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Kalman Filtering of Generalized Vasicek Term
Structure Models

Simon H. Babbs and K. Ben Nowman*

Abstract

We present a subclass of Langetieg’s (1980) linear Gaussian models of the term structure.
The bond price is derived in terms of a finite set of state variables with correlated innova-
tions. The subclass contains a reformulation of the double-decay model of Beaglehole and
Tenney (1991), enabling us to clarify interpretation of their parameters. We apply Kalman
filtering to a state space formulation of the model, allowing measurement errors in the data.
One-, two-, and three-factor models are estimated on U.S. data from 1987-1996 and the
results indicate the subclass of models can fit the U.S. term structure.

I. Introduction

Since the mid-1980s, there has been a plethora of “arbitrage-based” models
of the term structure of interest rates. Such models take the observed current term
structure as given, and seek to price interest rate derivative securities by arbitrage
alone, based on assumptions concerning the future dynamics of the term structure.
Arbitrage-based models are able to leave arbitrary the market prices of risk while
taking any initial term structure as given. The drifts of the state variables, under
the objective probabilities, depend on the market prices of risk, and are therefore
left totally unspecified. Clearly, these features make econometric investigation
of arbitrage-based models problematic, whether to estimate their parameters or
even to examine their plausibility. Moreover, in seeking to mount an econometric
investigation of the realism of a model, it would be natural to enquire whether
the initial term structure might plausibly be explained by the model rather than
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treating the term structure at an arbitrarily chosen start date as a pre-specified
functional parameter.

One obvious way to address this situation is by econometric analysis of
“equilibrium-based analogues” of arbitrage-based models. We use the term equili-
brium-based to identify versions of the models in which market prices of risk are
(directly or indirectly) given, and the instantaneous spot interest rate depends ex-
plicitly upon the state variables, thus determining the initial term structure en-
dogenously within the model. We define the term analogues to mean that the
equilibrium-based version can be described in terms of a set of state variables
whose risk-adjusted probability law is identical with those of the state variables
of the arbitrage-based version. In addition, the two versions possess an identical
equation to link the initial term structure to the term structure at a subsequent date
via the evolution of the state variables over the intervening period.

In this paper, we consider a subclass of the general linear Gaussian model
of the term structure, which goes back to Langetieg (1980). This class of models
assumes that the absolute volatility of rates is independent of the level of rates,
contrary to Chan, Karolyi, Longstaff, and Sanders (1992) who found a signif-
icant dependence for the U.S. with absolute volatility proportional to ¥ with
~ = 1.5 using monthly data during 1964-1989. Their sample period included
the exceptional 1979-1982 period (c.f., Nowman (1997), who also estimated the
general equation in Chan et al., for both the U.S. and U.K.). Applying Nowman
(1997) to U.S. monthly Eurocurrency data during the sample period April 1987—
December 1996 to be used in our empirical work reported below gives an estimate
of v = 0.287 (c.f., Nowman (1998)). This provides tentative encouragement for
trying the independence assumption; indeed our empirical results below indicate
the linear Gaussian model provides a good description of the U.S. curve. Aware-
ness that the absolute volatility of interest rates has exhibited limited dependence
upon the level of rates since the mid-1980s has increased practitioner interest in
Gaussian models.

Models in this class have been investigated by, for example, Langetieg (1980),
Hull and White (1990), Beaglehole and Tenney (1991), and Babbs (1990), (1993).
The subclass we consider here is distinguished by the characteristic that the drift
of each state variable depends on no other state variable.! As detailed consid-
eration of Langetieg (1980) readily makes clear, this drift restriction makes the
model particularly analytically tractable,? even if the coefficients are time varying
and innovations in the state variables are correlated,’ in that pure discount bond
prices can be related to the state variables by a closed-form formula. Such a for-
mula is a considerable computational benefit possessed by our subclass of models.

IStrictly speaking, the assumption of deterministic market prices of risk restricts us further to what
Langetieg termed the “multivariate elastic random walk model.”

2This case corresponds to that in which the matrix B in Langetieg (1980) is diagonal. His matrix
W, introduced on p. 78 and which plays a major part in the subsequent analysis, is then also diagonal,
with the jth entry satisfying ¥;(v — t) = B;(v)¥; (v — t), where B; signifies the jth entry on the diagonal
of B.

3This contrasts with multi-factor CIR models for which there is no closed-form formula for the
bond price unless innovations in the state variables are uncorrelated. In practice, we feel that this
confers additional flexibility on Gaussian models.
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We confirm that the arbitrage-based version of models in this subclass is precisely
the multifactor “Generalized Vasicek” family discussed by Babbs (1993).

Superficially, it appears that the Generalized Vasicek subclass involves a fur-
ther substantive restriction, namely that each state variable is mean reverting to
zero rather than to an arbitrary function of time, and that the weight of each state
variable in determining r is minus unity rather than an arbitrary function of time. It
turns out however, that, except in very restricted cases, all linear Gaussian models
can be recast in our form, so long as the state variables are unobservable (rather
than, for instance, identified exactly* with spot rates of various maturities as in
Duffie and Kan (1996)). This has the advantage of reducing the number of coef-
ficient functions in the model by twice the number of state variables.

It appears that our formulation excludes the “double decay” model of Bea-
glehole and Tenney (1991) (and an equivalent model of Hull and White (1994)) in
which the short rate reverts towards a level that itself follows a mean-reverting ran-
dom walk about a constant long-run average. However, not only can those mod-
els be re-expressed as special cases of our model, but also our formulation may
be preferable in that the common intuitive interpretation of the mean-reversion
speeds turns out to be illusory!

Recent empirical testing of term structure models has concentrated on the
dynamic implications of the models using time-series data. Recent examples in-
clude Chan, Karolyi, Longstaff, and Sanders (1992), Broze, Scaillet, and Zakoian
(1995), Brenner, Harjes, and Kroner (1996), Nowman (1997), (1998), and An-
dersen and Lund (1997). An alternative approach has concentrated on the cross-
sectional implications of term structure models: examples include Brown and Dy-
bvig (1986), Brown and Schaefer (1994), and De Munnik and Schotman (1994).
Both the above approaches suffer from the disadvantage that they do not use the
full information available from the yield curve obtained over time and across ma-
turities in the estimation procedure. Recently, approaches providing a solution to
this have been put forward by Gibbons and Ramaswamy (1993), Chen and Scott
(1993), and Pearson and Sun (1994). A drawback of Pearson and Sun (1994) is
that they assumed the two data points on the yield curve are measured without er-
ror while Chen and Scott (1993) assumed some bond prices are observed without
error (though allowing for measurement errors in others).

The application of Kalman filtering methods in the estimation of term struc-
ture models using cross-sectional/time-series data, has been investigated by Pen-
nacchi (1991), Lund (1994), (1997), Chen and Scott (1995), Duan and Simonato
(1995), Geyer and Pichler (1996), Ball and Torous (1996), and Jegadeesh and
Pennacchi (1996) (see also Harvey (1989) for an extensive treatment of Kalman
filtering in econometrics). The use of the state space model formulation of term
structure models and the application of the Kalman filter has the advantage that
it allows the underlying state variables to be handled correctly as unobservable
variables compared to using a short-term rate as a proxy (e.g., Chan et al. (1992),
Nowman (1997), (1998)). In this paper, we consider the application of Kalman fil-
tering methods to one-, two-, and three-factor versions of our subclass of models
using U.S. data.

4We view such an identification as undesirable for our purposes, since it would presuppose that the
spot rate concerned could be observed without measurement error (see, for example, Lund (1994)).
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The paper is organized as follows. In Section II, we present our subclass
of models; present the general formula for the bond price; establish the analogue
relationship between the equilibrium-based model and its arbitrage-based version;
and discuss the relationship to the models of Langetieg (1980) and Beaglehole
and Tenney (1991). The bond price for the general constant parameter case is
then given in Section III. Section IV discusses the state space formulation of the
model and the estimation of the parameters. The data and empirical analysis are
presented in Section V. Some conclusions are offered in Section VI.

II. Subclass of Models

A possible description of the instantaneous spot interest rate, r, is
J
M M0 = p) =Y X0,
j=1

where p is some deterministic process (i.e., mostly a function of time), and X; (z),
..., X;(¢) represent the current effect of J streams of economic “news” whose
impact dies away exponentially,

@ dXj = =§Xjdt+c;dW;,
where each ¢ and c; are deterministic, and Wy, ..., W; are standard Brownian
motions with deterministic instantaneous correlation processes, pj:j, k=1,...,J.
Equivalently,’
Q
3) dX; = —&Xdt+Y  kigdZ, (Q<J),
g=1
where Zi, ..., Zp are independent standard Brownian motions, and
Q
) D Kigkig = PRCCr.
g=1

If we assume that the market price of risk, ,, attaching to each Z,, is determinis-
tic, the resulting® formula for the price B(M, ¢) at time ¢ of unit nominal of a pure
discount bond maturing at time M is

M 2 M
) B(M,t) = exp —/ ,u(u)du—Z/ 04(u)oq(M,u)
t =17t

5The possibility Q < J is realized if the matrix of the instantaneous correlations pji is at all times
of less than full rank. Babbs (1993) illustrates the potential usefulness of allowing Q < J in the
arbitrage-based version of Generalized Vasicek models.

6This formula can be derived in the manner of Cox, Ingersoll, and Ross (1985) by making as-
sumptions on technology and preferences, and restricting information to that generated by the state
variables. Alternatively, it can be derived under arbitrary information as part of an incomplete markets
equilibrium, using the ideas in Babbs and Selby (1983); Babbs and Nowman (1997) provide details in
an earlier version of this paper.
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1 G;(M
—iaq(M u du+;————( G),(t) ()X,(t) ,

(6a) where Gj(1) = /0 t exp {— /0 ’ fj(s)ds} du

J
(6b) and where 0,(M,f) = Z%T_t)ﬂgﬁm(t)
j=1 J

represents the component of the (proportional) volatility of B(M, ¢) attributable to
Z,. Dividing (5) through by the expressions that equation gives for B(M, 0) and
B(t,0), and rearranging, we obtain

(7) BM,1) = B(?t400 ——Z/ (M, u) — o2(t, u)du

+ Z {G(M) - G} v;(1) ¢

1_

®) where Yi(f) = Z / Aja(1) yz;,

andeach dZ; = q(u)dt+qu

defines a driftless standard Brownian motion under risk-neutral probabilities. Equa-
tions (7) and (8) hold also under the arbitrage-based version of the Generalized
Vasicek family of models, as discussed in Babbs (1993), being precisely equiv-
alent to his equations (9)7 and (7), respectively. This establishes the desired
analogue relationship between the equilibrium-based model in this paper and the
arbitrage-based version.

Our class of models is obviously a subclass of the general linear Gaussian
model described by Langetieg (1980) in which the dynamics of the state variables
can be expressed as

J Q
) dx; = (a,- + ZBjkxk> i+ kjgdZ,,

k=1 g=1

7Equations (5a) and (9) in the published text of Babbs (1993) contained some typographical errors.
His equation (9) should read,

B(M,) = ‘j,f("fo) exp{Z{@(M) Gi(1)} (Y,o>+zz / G.(u».q(u)A,q(u)du)

i=1 ¢g=1

J J
— 3 33 166 - GG} Z / A.-q<u>qu(u)du} :
i=1 j=1 q=1 0




120  Journal of Financial and Quantitative Analysis

and the short rate is a general linear combination of the state variables,
J
(10) r = wo+ijXj.
j=1

Our subclass restricts the off-diagonal coefficient functions, By, to zero. Given
this substantive restriction, the remaining restrictions (dropping the levels coeffi-
cient functions, a;, and setting the weighting functions, wj, identically to unity)
are apparent, not real, so long as the weighting functions, w;, do not vanish. To
see this, we define the alternative set of state variables,

an %0 = -w [Xj(t)—- /Otaj(u)exp{ /utBj,-(s)ds}du],

and define

(12) 1(t)

wo(t) + Z:;Wj(t) /Otaj(u) exp {/ut Bjj(s)a’s} du,

enabling our formulation to be recovered.® Thus, having opted to exclude off-
diagonal entries from the matrix B, the set of remaining parameter functions
can be reduced from the 3J + 1 functions (excluding the diffusion coefficients),
Wo,W1,...,Wy,ai,...,a;,B11,..., By, to the set of J+ 1 functions, y, &1, ..., ;.

At first glance, our restriction that off-diagonal By be zero appears to exclude
the double-decay model of Beaglehole and Tenney (1991),

(13a) dr = &(y—r)dt+kndZy,
(13b) dy = fz(m - y)dt + Kkp1dZy + Iﬁ:zdez,

since identifying X; directly with » and X, with y leads to X, appearing in the drift
coefficient of X;. Fortunately, Beaglehole and Tenney’s model can be written in
our form,’ i.e., in terms of (1) and (3). Moreover, given constant mean-reversion
speeds, if m is a constant, then p is also constant at precisely the same level. We
note in passing that the intuitive interpretation of ¢; as the speed of mean reversion
of the short rate, r, and &; as the speed of mean reversion of the stochastic level, y,
towards which r is tending, is built on sand since, assuming that y is unobservable,
(13a)—(13b) are observationally equivalent to a model in which &;, &, take the
same values, but have their roles interchanged!'°

8For a detailed derivation, see Babbs and Nowman (1997).

9Except in the case where &, — &; vanishes. We shall neglect the case £, = 0, which, as casual
inspection of (13a) reveals, corresponds to the degenerate and non-stationary model in which r follows
a driftless random walk. Babbs and Nowman (1997) provide a detailed proof.

10Except under the constant parameters non-stationary case where &, vanishes, & # 0. The
equivalent model is obtained by defining the new unobservable level,

and rewriting the model in the form,
dr = fz(y* - r)dt+l€,11dzl,
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lll.  The Constant Parameter Case

In the case where the mean-reversion level u, the mean-reversion speeds ¢;,
the diffusion coefficients kj,;, and the market price of risk processes 6, are all
constant, the key pricing formula (6) for a pure discount bond evaluates to

(14)  BM,H) = exp{ —7 |R(c0)— ZH(g,TX(t ,
Jj=1
g ! k; 1 & ! K i
(15a) with R(co0) = /L+29q2f—zz Z Sl
g=1 j=1 ¥ g=1 \ j=1
4 o J
(15b) wr) = ZH(&T) Ze AP o
)

=1 g=1 i=1

J J 4
1 RigKjq
S H(r g -
=1 j=1 g=1 15
(15¢) where 7 = M —1,
1—e*
(15d) and H(x) = .

Note from the form of (14) that the spot rate from ¢ to M depends upon calendar
time only through the state variables, X;(z), X»(¢), being otherwise a function of
residual term to maturity, M — ¢.

IV. The State Space Model and the Kalman Filter

In this section, we are concerned with one-, two-, and three-factor versions
of the constant parameter case of our subclass of models. We derive the state
space model formulation of the term structure model and present the Kalman
filter algorithm. This is used in the evaluation of the exact likelihood function of
the observed interest rates and the computation of the unobserved state variables
and parameters of the model. The theoretical yield curve is given by

log B(t+T,t
(16)  R(t+7,1) = ——"—g——(,rL) = Aol(r) — A(T)'X (),
where Ao(7) = R(00) — w(7) and Ay (1) = H(7) is aJ x 1 vector (where the su-
perscript denotes transpose). The scalar Ag(7) and the vector A;(7) are functions

dy* = &(m—y*)dt+ k3dZy + K3,dZp,
where k3, = (1 — €—’-) K11+ g Ko Ky = ﬁ—lnzz.
2

& &
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of the time to maturity 7 and the parameters of the model. We have N observed in-
terest rates at time #, fork=1,2, ..., n, which are denoted by Ry = (Rik, - - - , Rni),
where Ry, = — log B(t, + 71, 1) [ Ti.

We assume that measurement errors in interest rates are additive and nor-
mally distributed. The measurement equation is then given by

an Ry = d)+Z(¥)Xi+e; e ~ N(0,H(y)),

where 1 contains the unknown parameters of the model including the parame-
ters from the distribution of the measurement errors. The ith row of the matrices
d(N x 1) and Z(N x J) are given by Ao(7; ;%) and —A;(7; ;9)’, respectively. The
error terms €; are measurement errors to allow for noise in the sampling process
of the data. The variance-covariance matrix of the measurement errors can take
various forms. Typically, it is assumed in empirical work that either H=h*I or we
have maturity-specific variances H = Ay, . . ., hy along the diagonal. The first as-
sumption has the advantage of reducing the computational burden in the Kalman
filter (see below). But as Geyer and Pichler (1996) point out, having maturity-
specific variances takes into consideration that trading activity is going to vary
across maturities and, therefore, the bid-ask spread will differ across maturities.

The transition equation is the exact discrete-time distribution of the state
variables obtained from the solution of (2) (see Bergstrom (1984) and Lund (1994))
and is a var(1) model,

(18) Xe = () Xi—1 +

where (1)) =e~¢ (#=%-1)_ The error term 7, is normally distributed with E[r;] =
0 and cov[m] = V(v)), where V is given in Bergstrom (1984), Theorem 3, and
Lund (1994). The measurement and transition equations represent the state space
formulation of our model. We now present the Kalman filter algorithm and the
exact likelihood function.

LetX, k/k—1 and X denote the optimal estimator (in a mean square error sense,
MSE) of the unknown state vector X;, based on the available information (i.e., the
observed interest rates) up to time #;_; and #, respectively. The optimal estimator
is the conditional mean of Xy in both cases, denoted E;—[-] and E[-], respectively.
The prediction step is given by

(19) )?k/k—l = Ea(X) = X,

with mean square error (MSE) matrix

(20) -1 = Ex [(Xk - )?k/k—l) (Xk —)?k/k—l)/]
= @Ek_lél +V.

In the update step, the additional information given by Ry is used to obtain a more
precise estimator of X,

@1) Xe = EX) = Xipor+Zip—1Z Fy 'viy
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—~ —~ !
22) S = E [(Xk—xk) (Xk—xk)]
= Zijk—1 — Sip1Z' F{ 2

-1
- (2,;/;_1 + Z'H-lz) ,

(23) where v = Ry— (d+zf(k/k_1),
24) and F, = ZZ‘k/k_lZ'+H,

(c.f., Harvey (1989), Ch. 3). This new estimate of X; is called the filtered esti-
mate. The aim of the Kalman filter is to obtain information about X; from the
observed interest rates. The Kalman filter also has the advantage of being able
to evaluate the likelihood function using the prediction error decomposition. The
log-likelihood function is given by (apart from a constant)

1« I~
(25) logL(Ry,...,Ry;%) = —EZlog |Fie| — 3 Zv}ch W,
k=1 k=1

where v, and F; are given by equations (23) and (24). We can also use the for-
mulas of Harvey (1989), p. 108, for computing the inverse and determinant of Fy
given by

-1
Flo= BT -mT'Z(S  +7H7'Z) ZH,
IFl = 1H Sl | Sk +ZH72).

In the case of H = h*I, these formulas can be simplified and the computational
burden reduced, which is especially important if the number of maturities used in
the estimation is large. Finally, the Kalman filter recursions are started by setting
the initial state vector Xy and covariance matrix X to their unconditional mean
and covariance.

V. Empirical Results
A. Data Description

The data used in our empirical work consist of constructed zero coupon
yields obtained from interbank interest rates. In particular, the raw data include
money market rates with maturities including the overnight rate, one-, three-, and
six-month rates, Euro dollar futures, and swap rates with two—five, seven, and
10 years to maturity obtained from Datastream. The interest rates are sampled
daily from April 1987 to December 1996. However, we use weekly data on a
Wednesday in the empirical analysis following Lund (1997) to avoid missing ob-
servations and week-day effects. We have a total of 507 weekly observation dates
and at each date we have N-interest rates. The following maturities: three and six
months, one, two, three, five, seven, and 10 years were chosen (N = 8). Table 1
reports the summary statistics.
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TABLE 1
Summary Statistics: U.S. Data
April 1987-Dec. 1996

r(f) Mean Stan. Dev.
3-Month 0.0617 0.0196
6-Month 0.0623 0.0192
1-Year 0.0645 0.0185
2-Year 0.0700 0.0171
3-Year 0.0725 0.0159
5-Year 0.0762 0.0142
7-Year 0.0787 0.0135
10-Year 0.0809 0.0125

B. Estimation Results

The application of the Kalman filter to one-, two-, and three-factor models
to U.S. data are now discussed. The estimation results are presented in Table 2,
which contains the parameter estimates of 1, &, k4, 6,4, and the estimated standard
deviations of the measurement errors (/21 . . . , v/hy). The table also contains the
BIC Information Criterion and log-likelihood value.

In the one-, two-, and three-factor models, the mean reversions §; and dif-
fusion parameters c; are significant and have plausible values. In the two- and
three-factor models, the market prices of risk 6, are not significant, whereas they
are in the one-factor model. The long-run average rate y is significant in the
one- and two-factor models and has plausible values. The log-likelihood value in-
creases strongly as the number of factors is increased. The standard deviations for
the measurement errors naturally decrease as the number of factors is increased.

The estimated standard deviations for the measurement errors are much larger
for the one-factor model. In particular, in the one-factor model, these standard
deviations are 36 basis points for the three-month rate, 22 basis points for the six-
month rate, four basis points for the one-year rate, 37 basis points for the two-year
rate, 42 basis points for the three-year rate, 52 basis points for the five-year rate,
62 basis points for the seven-year rate, and 73 basis points for the 10-year rate.
The standard deviations are much smaller in the multi-factor models. As we move
from the two-factor model to the three-factor model, there is a smaller decrease
in the standard deviations than when we moved from the one-factor model. In
particular, in the two-factor model, there are 17 basis points for the three-month
rate, four basis points for the six-month rate, 17 basis points for the one-year rate,
28 basis points for the two-year rate, 19 basis points for the three-year rate, nine
basis points for the five-year rate, less than one basis point for the seven-year rate,
and eight basis points for the 10-year rate. This compares to a range of less than
one basis point to 23 basis points for the three-factor model in these maturities.

Our measurement errors compare very favorably to recent studies by, for
example, Chen and Scott (1995) and Geyer and Pichler (1996), who both estimate
the multi-factor CIR model on U.S. data. In particular, Chen and Scott (1995),
Table 2, report, for weekly data over the period 1980-1988, measurement errors
for the one-factor model of 40 basis points for the three-month rate, zero basis
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TABLE 2
Estimates of Generalized Vasicek Models: 1987-1996

&1
&2
&3
C1
C2
C3

P12

D
n

>

>

EHRIIH IR ET

One-Factor Two-Factor Three-Factor
0.1908 0.5529 0.6553
(0.0017) (0.0108) (0.0452)

0.0652 0.0705
(0.0120) (0.0010)
0.0525
(0.0094)
0.0132 0.0195 0.0214
(0.0004) (0.0023) (0.0018)
0.0186 0.0189
(0.0018) (0.0007)
0.0163
(0.0016)
—0.8360 —0.9394
(0.0440) (0.0094)
0.8753
(0.1725)
—0.9200
(0.0190)
0.0594 0.0728 0.0701
(0.0024) (0.0168) (1.8607)
0.6483 —0.0849 0.1582
0.0192) (1.0361) (14.1842)
0.0963 0.0961
(1.2321) (70.5551)
0.0173
(0.7276)
0.0036 0.0017 0.0010
(0.0001) (<0.0001) (<0.0001)
0.0022 0.0004 0.0003
(<0.0001) (0.0001) (<0.0001)
0.0004 0.0017 0.0015
(0.0001) (<0.0001) (<0.0001)
0.0037 0.0028 0.0023
(<0.0001) (<0.0001) (0.0001)
0.0042 0.0019 0.0016
(<0.0001) (<0.0001) (<0.0001)
0.0052 0.0009 0.0008
(0.0001) (<0.0001) (<0.0001)
0.0062 0.0001 0.0001
(0.0001) (0.0001) (<0.0001)
0.0073 0.0008 0.0006
(0.0001) (<0.0001) (<0.0001)
20494 24397 30309

—40914 —48695 —60518
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points for the six-month rate, 104 basis points for the five-year rate, and 122 basis
points for a long-term bond rate. In the two-factor model they report 35 basis
points for the three-month rate, zero basis points for the six-month rate, 33 basis
points for the five-year rate, and seven basis points for the long-term bond rate.

The mean reversion parameters imply mean half-lives for the interest rate
process (i.e., the expected time for the process to return halfway to its long-term
mean, defined as — In(0.5) /¢;). In the two-factor model, the mean half-lives are
1.3 years for the first factor and 10.6 years for the second factor. In the three-
factor model, the mean half-lives for the three factors are 1.1 years, 9.8 years, and
13.2 years. The correlation coefficient in the two-factor model is —84% and sig-
nificant. Calibration of an arbitrage-free analogue of this model to market prices
of interest rate caps and swaptions yielded similar large values for the correlation
parameter. In the three-factor model, the correlations are —94% between factors
one and two, 87% between factors one and three, and —92% between factors two
and three. The log-likelihood values for the one-factor model are 20494, for the
two-factor model 24397, and for the three-factor model 30309. Based on the BIC
Information Criterion (BIC), we find that moving from a one-factor to the two-
factor model, the BIC improves by 19%, and moving from the two-factor to the
three-factor model, the BIC improves by 24%. Based on the BIC rule, the three-
factor model outperforms the two-factor model. The likelihood ratio test of the
one-factor vs. the two-factor model gives a value of 7806, and one can reject the
null hypothesis of a one-factor model at the 5% significance level. The likelihood
ratio test of the two-factor vs. the three-factor model gives a value of 11824, and
one can reject the null hypothesis of a two-factor model at the 5% significance
level.

We also look at the factor loadings for the two- and three-factor models as
a function of maturity that should help determine the nature of the factors cal-
culated by the Kalman filter. Litterman and Scheinkman (1991), using principal
components analysis, investigated a number of U.S. yields and identified three
factors that they interpreted as changes in level, steepness, and curvature. Fac-
tor loadings correspond to orthogonal Brownian motions whereas innovations in
our state variables are correlated. In the two-factor model, we, therefore, choose
to produce factor loadings by re-expressing W; and W, in terms of uncorrelated
Brownian motions Y; and Y, in such a way that dY, does not impact the term
structure at approximately a particular maturity 7*. Litterman and Scheinkman
(1991), Table 2, find that factor two has approximately zero impact on the term
structure at the five-year maturity and this is imposed here for comparison with
their graphs (7* = 5). The factor loadings are given below for factor one, v;(7),
and factor two, 72(7),

H(&7)c1fon + H(&7)c2Bay
anHic1 — apHac,  anHacr — anHicr’

—H(flT)Clecz _ H(sz)Czchl
anHici — apHyey  anHacr — apHicy’

(26) n(r) =

@n (1) =

where f = \/lecf +2pH\Hycr00 + H2c3
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Hi = H(gT);
o _ H16‘1p+H26‘2 - _ o Hicy + Hacop .o — 5
21 = T2 n = 21 Hieip+ Hyes = 5.

Figure 1 plots the factor loadings of the two-factor model as a function of
maturity. The first factor’s impact on yield changes has an increasing positive
effect on the maturities up to four years, then has an equal impact on the remaining
maturities. We conclude, as Litterman and Scheinkman identified, that the first
factor could represent a level factor. The second factor has a strong influence
on short-term rates up to five years, lowers them, and then has a positive impact
on longer maturities by raising them. We conclude that the second factor could
represent a steepness factor as identified by Litterman and Scheinkman. Overall,
the model generates factor loadings in line with their results. Using a similar
approach for the three-factor model, we can obtain factor loadings such that the
second factor loadings disappear at around five years, the third factor loading at
around two years and at around 12 years, in keeping with the results obtained by
Litterman and Scheinkman. Figure 2 plots the factor loadings for the three-factor
model. Compared to the two-factor model, the first loading is monotonically
declining rather than humped; the second loading is similar to that obtained in the
two-factor model, and finally the third loading has a negligible effect.

FIGURE 1
Factor Loadings of the Two-Factor Model
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FIGURE 2
Factor Loadings of the Three-Factor Model
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VI. Conclusions

In this paper, we have been concerned with a subclass of the general linear
Gaussian model of Langetieg (1980). We have confirmed that the arbitrage-based
version of models in this subclass is precisely the multifactor “Generalized Va-
sicek” family discussed by Babbs (1993). The subclass has the advantage of
reducing the number of coefficient functions in the model by twice the num-
ber of state variables so long as the state variables are unobservable. We have
shown also that the double-decay model of Beaglehole and Tenney (1991) can
be re-expressed as a special case of our model, and that our formulation may be
preferable since the obvious intuitive interpretation of the mean-reversion speeds
is shown to be, in fact, illusory! For our empirical work, the model is expressed
in a state space formulation that allows us to take into account both the cross-
sectional and time-series restrictions on the data and that the observed yield curve
contains measurement errors. Estimates are obtained for one-, two-, and three-
factor models using U.S. data during the period 1987-1996. We find overall that,
in formal statistical terms, the two-factor model is rejected with the three-factor
model as the alternative hypothesis, but the measurement errors of the two-factor
indicates that it frequently performs as well as the three-factor model.
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