Proof. Let S be an arrangement of n + 1 points in [0, 1} such that a greedy
matching M,+; of S has weight L,(M,.+:) = p,(n+1)—¢, where e>0. Let
{x;, x;} be a shortest edge of the complete graph on S. By Lemma 2.2 and the
nature of the greedy heuristic, {x,x}EM,; and |x;—x]*=
cg(n+ 1)Y= cgn=o9,

To prove Inequality (5.1), delete both x; and x; and obtain the matching M,
which is M,,..; with the edge {x;, x;} removed; we then have that

pe(n+1)—e=L (M)+|x;—x;|* =< Lo(M) + csn= 4, (5.3)

In addition, since {x;, x;} is an edge of minimum length, M is a greedy matching
of {xi, x2,...,%-1, Xix1,...,%-1, Xj+1,...,X,}; hence, we have that
Lo(M) = py(n—1). Inequality (5.3) then becomes p,(n+1) —e=py(n—1)+
cgn~ . This is true for any € >0, proving (5.1) with ¢s = c5.

To prove (5.2), we first suppose that n is even and again let S be an arrange-
ment of n+1 points with a greedy matching M, of weight L. (M,.:)
=pg(n+1)—€, where €>0. Since n+1 is odd, then remains exactly one
exposed point x* of § following the formation of M,,.,. We delete this exposed
point and form a greedy matching M, on the remaining points of S such that
M, satisfies L,(M,) = max{L,(M):M is a greedy matching of S — {x*}}.

Now, since there exists an ordering ¢ of the edges of the complete graph on
S - {x*} such that the greedy algorithm pplied to o produces M,,,.; (this can be
accomplished by deleting the edges incident with x* from the ordering used to
form M,.; on §), we see that L (M, _,) =< L.(M,). Consequently, we have

pg(n +1) - ésLa(Mn-*‘l)sLa(Mn)Spg(n)' (5.4)
Since (5.4) is true for all €>0, the proof is complete. n

We remark that the case distinctions of Lemma 5.1 are unavoidable since
pe(n) is not a monotone sequence.

Because Lemma 5.1 only gives us an incremental rate of growth of the
function p, “by two’s,” we will later see that we can apply Lemma 2.1 only to
greedy matchings with power-weighted edges of sets of points of even cardinal-
ity. This problem is resolved by the following lemma, which allows us to
compare the weight of a greedy matching of a set of points with the weight of
a greedy matching of the same set of points augmented by an additional point.

Lemma 5.2. Let M,..1 and M,, be greedy matchings using the weighting function

w(e)=|e|* of Suv1={x1,%2, ..., Xns1} and S, ={x1, X2, . . . , X,,}, respectively,
where x; €[0,1]? for 1<i=<n+ 1. Then,
|Lo(M,s1) — Lo(M,)| < d*?. (5.5)

Proof. Order and label the s = ("3') edges of the complete graph on S,
so that |e;| <|es| = - - =|e,|.
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We can iteratively and simultaneously form both M,,.., and M, by considering
each edge e;, where i=1,2,...,s, for inclusion in both M, .+, and M,. We
begin by initializing M., and M, as empty sets. If both endpoints of e; are
exposed in M, ., then e; is added to M, in addition, if both endpoints of e;
are exposed in M,, and neither endpoint is the point x,.1, then e; is added to
M,.

On completion of this algorithm, we claim that exactly one of the following
properties is true for each e

(1) e,€M,.1 and e, € M,;
(2) ;€ M,.1 and e; & M,;
or

(3) e; belongs to a monotone alternating path of M,, and M. originating at
X,..1, where a monotone alternating path P of M, and M, is a path of
length at least one whose edges are monotonically nondecreasing in
length and alternate from membership in one matching to membership
in the other as each edge of the path is traversed. The originating edge
of P with x,.+ as an endpoint is an edge of minimum length in the path.
(For a more formal definition, see Snyder [11].)

We prove the claim by induction on i. For i =1, if x,+1 is not an endpoint
of ey, then Property (1) is trivially satisfied. If x,,. is an endpoint of e;, then
e, is itself an alternating monotone path originating at x,., and Property (3)is
true, so we assume the claim is true for all ¢;, where j<i, and consider the
edge e;.

If neither (1) nor (2) is satisfied, then we have two possibilities. In the first
case, suppose ¢, EM,, and e, € M,,.1. Edge e; can fail to be in M+, only if one
of its endpoints is the endpoint of some edge ;&€ M. By the nature of the
greedy algorithm, j<i and |¢;| = le;|, and by the inductive hypothesis, ¢; is an
edge of a monotone alternating path of M, and M, ., originating at X,+1.
Hence, e; satisfies Property (3).

The second case occurs when ¢; € M, and e; € M,,..;. One way this can happen
is when x,.; is an endpoint of e;, in which case (3) is trivially satisfied. The
other way in which this can occur is when x,. is not an endpoint of e;. In this
case, (3) is satisfied using the same argument we used in case one, proving the
claim.

To complete the proof, we note that the only edges contributing to |L, X
(M,,+1) — Lo(M,,)| are those satisfying Property (3). Since by definition the
monotone alternating path P originating at x,,+; must contain at least one edge
of M,,.,, there can be only one such path by the definition of a matching, and
since P is monotone,

|La(Mpi)) = LaM)l=| 2 lel*= 2 le|®

eEP e P
eEMp+1 eEMp
<max{je|* : e€ P}=d*?, (5.6)

completing the proof. |
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A lemma that is closely related to Lemma 5.2 with a=1 is given in [3],
where it is used in a probabilistic context.

6. GREEDY ASYMPTOTICS

We now use the combinatorial and geometric lemmas thus far established to
show that p, satisfies the target recursions of Lemma 2.1. We first note that
since 8< 1/m, we have that 8¢ <m~=§9. Inserting this bound into the key
relationship (4.11) and expanding the quantity (m~! — )= gives us

mdﬁapg(k) — md+1~a6apg(k) + O(md+2—a52)pg(k)
— i mT o Y= p,(mk).  (6.1)

We then make the choice

5= 1 M@+ D) pla=d)/d(d+1) (6.2)

m
to show that there exists a constant ¢ such that
md—apg(k) — Cémd—aad/(d+1)k(d‘a)/(a'+l) < pg(mdk) (63)

for all m and k greater than or equal to one. Since 0 < a<d, we see that our
choice of § satisfies the requirement that 0 < &< 1/m. Moreover, the recursion
(6.3) satisfies the second target recursion of Lemma 2.1 with the remainder
function r,(k) = cea®@* DD/ “which goes to zero as k — o since a is
fixed and @ < d. This completes our main task of satisfying the principal require-
ment of Lemma 2.1.

All that remains is to establish the incremental rate of growth condition,
target recursion (2.1(a)). Since Lemma 5.1 gives an incremental rate of growth
“by two’s” for p,, we define the function ¢, where yi(n) = p,(2n), and show
first that ¢ satisfies (2.1(a)) in addition to the main target recursion (2.1(b)).
We note that ¢ is just p, restricted to the even integers. Exchanging 2k for k
in Inequality (6.3) yields, in terms of i,

md“alﬁ(k) — C6md—aad/(d+ 1)(2k)(d—a)/(d+ < (,ll(mdk), (64)
so i satisfies the second target recursion with the ‘slightly modified remainder

function r, (k) = 2@~ d+ D, qdl(d+ 1) Jla=dldd+1) We next write the incremen-
tal growth inequality of Lemma 5.1 as

pe(2n+2) = p,(2n) + cs(2n + 1)~, (6.6)
or in terms of ¢,

P(n+1)=yn) +2"*csn=, - (6.7)
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Using Lemma 2.1, this proves that

() ~ Pgntd= (6.8)

as n— for some constant B, = By(d, ).

Finally, to prove Theorem 1 for the function py, all we need to do is apply
Lemma 5.2. Let {x1, %, ...,%2,}C[0,1] be a set of points with a greedy
matching that achieves a total weight greater than or equal to p;(2n) — €, where
€>0. If we add an additional point and form a greedy matching M of the 2n + 1
points, then from Lemma 5.2 and the definition of py(2n + 1), we have that

pe(2n) — €= d* = L (M) =py(2n +1). (6.9)

Also, since €>0 and since 2n is even, Inequality (5.2) of Lemma 5.1 tells us
that

p(2n) — d°7 = p,(2n + 1) = py(2n). (6.10)

Applying the relation (6.8) to py(2n) and letting n go to infinity proves that
pg(n) ~ Byn'@ =¥ as n— <, concluding the proof of Theorem 1. |

A final issue that needs to be resolved is a comparison of the quantities g,(7n)
and p,(n). By using a special tie-breaking perturbation of point sets of [0, 1]4,
the next three sections prove Theorem 2, which tells us that, remarkably, the
sequences gy(n) and py(n) are identical.

7. BLOCKS AND LEGAL SHUFFLINGS OF EDGES

One obvious benefit of our analysis of p, in the preceding sections is that it
gives us the exact asymptotic weight of the worst possible greedy matching of
n points in the unit d-cube. If we recall the definition

pe(n)= sup max{L.(G):Gisa greedy matching of V,.}, (7.1)
Vl,.c[[o,l]d
V,-,_zn

we see that p,(n) represents a supremum Over all possible point sets of a greedy
matching of n points that is formed by using a “worst possible” list of candidate
edges for processing by the greedy algorithm. In other words, pg can be associ-
ated with an algorithm that always yields a maximum-weight greedy matching
of a given set of points.

In practice, this may not be the case since ties among lengths of edges in the
candidate list are usually resolved in an arbitrary or random manner. Let us
suppose, then, that we instead use an optimal greedy algorithm, i.e., one that
resolves ties such that we always obtain a minimum-weight greedy matching.
A natural question to ask is, What is the worst-case performance of this algo-
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rithm over all n-sets? The definition of g,(n) embodies this scenario by replacing
the inner maximum in the definition of py(n) with a minimum.

The next lemma will be useful in resolving this issue. It guarantees that we
can perturb any point set having a greedy matching M to obtain a point set
with a greedy matching that is virtually identical to M yet exhibits no tied edges,
as is expressed by the properties (i), (ii), and (iii) below. Despite the intuitive
simplicity of these properties, the proof of the lemma is much more delicate
than we would expect at the outset.

Lemma 7.1. For any >0 and any greedy matching M of S=
{x1,%2, ..., X, C [0, 1}9, there exists a point set S’ ={x{,x5,...,x,;C[0,1]¢
with an ordering o' of the edges of the complete graph on S’ such that, if the
greedy algorithm applied to o' forms the matching M', then

(i) The edge {x’, x;} € M’ if and only if the edge {x;, x;} € M,
(i) Lo(M")=ming{L,(G):G is a greedy matching of S'};
and
(iii) 0=L(M)—Lo(M')<e.

Proof. Let K= (S, E) be the complete graph on the point set S, and let &
be an ordering of the edges of E that gives rise to the greedy matching M.
There is a k such that we can partition o into k contiguous sublists or blocks
01, 02, . . . , 0% such that, for any edges e € ¢; and ¢’ € 0;, where 1 =i=k and
lsj=sk,

lel<le'|, ifi<js
le|=le’|, ifi=j;and (7.2)
le|>le’|, ifi>j].

Thus, we have a block for each distinct Euclidean edge length of the edge set
E, and, within any block, all edge lengths are equal. In each block, we mark
the edges that belong to the greedy matching M and say that the edges not
belonging to M are unmarked. Next, for each i such that 1 =i=k, we label the
marked edges of the block o; in the order in which they appear in the block as

€i1, €12y - - - » €im(ay), Where m(a;) is defined to be the number of marked edges
block 1 block 2 block k
|°“|"b'le”l'”l"‘m(’x)l"'l"'Ie“l'"l‘”l"'lezm(ﬂ)l“'l l"'Ie“|"‘l"‘?l"'le*"'<°~‘)""|
51 o3 Ok

FIG. 1. The ordering ¢ and its marked edges.
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block 1 block 2 block k
[en]ess] - esmeen] - JearJeas] - Jeamion] = [+ Jemsfewa] - fermeen] - |
4 o} oy

FIG. 2. The ordering ¢'; marked edges of o appear first in each block.

of o;; in other words,
m(o;)=|{e:e€ 0, and e € M}|. (7.3)

Figure 1 illustrates the ordering o and its marked edges.

We now investigate ways of reordering the edges of ¢ to form a new ordering
o’ without affecting the matching obtained when processing these lists of candi-
date edges with the greedy algorithm. First, define o] to be the ordering
€15 €2, « - - 5 Cimqoy fOllowed by the set of unmarked edges of o;, where the latter
set is arranged in an arbitrary order as shown in Figure 2.

Now, all the marked edges that preceed a given unmarked edge ¢ of o still
precede e in the new ordering ¢’ = i, 03, . . ., 04, and since the relative orders
of the marked edges in o and o’ are identical, the matching obtained by applying
the greedy algorithm to ¢’ will contain only marked edges. This means that the
greedy algorithm applied to o’ will still form the matching M. This fact remains
true for any permutation of the set of unmarked edges of each o;, where
1=i=k. In addition, it remains true even if we reassign the weights of the
marked edges in such a way that the order of ¢’ is retained without violating
the nondecreasing order of the edge weights. This fact will prove to be useful
in the next section, in which we investigate a perturbation that satisfies the
three properties of Lemma 7.1.

8. A PERTURBATION THAT BREAKS GREEDY TIES

We now set out to perturb the point set S to form the point set §' =
{x1,x3,...,x,}, where, for 1 =i=n, the point x;E S’ is the point x; € § after
the perturbation. For any edge e = {x;, x;} of o, we define e’ = {x}, x;}. We also
let the gap A, ;+; be the absolute difference between the Euclidean edge lengths
corresponding to the two adjacent blocks o; and 0,4, 1.e.,ife € g;and 6 € oy, |,
thenforl=si<k-—1,

Ai,i+1=lél"|e]>07 (8-1)
and, if € oy, we define

Aoy =e|>0. (8.2)
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We then define A to be the minimum gap by setting

A= min Ai,i-&-l‘ (83)

O=iz=k—1

Note that, by the definition of Ao ;, the minimum gap A is no larger than a
minimum-length edge of o.

We are now ready to describe the perturbation. Consider the block o of
the order ¢’. For each marked edge e;, where 1=j=m(o;), for notational
convenience we relabel the endpoints of e; so that e; = {y;, z;}. We then perturb
the points z; according to the following rule:

For all j satisfying 1 =j=m(0;), move z; toward y; a distance of

8,~,—=(1-——~];——>8(e), (8.4)

where the parameter 8(€) satisfies 0 < 8(e) <A and is to be chosen later.

We can note that our entire perturbed point set S’ = {x{, x5, . . ., x;} is con-
tained in the unit d-cube since the perturbation is accomplished by moving
points a strictly positive distance along the marked edges of the complete graph
on S, each of which is contained entirely in [0, 1]9. We will momentarily see
that no point moves too far.

We now can check that performing this perturbation scheme for all i, where
1=1i=k, will guarantee properties (i)—(iii) of our lemma. First, to prove proper-
ties (i) and (ii), we note that as j ranges from 1 to m(o;), the quantity
1~ j/(m(o;) + 1) ranges from m(o;)/(m(o;) +1) to 1/(m(o;) + 1); hence, it is
always strictly positive and less than one. Since we multiply this quantity by
8(€), which is less than the minimum gap A, we are assured that (1) for any
edge e; € o;, the Euclidean length |e;| remains greater than the length, after
the perturbation, of any edge belonging to the preceding block o;-; and (2)
since A is at least as small as an edge of minimum length, the distance moved
by the point z, never exceeds the length of the edge |e;|. This verifies that
S’ [0, 1}¢. Furthermore, since the reduction in edge length accomplished by
the perturbation decreases as j increases, we see that we have retained the
order of o; in other words, if we label the edges of the ordering ¢’ as
€1, €, ...,¢e,, where u= (%), then ordering the edges of the complete graph
on the perturbed point set §’ can produce the list e], €5, ..., e,

Consider now the formation of the matching M’ by applying the greedy
algorithm to the perturbed set §'. As the algorithm proceeds, it first considers
the marked candidate edges ej1, €2, . . . , €Lmp Of block one. We claim that
M’ will contain only the marked edges of block one. To prove this claim,
observe that changing the length of the edge e;; by perturbing one of its
endpoints can also change the length of only the remaining » —2 candidate
edges that are incident with the perturbed point. This is of no consequence,



WORST-CASE GREEDY MATCHINGS IN UNIT d-CUBE 797

however, since the order of marked edges has been retained by the perturbation
and since the inclusion of the edge ej; into the matching M’ forces all other
edges incident with the endpoints of ej; to be ineligible for inclusion in M’ for
the remainder of the algorithm. Using an identical argument inductively on the
k blocks proves that the edge e’ is in the matching M’ if and only if e€ M,
which is Property (i).

In the preceding section, we noted that the ordering ¢’ produced the matching
M regardless of the order of the set of unmarked edges of the o}, where
1=i=k. Since our perturbation retains the order of marked edges of o', we
see that this property is preserved. In other words, arbitrarily reordering the.
unmarked edges of each ¢ after carrying out the perturbation still produces
the matching M'. Since ordering the edges of the complete graph on the
perturbed point set S’ can produce a list with ties occurring only among un-
marked edges (we have perturbed the length of each marked edge so that no
ties amongst the marked edges remain), we see that the total weight of any
greedy matching of S’ equals L,(M"). Property (ii) is a consequence of this
fact.

To show that Property (iii) is satisfied, we represent the difference in total
weights of M and M’ by

Kk m(o)

Lo(M)—Lo (M) =2 2 {leg"—lej} (8.5)

i=1 j=1

The first sum is over blocks, and the second is over marked edges of the I’th
block. That the perturbation parameter 8(e) can be chosen so that Property
(iii) holds is immediate from this representation because, as 8(e) —0, we have
that |e’;| — |e;;|. For an explicit choice of 8(¢) for a given e that satisfies Property
(iii) of Lemma 7.1, one can consult Snyder [11].

This concludes the proof of Lemma 7.1, which makes brief the proof of
Theorem 2 in the next section. n

9. A WORST-CASE EQUIVALENCE OF GREEDY MATCHINGS

We now commence with the proof of Theorem 2, which is made simple by
Lemma 7.1. We first define S = {x, x5, . . . , X} to be a set of n points in {0, 1]¢
having a greedy matching M of total weight L,(M)=p,(n) — €, for €>0. Let
S’ be a perturbation of S, and let o’ and M’ be an ordering of the edges of the
complete graph on S’ and the greedy matching obtained by using this ordering,
respectively, such that properties (i)—(iii) of Lemma 7.1 are satisfied.

For convenience, we recall the definition of g,(n):

fg(n)= sup min{L.(g):G isa greedy matching of V, }. 9.1)
e

Now, by Property (ii) of Lemma 7.1, by §’ we have exhibited a set of n points
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in [0, 1]¢ whose minimum-weight greedy matching is of total weight L.(M"),
s0, by the definition of g,(n), we have that L,(M')=g,(n). Since M and M’
satisfy Property (iii) of Lemma 7.1, we are guaranteed that

0= L (M)~ L (M)=py(n)—e—Lo(M)<e¢ (9.2)

hence, we obtain
pu(n) — 26 < fy(n) 9.3)

for all n = 1. Since this inequality is true for all € >0 and since g,(n) is majorized
by ps(n), the two sequences must be equal for all n=1, and the theorem is
proved. n

10. CONCLUSIONS

The asymptotic result given in Theorem 1 combined with the result of Theo-
rem 2 raises some interesting issues concerning the effectiveness of the greedy
heuristic for matchings. First recall the bound of Reingold and Tarjan [10],
namely, if L(GM) and L(M*) are the weights of a greedy matching and a
minimal matching of n points in the plane, respectively, where 7 is even, then

lﬂlsﬁnlogzl.s —1. (101)
L(M*) 3
In view of (10.1) it is natural to suspect that the greedy algorithm is grossly
inefficient. Perhaps we now have reasons to reconsider.

We note first that in addition to establishing the bound of Inequality (10.1),
Reingold and Tarjan [10] constructed a collinear configuration of points that
attained the worst-case ratio expressed by the right-hand side of (10.1). This
example point configuration also gives us the ratio of Inequality (10.1) if we
pit the worst-case greedy matching algorithm that we have associated with p,
against the optimal greedy algorithm that we have associated with g,. Theorem
2 tells us that the discrepancy expressed by respectively exchanging p,(n) and
Pe(n) for L(GM) and L(M*) in (10.1) does not exist in the worst case.

We also note that the following theorem of Snyder [11], which is the analog
of Theorem 1 for minimal matchings, holds for the sequence

Pm(n) = sup min{ 2 |e|*: M is a matching of V,,}. (10.2)
Vl,,c[o,ﬂd M LesM
Val=n

Theorem. there exists a constant By, depending on the dimension d =2 and the
edge-weighting function w(e) = |e|®, where 0 < a<d, such that as n —,

Pm(n) ~ .an(d_a)id- (10.3)
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Using Theorem 1 and this theorem along with bounds on the weights of
worst-case minimal and greedy matchings in Avis [1], Supowit et al. [13], and
Iri et al. {7], one can observe that the ratio of worst-case greedy to worst-case
minimal matchings is a constant as n-»%, and this constant is at most two
Snyder [11].

Hence, in the worst case, in which our matchings are of sufficiently great
weight, the greedy algorithm turns out to be equivalent to any minimal matching
algorithm, up to a constant factor. This is a reflection of the fact that for
Euclidean matchings in bounded regions such as the unit cube, the example of
Reingold and Tarjan [10] has a greedy matching that is bounded in weight and
a minimal matching whose weight goes to zero as n— . In other words, the
example of Reingold and Tarjan is not necessarily one for which the greedy
algorithm performs poorly, but it is one for which the weight of a minimal
matching is unusually small.

For this reason, Avis [1] has argued that a more reasonable measure of
relative performance of matching algorithms in the context of applications such
as mechanical plotters is the absolute difference L(GM) — L(M*), since this
quantity is proportional to the wasted movement of the pen while it is in the
“up” position.

Our worst-case scenarios and the example of Reingold and Tarjan [10] repre-
sent different ends of the spectrum in terms of the total weight of the heuristic
matching obtained using the greedy algorithm. Because of the similarity of our
worst-case growth rate to the probabilistic growth rate of Avis et al. [3], it
appears that, except for under unusual circumstances, we can expect the greedy
algorithm to perform relatively well. It is an open problem to determine exactly
what these circumstances are.

Another open problem that has received a great deal of attention is the
determination of constants like B, and By. Although our methods do not lead
us down this path, we do note that Theorem 2 gives us a concise necessary
condition for a worst-case point configuration for the optimal greedy algorithm:
If any set of n points attains the worst-case weight of a greedy matching using
an optimal greedy algorithm, then it must produce greedy matchings of identical
weight, regardless of how ties are broken. This easily investigated condition
may be of assistance in determining worst-case arrangements of points.
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