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Abstract

Properties of three well-known and frequently applied first-order models
for modelling and forecasting volatility in financial series such as stock and
exchange rate returns are considered. These are the standard Generalized
Autoregressive Conditional Heteroskedasticity (GARCH), the Exponential
GARCH and the Autoregressive Stochastic Volatility model. The focus is
on finding out how well these models are able to reproduce characteristic
features of such series, also called stylized facts. These include high kurto-
sis and a rather low-starting and slowly decaying autocorrelation function
of the squared or absolute-valued observations. Another stylized fact is
that the autocorrelations of absolute-valued returns raised to a positive
power are maximized when this power equals unity. A number of results
for moments of the three models are given as well as the autocorrelation
function of squared observations or, when available, the autocorrelation
function of the absolute-valued observations raised to a positive power.
These results make it possible to consider kurtosis-autocorrelation combi-
nations that can be reproduced with these models and compare them with
ones that have been estimated from financial time series. The ability of
the models to reproduce the stylized fact that the autocorrelations of pow-
ers of absolute-valued observations are maximized when the power equals
one is discussed as well. Finally, it is pointed out that none of these basic
models can generate realizations with a skewed marginal distribution. Not
unexpectedly, a conclusion that emerges from these considerations, largely
based on results on the moment structure of these models, is that none
of the models dominates the others when it comes to reproducing stylized
facts in typical financial time series.
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1 Introduction

Modelling volatility of financial series such as stock returns has become common
practice, as the demand for volatility forecasts has increased. Various types
of models such as models of autoregressive conditional heteroskedasticity and
stochastic volatility models have been applied for the purpose. A practitioner can
thus choose between a variety of models. A popular way of comparing volatility
models has been to estimate a number of models by maximum likelihood and
observe which one has the highest log-likelihood value; see Shephard (1996) for
an example. If the models under comparison do not have the same number
of parameters, one may want to favour parsimony and apply a suitable model
selection criterion, such as AIC or BIC, for the purpose. It is also possible to
choose a model after actually applying it to forecasting. Poon & Granger (2003)
provide a survey of papers that contain results of such comparisons.

Another way of comparing models is to submit estimated models to misspec-
ification tests and see how well they pass the tests. This also paves the way
for building models within the same family of models. One can extend a failed
model by estimating the alternative it has been tested against and subject that
model to new misspecification tests. Such tests have been derived for generalized
autoregressive conditional heteroskedasticity (GARCH) models; see, for example,
Engle & Ng (1993), Chu (1995), Lin & Yang (1999), and Lundbergh & Teräsvirta
(2002). Similar devices for the exponential GARCH (EGARCH) model of Nelson
(1991) who already suggested such tests, are presented in Malmsten (2004). In
addition, nonnested models can be tested against each other. Kim, Shephard
& Chib (1998) considered testing GARCH against the autoregressive stochas-
tic volatility (ARSV) model and Lee & Brorsen (1997) suggested the simulated
likelihood ratio test for choosing between GARCH and EGARCH: for other ap-
proaches see Engle & Ng (1993) and Ling & McAleer (2000). The pseudo-score
test of Chen & Kuan (2002) can be applied to this problem as well. Small sample
properties of some of the available tests for that testing problem are considered in
Malmsten (2004). It should be noted, however, that testing two models against
each other does not necessary lead to a unique choice of a model. Neither model
may be rejected against the other or both may be rejected against each other.
For a discussion of conceptual differences between the model selection and testing
approaches, see Granger, King & White (1995).

The purpose of this paper is to compare volatility models from a rather dif-
ferent angle. Financial time series of sufficiently high frequency such as daily
or weekly or even intradaily stock or exchange rate return series seem to share
a number of characteristic features, sometimes called stylized facts. Granger
& Ding (1995) and Granger, Spear & Ding (2000), among others, pointed out
such features and investigated their presence in financial time series. Given a set
of characteristic features or stylized facts, one may ask the following question:
"Have popular volatility models been parameterized in such a way that they can
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accommodate and explain the most common stylized facts visible in the data?"
Models for which the answer is positive may be viewed as suitable for practical
use. The other parameterizations may be regarded as less useful in practice.

There exists some work towards answering this question. Teräsvirta (1996)
considered the ability of the GARCHmodel to reproduce series with high kurtosis
and, at the same time, positive but low and slowly decreasing autocorrelations of
squared observations. Liesenfeld & Jung (2000) discussed this stylized fact in con-
nection with the ARSV model, whereas Andersson (2001) focussed on the ARSV
model based on the normal inverse Gaussian distribution. Carnero, Peña & Ruiz
(2004) compared the ARSV model and the GARCH model using the kurtosis-
autocorrelation relationship as their benchmark. Bai, Russell & Tiao (2003) also
compared GARCH and ARSV models. The work of Rydén, Teräsvirta & Åsbrink
(1998) on the hidden Markov model for the variance may also be mentioned in
this context. Furthermore, Tse, Zhang & Yu (2004) considered stylized facts
similar to the ones discussed in this paper in the context of hyperbolic diffusions.

Answering the question by using the approach of this paper is only possible in
the case of rather simple models. On the other hand, a vast majority of popular
models such as GARCH, EGARCH and ARSV models used in applications are
first-order models. Higher-order models, although theoretically well-defined, are
rather seldom used in practice. This suggests that restricting the considerations
to simple parameterizations does not render the results useless.

This paper may be viewed as an extension to Teräsvirta (1996) and has the
following contents. The stylized facts are defined in Section 2 and the models are
discussed in Section 3. Section 4 considers the kurtosis-autocorrelation relation-
ship. In Section 5, a stylized fact called the Taylor effect is discussed. In Section 6
the kurtosis-autocorrelation relationship is reconsidered using confidence regions.
A stylized fact that cannot be reproduced by the models under consideration is
briefly mentioned in Section 7, and Section 8 contains conclusions.

2 Stylized facts

The stylized facts to be discussed in this paper are illuminated by Figure 1.
The first panel depicts the return series of the S&P 500 stock index (daily first
differences rt of logarithms of the index; 19261 observations) from 3 January
1928 to 24 April 2001. The marginal distribution of rt appears leptokurtic and a
number of volatility clusters are clearly visible. The volatility models considered
in this study are designed for parameterizing this type of variation. The second
panel shows the autocorrelation function of |rt|m, m = 0.25, 0.5, 0.75, 1 and the
third one the corresponding function for m = 1, 1.25, 1.5, 1.75, 2, for the first 500
lags. It is seen that the first autocorrelations have positive but relatively small
values and that the autocorrelations decay slowly. A similar figure can be found
in Ding, Granger & Engle (1993), but here the time series has been extended to
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cover ten more years from 1992 to 2001.
The first stylized fact illustrated by Figure 1 and typical of a large amount

of return series is the combination of relatively high kurtosis and rather low au-
tocorrelations of |rt|m. In the case of the standard GARCH model, we restrict
ourselves to inspect the combination of kurtosis and the autocorrelations of r2t
because in that case, an analytic expression for the autocorrelation function is
available. The second stylized fact to be considered is the fact that the autocor-
relations as a function of m tend to peak for m = 1. This is the so-called Taylor
effect that has been found in a large number of financial time series; see Granger
& Ding (1995) and Granger et al. (2000). In the GARCH framework, this stylized
fact can only be investigated using analytic expressions when the GARCH model
is the so-called absolute-value GARCH (AVGARCH) model andm = 1 orm = 2.
This is because no analytical expressions for ρ(|rt|

m,|rt−j|
m) exist when m < 2

and the model is the standard GARCH model. For the AVGARCH model, they
are available for both m = 1 and m = 2 but not for non-integer values of m.

Yet another fact discernible in Figure 1 is that the decay rate of the auto-
correlations is very slow, apparently slower than the exponential rate. This has
prompted some investigators to introduce the fractionally integrated GARCH
(FIGARCH) model; see Baillie, Bollerslev & Mikkelsen (1996). In this paper,
this slow decay is not included among the stylized facts under consideration. To
illustrate the reason, we split the S&P 500 return series into 20 subseries of 980
observations each and estimate the autocorrelations ρ(|rt|,|rt−j|), j = 1, ..., 500,
for these subseries. The lowest panel of Figure 1 contains these autocorrelations
for the whole series and the mean of the corresponding autocorrelations of the
20 subseries together with the plus/minus one standard deviation band. It is
seen that the decay of autocorrelations in the subseries on the average is sub-
stantially faster than in the original series and roughly exponential. This lack of
self-similarity in autocorrelations can be taken as evidence against the FIGARCH
model in this particular case, but that is beside the point. (For more discussion,
see Mikosch & Stărică (2004)). We merely want to argue that the very slow decay
rate of the autocorrelations of |rt| or r2t may not necessarily be a feature typical
of series with a couple of thousand observations. Because such series are most
often modelled by one of the standard models of interest in this study, we do not
consider very slow decay of autocorrelations a stylized fact in our discussion.

3 The models and their fourth-moment struc-

ture

3.1 GARCH model

Suppose an error term or an observable variable can be decomposed as follows:
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εt = zth
1/2
t (3.1)

where {zt} is a sequence of independent identically distributed random variables
with zero mean. Furthermore, assume that

ht = α0 +
q∑

j=1

αjε
2
t−j +

p∑
j=1

βjht−j. (3.2)

Equations (3.1) and (3.2) define the standard GARCH(p, q) model of Bollerslev
(1986). Parameter restrictions are required to ensure positiveness of the condi-
tional variance ht in (3.2). Assuming αj � 0, j = 1, ..., q, and βj � 0, j = 1, ..., p,
is sufficient for this. Both necessary and sufficient conditions were derived by
Nelson & Cao (1992). In this paper we shall concentrate on (3.1) with (3.2) as-
suming p = q = 1. This is done for two reasons. First, the GARCH(1,1) model
is by far the most frequently applied GARCH specification. Second, we want to
keep our considerations simple.

The GARCH(1,1) model is covariance stationary if

α1ν2 + β1 < 1 (3.3)

where ν2 = Ez2t < ∞. For the discussion of stylized facts we need moment con-
dition and fourth moments of {εt}. Assuming ν4 = Ez4t < ∞, the unconditional
fourth moment for the GARCH(1,1) model exists if and only if

α2
1ν4 + 2α1β1ν2 + β2

1 < 1. (3.4)

Under (3.4) the kurtosis of εt equals

κ4 =
κ4(zt){1− (α1ν2 + β1)

2}

1− (α2
1ν4 + 2α1β1ν2 + β2

1)
(3.5)

where κ4(zt) = ν4/ν
2
2 is the kurtosis of zt. Assuming normality, one obtains the

following well-known result:

κ4 = 3
1− (α1 + β1)

2

1− (3α2
1 + 2α1β1 + β2

1)
> 3. (3.6)

Furthermore, when (3.4) holds, the autocorrelation function of {ε2t} is defined as
follows:

ρn = (α1ν2 + β1)
n−1α1ν2(1− β2

1 − β1α1ν2)

1− β2
1 − 2β1α1ν2

n ≥ 1. (3.7)

The autocorrelation function of {ε2t} is dominated by an exponential decay from
the first lag with decay rate α1ν2 + β1. Setting ν2 = 1 and ν4 = 3 (normality)
in (3.7) gives the result in Bollerslev (1988). Note that the existence of the
autocorrelation function does depend on the existence of ν4 although (3.7) is not
a function of ν4. The necessary and sufficient conditions for the existence of the
unconditional fourth moments of the GARCH(p,q) process and the expressions
(3.5) and (3.7) are special cases of results in He & Teräsvirta (1999a).
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3.2 EGARCH model

Nelson (1991) who introduced the EGARCH model listed three drawbacks with
the GARCH models. First, the lack of asymmetry in the response of shocks. Sec-
ondly, the GARCH models impose parameter restrictions to ensure positivity of
the conditional variance. Finally, measuring the persistence is difficult. Consider
(3.1) with

ln ht = α0 +
q∑

j=1

(φjzt−j + ψj(|zt−j| − E |zt−j|)) +
p∑

j=1

βj ln ht−j (3.8)

which defines the EGARCH(p,q) model of Nelson (1991). It is seen from (3.8)
that no parameter restrictions are necessary to ensure positivity of ht. The mo-
ment structure of the EGARCH(p,q) model has been worked out in He (2000)
and Karanasos & Kim (2003). As in the GARCH case, the first-order model is the
most popular EGARCH model. The term ψ(|zt−1|−E |zt−1|) represents a magni-
tude effect in the spirit of the GARCH(1,1) model. The term φzt represents the
asymmetry effect. Nelson (1991) derived existence conditions for moments of the
EGARCH(1,1) model. Setting β = β1, they can be summarized by saying that if
the error process {zt} has all moments then all moments for the EGARCH(1,1)
process exist if and only if

|β| < 1. (3.9)

For example, if {zt} is standard normal then the restriction (3.9) is both necessary
and sufficient for the existence of all moments. This is different from the GARCH
model. For that model, the moment conditions become more and more restrictive
when the order of the moment increases.

Another difference between the GARCH models and the EGARCH model is
that for the latter analytical expressions exist for all moments of |εt|

2m , m > 0.
They can be found in He, Teräsvirta & Malmsten (2002); see also Nelson (1991).
If (3.9) holds, then the kurtosis of εt, assuming zt ∼nid(0,1), is given by

κ4 = 3 exp{
(ψ + φ)2

1− β2 }
∞∏
i=1

Φ(2βi−1(ψ + φ)) + exp{−8β2(i−1)ψφ}Φ(2βi−1(ψ − φ))

[Φ(βi−1(ψ + φ)) + exp{−2β2(i−1)ψφ}Φ(βi−1(ψ − φ))]2
> 3

(3.10)
where Φ(·) is the cumulative distribution function of the standard normal distri-
bution. The expression contains infinite products, and care is therefore required
in computing them (selecting the number of terms in the product). Setting ψ = 0
in (3.10) yields a simple formula

κ4 = 3 exp{φ2(1− β2)−1} > 3. (3.11)

If (3.9) holds, the autocorrelation function for |εt|
2m, with zt ∼nid(0,1), has
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the form

ρn(m)

=

Γ(2m+1)

2m+1/2Γ(m+1/2)
exp{m2(ψ+φ)2(β2(n−1)(β2

−1)/4+βn)

1−β2 }D(·)
n−1∏
i=1

Φ1i

∞∏
i=1

Φ2i −
∞∏
i=1

Φ2
1i

π1/2Γ(2m+1/2)
(Γ(m+1/2))2

exp{m2(ψ+φ)2

1−β2 }
∞∏
i=1

Φ3i −
∞∏
i=1

Φ2
1i

n ≥ 1 (3.12)

where

D(·) = D
−(2m+1)[−mβn−1(ψ + φ)] + exp{−m2β2(n−1)ψφ}

×D
−(2m+1)[−mβn−1(ψ − φ)]

Φ1i = Φ(mβi−1(ψ + φ)) + exp{−2m2β2(i−1)ψφ}Φ(mβi−1(ψ − φ))

Φ2i = Φ(mβi−1(1 + βn)(ψ + φ)) + exp{−2m2β2(i−1)(1 + βn)2ψφ}

×Φ(mβi−1(1 + βn)(ψ − φ))

and

Φ3i = Φ(2mβi−1(ψ + φ)) + exp{−8m2β2(i−1)ψφ}Φ(2mβi−1(ψ − φ)).

Furthermore, Φ(·) is the cumulative distribution function of the standard normal
distribution and

D(−p)[q] =
exp{−q2/4}

Γ(p)

∫
∞

0

xp−1 exp{−qx− x2/2}dx, p > 0,

is the parabolic cylinder function where Γ(·) is the Gamma function. If φ = 0 or
ψ = 0 in the EGARCH(1,1) model the resulting autocorrelation function becomes
quite simple; see He et al. (2002). The autocorrelation function of the squared
observations (m = 1), when ψ = 0, has the form

ρn(1) =
(1 + φ2β2(n−1)) exp{φ2βn(1− β2)−1} − 1

3 exp{φ2(1− β2)−1} − 1
, n ≥ 1. (3.13)

To illustrate the above theory, consider the case 0 < β < 1. The decay of the
autocorrelations is controlled by the parameter β. The autocorrelation function
of {|εt|

2m} then appear to have the property that the decay rate is faster than
exponential at short lags and approaches β as the lag length increases. For the
special case (3.13) this can be shown analytically, but in the general case it is just
a conjecture based on numerical calculations; see the table in He et al. (2002).
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3.3 ARSV model

The ARSVmodel offers yet another way of characterizing conditional heteroskedas-
ticity. See Ghysels, Harvey & Renault (1996) for a survey on the properties of
the ARSV model. It bears certain resemblance to the EGARCH model. As with
the EGARCH model, defining the dynamic structure using ln ht and its lags en-
sures that ht is always positive, but the difference to the GARCH model and the
EGARCH model is that it does not depend on past observations but on some
unobserved latent variable instead. The simplest and most popular ARSV(1)
model, Taylor (1986), is given by

εt = σzth
1/2
t . (3.14)

where σ is a scale parameter. It removes the need for a constant term in the
first-order autoregressive process

ln ht+1 = β ln ht + ηt. (3.15)

In (3.15), {ηt} is a sequence of independent normal distributed random variables
with mean zero and a known variance σ2

η. The error processes {zt} and {ηt} are
assumed to be mutually independent. One motivation for the EGARCH model
has been the need to capture the non-symmetric response to the sign of the shock.
If zt and ηt are assumed to be correlated with each other, the ARSV(1) model
also allows for asymmetry. The model can be generalized such that ln ht follows
an ARMA(p, q) process, but in this work we only consider the ARSV(1) model.

As ηt is normally distributed, ln ht is also normally distributed. From standard
theory we know that all moments of ln ht exist if and only if

|β| < 1 (3.16)

in (3.15). Thus, if |β| < 1 and all moments of zt exist then all moment of εt in
(3.14) exist as well, as they do in the EGARCH(1,1) model. If condition (3.16)
is satisfied, the kurtosis of εt is given by

κ4 = κ4(zt) exp{σ
2
h}, (3.17)

where σ2
h = σ2

η/(1 − β2) is the variance of ln ht. Thus κ4 > κ4(zt), so that if
zt ∼nid(0,1), εt is leptokurtic. Formula (3.17) bears considerable resemblance to
(3.11). In the ARSV(1) model (3.14) and (3.15), zt and ηt are independent. The
same is true for zt and zt−1 in the EGARCH(1,1) model. When ψ1 = 0 in the
latter model, the moment expressions for the two models therefore look alike.

As in EGARCHmodels it is possible to derive the autocorrelation function for
any |εt|

2m , m > 0, when {εt} obeys an ARSV(1) model (3.14) and (3.15). When
(3.16) holds, then the autocorrelation function of {|εt|

2m} is defined as follows,
see Ghysels et al. (1996):
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ρn(m) =
exp(m2σ2

hβ
n)− 1

κm exp(m2σ2
h)− 1

, n � 1, (3.18)

where κm is

κm = E |zt|
4m /(E |zt|

2m)2. (3.19)

The autocorrelation function of {|εt|
2m} has the property that the decay rate is

faster than exponential at short lags and stabilizes to β as the lag length increases,
analogously to the EGARCH model. Thus, the decay of the autocorrelations is
controlled by β only.

4 Kurtosis-autocorrelation relationship

4.1 GARCH(1,1) model

The results in the preceding section make it possible to consider how well the
models fits the first stylized fact of financial time series mentioned in Section
2: leptokurtosis and low but rather persistent autocorrelation of the squared
observations or errors. Consider GARCH(1,1) model with normal errors and
express the autocorrelation function (3.7) as a function of the kurtosis (3.5). This
yields

ρn = (α1 + β1)
n−1(

β1(1− 3κ−1
4 )

3(1− κ−1
4 )

+ α1), n ≥ 1. (4.1)

Figure 2 illuminates the relationship between the kurtosis κ4 and the autocorre-
lation ρ1. It contains isoquants, curves defined by sets of points for which the
sum α1+β1 has the same value. The kurtosis and the first-order autocorrelation
of squared observations are both increasing functions of α1 when α1+β1 equals a
constant. They all start at κ4 = 3 and ρ1 = 0 where α1 = 0 and the GARCH(1,1)
model is unidentified (the conditional variance equals unity). For previous ex-
amples of similar figures, see Teräsvirta (1996), Liesenfeld & Jung (2000) and
Andersson (2001). Slightly different contour plots for the GARCH(1,1) model
can be found in Bai et al. (2003). It is seen from the present figure that the first-
order autocorrelation first increases rapidly as a function of the kurtosis (and α1)
and that the increase gradually slows down. It is also clear that the autocor-
relation decreases as a function of α1 + β1 when the kurtosis is held constant.
Nevertheless, low autocorrelations cannot exist with high kurtosis.

This figure offers a useful background for studying the observed kurtosis-
autocorrelation combinations. Figure 3 contains the same isoquants as the Figure
2, together with kurtosis-autocorrelation combinations estimated from observed
time series. The upper-left panel contains them for 27 daily return series of the
most frequently traded stocks in the Stockholm Stock Exchange. These series are
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also considered in Malmsten (2004). There seems to be plenty of variation among
the series. A large majority have an unreachable combination of κ4 and ρ1 in the
sense that the combinations do not correspond to a GARCH(1,1) with a finite
variance (α1 + β1 < 1). Only four observations appear in the area defined by
α1+β1 < 0.999. The upper-right panel gives a less variable picture. The rates of
return are the 20 subperiods of the return series of the S&P 500 index discussed in
Section 2. Three of them do not appear in the panel because their kurtosis is too
large. All but two of the remaining 17 lie out of reach for the GARCH(1,1) model
with normal errors. The lower-left panel tells a similar story. The rates of return
are 34 subseries of five major exchange rates, the Japanese yen, the German
mark, the English pound, the Canadian dollar, and the Australian dollar, all
against the U.S. dollar, from 2 April 1973 to 10 September 2001. One of them,
the first subseries of the Canadian dollar, does not appear in the panel because
the autocorrelation is 0.456. The lower-right panel contains all data-points in
the three other panels. It is seen from the figure that a majority of the points
lie even below the lowest isoquant α1 + β1 = 0.999. An obvious conclusion is
that the GARCH(1,1) model with normal errors cannot in a satisfactory fashion
reproduce the stylized fact of high kurtosis and low-starting autocorrelation of
squares observed in a large number of financial series. This is true at least if we
require the existence of the unconditional fourth moment of εt. We shall return
to this point in Section 6.

It is seen from Figure 2 that the first-order autocorrelation of ε2t does decrease
with α1 + β1 when the kurtosis is kept constant. This may suggest that an in-
tegrated GARCH model of Engle & Bollerslev (1986) could offer an adequate
description of the stylized fact. The first-order IGARCH model is obtained by
setting α1 + β1 = 1 in (3.2), which implies that the GARCH process does not
have a finite variance. Because there are no moment results to rely on, this idea
has been investigated by simulation. Figure 4 contains the same isoquants as
before, completed with 100 kurtosis-autocorrelation combinations obtained by
simulating the first-order IGARCH with β1 = 0.9. The number of observations
increases from T = 100 in the upper-left panel to 10000 in the lower-right one. It
is quite clear that for T = 100, it is difficult to argue even that the observations
come from a GARCH model. For about the half of the observations, the esti-
mated kurtosis lies below three, and for a third, the first-order autocorrelation of
squared observations is negative. One conclusion is that when the null of no con-
ditional heteroskedasticity is rejected for the errors of a macroeconomic equation,
estimated using a small number of quarterly observations, fitting an ARCH or a
GARCH model to the errors without a close scrutiny of the residuals is hardly a
sensible thing to do.

Another conclusion, relevant for our stylized fact considerations, is that when
the number of observations increases, the point cloud in the figure moves to the
right. This is what it should do since the fourth moment of εt does not exist.
However, the points follow the isoquants on their way out of the frame, and they
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do not cross the area where most of the observations were found in Figure 3. The
conclusion from this small simulation experiment therefore is that the IGARCH
model cannot be the solution to the problem that the GARCH(1,1) model with
normal errors does not accord with this particular stylized fact.

Most researchers nowadays do not assume normal errors for zt in (3.1) but
rather make use of a leptokurtic error distribution such as the t-distribution. Why
this is the case can be seen from Figure 5. It contains the same isoquants as before,
measured by α1ν2 + β1. This is the condition for covariance stationarity just as
α1+β1 < 1 in Figure 1 is in the case of normal errors. It depends on the degrees of
freedom of the t-distribution through ν2. In the left-hand panel the t-distribution
has seven degrees of freedom so that κ4 = 5 and in the right-hand panel five, in
which case κ4 = 9. Figure 5 also contains the kurtosis/autocorrelation combi-
nations for the series shown in the fourth panel of Figure 3 but now under the
assumption that the errors have a t-distribution with seven (left panel) and five
degrees of freedom (right panel). It is seen how the baseline kurtosis now increases
from three to five (left panel) and nine (right panel). The observations now fall
inside the fan of isoquants, and the corresponding GARCH(1,1) model with the
finite fourth moment appears sufficiently flexible to characterize the stylized fact
of high kurtosis and low autocorrelation of squared observations.

4.2 EGARCH(1,1) model

The GARCH(1,1) model with normal errors does not adequately describe the
stylized fact of high kurtosis/low autocorrelation of squares combinations. In
this section we consider the situation in the symmetric EGARCH(1,1) model.
The relationship between κ4 and ρ1 for three symmetric EGARCH(1,1) models,
φ = 0, with normal errors with different persistence measured by β is depicted in
Figure 61. The isoquants now contain the points with β being a constant, while ψ
is changing. The kurtosis is a monotonically increasing function of ψ. This figure
shows that large values of κ4 and low values of ρ1 cannot exist simultaneously for
the symmetric EGARCH(1,1) model either. The lowest values for ρ1 are obtained
when β is close to one but these values are not sufficiently low to reach down
where the data-points are.

Nelson (1991) recommends using the Generalized Error Distribution (GED(υ))
for the errors. Granger et al. (2000) used the double exponential (Laplace) dis-
tribution. The GED(υ) includes both the normal distribution, υ = 2, and the
Laplace distribution, υ = 1, as special cases. If υ ≤ 1, restrictions on ψ (and
φ) are needed to guarantee finite moments. Note that the t-distribution for the
errors may imply an infinite unconditional variance for {εt}. For a detailed dis-

1For the EGARCH(1,1) model with ψ = 0 and standard normal errors we can express
the autocorrelation function of squared observations as a function of kurtosis: ρn(1) =
(1+φ2)(κ4/3)

βn
−1

κ4−1 .
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cussion, see Nelson (1991). The autocorrelations of {|εt|
2m} with zt ∼GED(υ)

can be found in He et al. (2002).

4.3 ARSV(1) model

In order to complete our scrutiny of the kurtosis/autocorrelation relationship
we consider the first-order ARSV model. Carnero et al. (2004) have also done
similar work. The autocorrelation function of {ε2t} of the ARSV(1) model can be
expressed as a function of the kurtosis as follows:

ρn(1) =
(κ4/κ4(zt))

βn

− 1

κ4 − 1
, n ≥ 1. (4.2)

Note the similarity between (4.2) and the corresponding expression for the EGARCH(1,1)
model with ψ = 0 in footnote 1. In fact, a comparison of these expression shows
that the autocorrelations for this special EGARCH model with normal errors for
the same value β are always greater than the corresponding autocorrelations for
the ARSV(1) model. Figure 7 contains a plot of the relationship between κ4 and
ρ1(1) for three ARSV(1) models with normal errors (κ4(zt) = 3) with different
persistence measures β. The isoquants now consist of the points with β being
0.95, 0.99, 0.999, respectively, while σ2

η is changing. The kurtosis is a monotoni-
cally increasing function of σ2

η. An important difference between the symmetric
EGARCH(1,1) model and the ARSV(1) model lies in the behaviour of the first-
order autocorrelation when the kurtosis is held constant. In the EGARCH(1,1)
model, the value of the autocorrelation decreases as a function of β1, the pa-
rameter that controls the decay rate of the autocorrelations. In the ARSV(1)
model this value increases as a function of the corresponding parameter β. Thus,
contrary to the symmetric EGARCH model, a low first-order autocorrelation and
high persistence can coexist in the ARSV model. In general, the first-order au-
tocorrelations, given the kurtosis, are lower in the ARSV than the EGARCH
model with normal errors. This may at least partly explain the fact that in some
applications the ARSV(1) model seems to fit the data better than its EGARCH
or GARCH counterpart. It may also explain the stylized fact mentioned in Shep-
hard (1996) that β estimated from an ARSV(1) model tends to be lower than
the sum α1 + β1 estimated from a GARCH(1,1) model.

In Figure 8 the errors of the ARSVmodel have a t-distribution with seven (left
panel) and five degrees of freedom (right panel). It is seen that when the number
of degrees of freedom in the t-distribution decreases, the persistence parameter β
has only a negligible effect on the first-order autocorrelation. At the same time,
the value of the autocorrelation rapidly decreases with the number of degrees of
freedom for any given σ2

η. Compared to the GARCH(1,1) model, the difference
is quite striking.
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5 Taylor effect

5.1 GARCH(1,1) model

As discussed in Section 2, a large number of financial series display an autocor-
relation structure such that the autocorrelation of |εt|

2m decay slowly and the
autocorrelations as a function of m > 0 peak around m = 0.5. He & Teräsvirta
(1999b) defined the corresponding theoretical property and called it the Taylor
property. From the results in Section 3 it follows that the existence of the Taylor
property in the EGARCH(1,1) and ARSV(1) models can be considered analyt-
ically because the analytic expressions for E |εt|

2m exist for any m > 0. This
is not true for most GARCH models, however, because analytic expressions are
available only for integer moments. An exception is the power-GARCH model of
Ding et al. (1993). For this model, certain non-integer moments have an analytic
definition, but then, the integer moments generally do not; see He & Teräsvirta
(1999c).

One can think of considering a more restricted form of definition that only
concerns the first and second moment. The model is then said to have the Taylor
property if

ρ(|εt| , |εt−n|) > ρ(|εt|
2 , |εt−n|

2), n � 1. (5.1)

This choice can be defended by referring to the original discussion in Taylor
(1986). The problem is that for the standard GARCH model, an analytic de-
finition of E |εt| as a function of the parameters is not available. On the other
hand, it exists for the AVGARCH(1,1) model defined by Taylor (1986) and Schw-
ert (1989). This prompted He & Teräsvirta (1999b) to discuss the existence of
the Taylor property in the AVGARCH(1,1) model. Their conclusion, based on
considerations with n = 1 in (5.1), was that the AVGARCH model possesses the
Taylor property if the kurtosis of the model is sufficiently large. However, the
difference between the autocorrelations of |εt| and ε2t remains very small even
when the kurtosis is very large. These authors also investigated the existence of
the Taylor property in the standard GARCH(1,1) model by simulation, and their
results suggested that this model does not have the Taylor property. Of course,
due to sample uncertainty, the GARCH model can still generate realizations dis-
playing the Taylor effect, at least when the number of observations is relatively
small. This would not, however, happen at the frequency with which the Taylor
effect is found in financial series; see Granger & Ding (1995).

5.2 EGARCH(1,1) model

We extend the considerations in He & Teräsvirta (1999b) to the EGARCH(1,1)
and ARSV(1) model. For these models, the situation is different. The results of
Section 3 allow us to say something about the capability of the EGARCH(1,1)
model to generate series with the Taylor property. Figure 9 contains a description
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of the relationship between κ4 and the two first-order autocorrelations ρ1(m),
m = 1, 0.5, for β = 0.95 and β = 0.99. It is seen that the Taylor property is
present at high values of the kurtosis. The value of the kurtosis where the Taylor
property is present decreases as a function of β. The difference between the two
first-order autocorrelations is substantially greater than in the AVGARCH(1,1)
model.

As analytical expressions for non-integer moments of E |εt|
2m , m > 0, exist for

the EGARCH model, we can extend our considerations by use of them. Figure
10 contains graphs showing the first-order autocorrelation as a function of the
exponent m for β = 0.95 and β = 0.99 at three different kurtosis values. It turns
out that for the symmetric EGARCH process, with kurtosis of the magnitude
found in financial time series, the maximum appears to be attained for m around
0.5. The conclusion is that the Taylor property is satisfied for an empirically
relevant subset of EGARCH(1,1) models.

5.3 ARSV(1) model

In order to complete our discussion about Taylor effect we consider the first-order
ARSV model. Figure 11 illustrates the relationship between κ4 and the two first-
order autocorrelations ρ1(m), m = 1, 0.5, for β = 0.95 and β = 0.99. It is seen
that the Taylor property is present already at low values of the kurtosis.

Analogously to the preceding subsection, Figure 12 contains a graph show-
ing the first-order autocorrelation as a function of m for β = 0.95 and β =
0.99 and the three different kurtosis values. There is a difference between the
EGARCH(1,1) model and the ARSV(1) model regarding the peak value of ρ1(m)
when the persistence parameter changes. In the EGARCH(1,1) model, the peak
of the autocorrelation moves to left with higher β1. In the ARSV(1) model,
increasing the value of the corresponding parameter β shifts the peak of the
autocorrelation to the right. This feature demonstrates the difference in the rela-
tionship between the persistence and the first-order autocorrelation in these two
models. Nevertheless, the general conclusion even here is that for the ARSV(1)
model, there exists an empirically relevant subset of these models such that the
definition of the Taylor property is satisfied. Thus both the ARSV(1) and the
EGARCH(1,1) model appear to reproduce this stylized fact considerably better
than the first-order GARCH model.

6 Confidence regions for the kurtosis-autocorrelation

combination

When the kurtosis-autocorrelation combination and volatility models were dis-
cussed in Section 4, the observations were treated as fixed for simplicity. In
reality, they are estimates based on time series. This being the case, it would
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be useful to account for the uncertainty of these estimates and see whether or
not that would change the conclusions offered in Section 4. For this purpose
it becomes necessary to estimate confidence regions for kurtosis-autocorrelation
combinations.

It should be pointed out that it is not possible to obtain these confidence
regions analytically. The kurtosis and first-order autocorrelation of squared ob-
servations are nonlinear functions of the parameters of the model, be that a
GARCH, an EGARCH or an ARSV model. Furthermore, there is no one-to-
one mapping between the two parameters of interest and the parameters in the
three models. This implies that the confidence regions have to be obtained by
simulation. As an example, suppose that the true model generating the time
series is a GARCH(1,1) one with a finite fourth moment and fit this model to
the series. Use the formulas (3.5) and (3.7) to obtain the plug-in estimate of the
kurtosis-autocorrelation combinations. Next, use the asymptotic distribution of
the maximum likelihood estimator of the parameters and the same formulas to
obtain a random sample of kurtosis-autocorrelation combinations from this distri-
bution. The elements that fail the fourth-order moment condition are discarded,
and the remaining ones are used for constructing confidence intervals.

In order to illustrate the situation, consider Figure 13 that contains 200
kurtosis-autocorrelation combinations generated from an estimated GARCH(1,1)
model. The original time series has been generated from a GARCH(1,1) model
with parameters α0 = 0.05, α1 = 0.19121, β1 = 0.75879 (α1 + β1 = 0.95). A
striking feature is that the point cloud has a form of a boomerang that appears
to be shaped by the isoquants also included in the figure. This feature has an im-
portant consequence: estimating the joint density function of the two variables,
kurtosis and autocorrelation estimators, is hardly possible by applying a bivari-
ate kernel estimator based on a linear grid. The problem is that the linear grid
would cover vast areas where no observations are located. Kernel estimation can
instead be carried out by replacing the linear grid by a particular nonlinear one
that makes use of the isoquants; see Eklund (2004) for details. Desired confidence
intervals are then obtained as highest density regions; for computational details,
see Hyndman (1996).

As an application we consider two daily return series of stocks traded in
the Stockholm stock exchange. For the stock Assi D with 1769 observations
the estimated kurtosis equals 5.8, and the first-order autocorrelation of squared
returns equals 0.305. The solid square in Figures 14, 15 and 16 represents this
kurtosis/autocorrelation pair. After estimating the three models, the plug-in
estimate of the kurtosis/autocorrelation pair can be obtained for each model,
and the solid circle represents the estimated pair in the three figures. To estimate
the ARSV model we use the quasi-maximum likelihood estimator suggested in
Ghysels et al. (1996). Finally, the solid lines are the 90% confidence regions of
the true kurtosis/autocorrelation pair.

For the GARCH(1,1) model in Figure 14 the deviation of the plug-in estimated
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kurtosis/autocorrelation point from the directly estimated pair is quite small, and
the directly estimated combination remains inside the 90% confidence region.
Both for the EGARCH model in Figure 15 and for the ARSV model in Figure
16 the plug-in estimate of the first-order autocorrelation is clearly lower than
the nonparametric estimate. However, for the EGARCH(1,1) model in Figure 15
the nonparametrically estimated combination remains inside the 90% confidence
region, whereas this is not the case for the ARSV(1) model, see Figure 16. The
result for the ARSV model is probably due to the fact, discussed in Section 4.3,
that the persistence parameter β does not play a large role in the determination
of autocorrelations of squared observations.

Next we consider another return series that has a combination of kurtosis
and first-order autocorrelation of squares that lies below even the lowest iso-
quants for the GARCH model in Figure 3 and the EGARCH model in Figure
6. This is the return series of 2984 observations for the stock SEB that has kur-
tosis 18.0 and the first-order autocorrelation of squares 0.267. If it is assumed
that the series is generated from a GARCH(1,1) model with normal errors, it
is seen from Figure 17 that this leads to a low estimate of the kurtosis and the
autocorrelation. The kurtosis-autocorrelation combination is heavily underesti-
mated. The 90% confidence region does not cover the nonparametrically esti-
mated kurtosis-autocorrelation combination. We also find a GARCH(1,1) model
with t-distributed errors to this series and estimated the 90% confidence region
kurtosis-autocorrelation pair under the assumption that the observations are gen-
erated by a GARCH(1,1) model. The estimated number of degrees of freedom,
υ̂, is close to seven, and the plug-in kurtosis estimate, obtained after rounding
υ̂ off to 7, is quite high, equalling 56. It is seen from Figure 18 that the plug-in
kurtosis-autocorrelation estimate is not contained in the 90% confidence region.
Furthermore, the nonparametric estimate with kurtosis less than 20 and first-
order autocorrelation around 0.25 lies far outside the confidence region. It seems
that at least in this example, a GARCH(1,1) model with t-distributed errors
hardly reproduces the stylized facts any better than its counterpart with normal
errors.

Similar results are obtained for both the EGARCH model, see Figure 19, and
the ARSV model. It is not possible to estimate and graph the corresponding
confidence region for the stochastic volatility model because the region turns out
to be almost like a section of a one-dimensional curve. It may be noticed, however,
that the plug-in kurtosis estimate from the ARSV model is considerably higher
than the corresponding estimate from the GARCH model with normal errors, a
fact previously emphasized by Carnero et al. (2004), but lower than the estimate
from the GARCH model with t-distributed errors.

A conclusion from this small application, under the assumption that the ob-
servations have been generated from a member of the family of models in ques-
tion, is that the GARCH(1,1) model and the EGARCH(1,1) model cannot re-
produce the stylized fact of high kurtosis and low-starting autocorrelation of
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squares even if we account for the uncertainty. For processes with low kurtosis
both the GARCH(1,1) and the EGARCH(1,1) model appear to reproduce the
kurtosis-autocorrelation stylized fact better than the first-order ARSV model in
the sense that the nonparametrically estimated kurtosis-autocorrelation combi-
nation is likely to be covered by the confidence interval for the former models but
not for the latter one.

7 An unexplained stylized fact

As is clear from the preceding discussion, each one of the three basic models
satisfies at least some of the stylized fact considered in this work. There is, how-
ever, one frequently encountered feature that cannot be reproduced by any of
them: the estimated marginal distribution of many return series is skewed. Such
an unconditional distribution cannot be obtained by generalizing the standard
GARCH model into an asymmetric one such as the GJR-GARCH (Glosten, Ja-
gannathan & Runkle (1993)), QARCH (Sentana (1995)) or Smooth Transition
GARCH (Hagerud (1997), González-Rivera (1998), or Lundbergh & Teräsvirta
(2002)) model. For all such models, the unconditional third moment of the
process equals zero if it exists as long as the distribution of the error process
zt is symmetric around zero. The same is true for the EGARCH model which has
an in-built asymmetric volatility component. To make progress, some researchers
have instead assumed that the distribution of the error term zt is skewed. Another
possibility, investigated by Brännäs & De Gooijer (2004), is to allow the return
process to have an asymmetric conditional mean. Considering these extensions
is, however, beyond the scope of the present work.

8 Conclusions

In this paper we have shown that there exist possibilities of parameterizing all
three models in such a way that they can accommodate and explain many of
the stylized facts visible in the data. Even after excluding skewed marginal
distributions, some stylized facts may in certain cases remain unexplained. For
example, it appears that the standard GARCH(1,1) model may not particularly
often generate series that display the Taylor effect. This is due to the fact that
this model does not appear to satisfy the corresponding theoretical property, the
Taylor property. On the contrary, this property is approximately satisfied for a
relevant subset of EGARCH(1,1) and ARSV(1) models and, albeit very narrowly,
for a subset of absolute-valued GARCH models.

Many researchers have observed quite early on that for GARCH models, as-
suming normal errors is too strong a restriction, and they have suggested lep-
tokurtic error distributions in their stead. The results in this paper show how
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these distributions add to the flexibility of the GARCHmodel and help the model
to reproduce the stylized fact of high kurtosis and relative low autocorrelations
of squared observations. It is also demonstrated that the IGARCH model with
normal errors does not rescue the normality assumption. As a drawback it may
be noted that the parameterization of the first-order autoregressive stochastic
volatility model becomes very restrictive when the amount of the leptokurtosis
in the error distribution increases, and the model therefore cannot accommodate
’easy’ situations with relatively low kurtosis and high autocorrelations of squared
observations.

The paper contains an application of a novel method of obtaining confidence
regions for the kurtosis-autocorrelation combinations. The brief application of
this method to stock returns indicates, not surprisingly, that when normality of
errors is assumed, the GARCH model as well as the EGARCH model are at their
best when it comes to characterizing models based on time series with relatively
low kurtosis and high first-order autocorrelation of squares. Time series display-
ing a combination of high kurtosis and high autocorrelation are better modelled
using an ARSV(1) model. While this observation may serve as a rough guide
when one wants to select one of these models, nonnested tests are also available
for comparing them. Examples of such tests have already been mentioned in the
Introduction.

Another observation that emerges from the empirical example is that the esti-
mated kurtosis-autocorrelation combination is often an underestimate compared
to the one estimated nonparametrically from the data. This is the case when the
kurtosis is high and the errors are normal. This fact may be interpreted as sup-
port to the notion that a leptokurtic error distribution is a necessity when using
GARCH models. This idea is contradicted, however, by the fact that assuming
a t-distribution for the errors may at least in some cases lead to a large discrep-
ancy in the opposite direction between the plug-in estimate of the kurtosis and
the nonparametric estimate. These results may suggest that daily return series
in fact contain truly exceptional observations in the sense that they cannot be
satisfactorily explained by the members of the standard GARCH or EGARCH
family of models.

This argument receives a certain amount of support from a recent paper by
Kim & White (2004) who investigated robust estimation of skewness and kurto-
sis of return series. It turned out that robust estimates were much less extreme
than the standard ones, and removing a small number of outliers from the series
considerably lowered the standard kurtosis estimates. Considering the kurtosis-
autocorrelation combinations using robust measures of kurtosis and autocorrela-
tion may be a useful addition to the analysis of stylized facts but it is left for
future work.

The present investigation is only concerned with first-order models, and a
legitimate question is whether adding more lags would enhance the flexibility of
the models. Such additions would certainly help to generate and reproduce more
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elaborate autocorrelation patterns for the squared observations than is the case
with first-order models. It is far from certain, however, that they would also
improve reproduction of the stylized facts considered in this study.
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Figure 1: Uppermost panel, log-returns of the S&P 500 index 3 January 1928
to 19 September 2001. Second panel, the autocorrelation function of |rt|m, m =
0.25, 0.5, 0.75, 1, from low to high, for the S&P 500 index. Third panel, the
autocorrelation function of |rt|m, m = 1, 1.25, 1.5, 1.75, 2, from high to low, for
the S&P 500 index. Lowest panel, the autocorrelation function of |rt| for the
whole series (highest graph) and the mean of the corresponding autocorrelations
of the 20 equally long subseries of the S&P 500 index together with the plus/minus
one standard deviation band.
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Figure 2: Combinations of the first-order autocorrelation of squared observations
and kurtosis for the GARCH(1,1) model with normal errors for various values of
α + β. Isoquants from lowest to highest: α + β = 0.999, 0.99 and 0.95.
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Figure 3: Combinations of the first-order autocorrelation of squared observations
and kurtosis for the GARCH(1,1) model with normal errors for various values
of α + β together with observed combiantions of daily rates of return: Upper-
left panel, daily returns of the 27 most traded stocks at the Stockholm Stock
Exchange. Lower-left panel, the S&P 500 index 3 January 1928 to 19 September
2001, divided to 20 equally long subsereies. Upper-right panel, five major daily
exchange rates series divided to 34 subseries. Lower-right panel, all observations.
Isoquants from lowest to highest: α + β = 0.999, 0.99, 0.95 and 0.9.
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Figure 4: Combinations of the first-order autocorrelation of squared observations
and kurtosis for the GARCH(1,1) model with normal errors for various values
of α + β together with 100 realizations based on T simulated observations from
an IGARCH(1,1) model with α0 = α = 0.1: T = 100 (first panel), 500 (second
panel), 1000 (third panel) and 2000 (fourth panel). Isoquants from lowest to
highest: α + β = 0.999, 0.99, 0.95 and 0.9.
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Figure 5: Combinations of the first-order autocorrelation of squared observations
and kurtosis for the GARCH(1,1) model with t-distributed errors for various
values of αν2 + β: left panel: t(7), right panel: t(5). Isoquants from lowest to
highest: α + β = 0.999, 0.99, 0.95 and 0.9. The observed combinations are the
same as in the lower-right panel of Figure 1.
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Figure 6: Combinations of the first-order autocorrelation of squared observations
and kurtosis for the EGARCH(1,1) model with normal errors for various values of
β. The isoquants from lowest to highest: β = 0.95, 0.99 and 0.999. The observed
combinations are the same as in the fourth panel of Figure 1.
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Figure 7: Combinations of the first-order autocorrelation of squared observations
and kurtosis for the ARSV(1) model with normal errors for various values of
β. Isoquants from lowest to highest: β = 0.999, 0.99 and 0.95. The observed
combinations are the same as in the lower-right panel of Figure 1.
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Figure 8: Combinations of the first-order autocorrelation of squared observations
and kurtosis for the ARSV(1) model with t-distributed errors for various values of
β: left panel: t(7), right panel: t(5). Isoquants from lowest to highest: α + β =
0.99 and 0.95. The observed combinations are the same as in the lower-right
panel of Figure 1.
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Figure 9: Combinations of two first-order autocorrelations, the squared observa-
tions (dashed line) and the absolute observations (solid line), and corresponding
kurtosis values for the EGARCH(1,1) model with normal errors for β = 0.99
(low) and β = 0.95 (high).
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Figure 10: Combinations of the first-order autocorrelation of absolute-valued
observations raised to power m as a function of m for the EGARCH(1,1) model
with normal errors for β = 0.95 (left panel) and β = 0.99 (right panel) at three
kurtosis values. From low to high: κ4 = 6, 12 and 24.
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Figure 11: Combinations of two first-order autocorrelations, the squared observa-
tions (dashed line) and the absolute observations (solid line), and corresponding
kurtosis values for the ARSV(1) model with normal errors for β = 0.95 (low) and
β = 0.99 (high).
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Figure 12: Combinations of the first-order autocorrelation of absolute-valued
observations raised to power m as a function of m for the ARSV(1) model with
normal errors for β = 0.95 (left panel) and β = 0.99 (right panel) at three kurtosis
values. From low to high: κ4 = 6, 12 and 24.
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Figure 13: Simulated kurtosis/autocorrelation combinations for the GARCH(1,1)
model with (α0,α1,β)=(0.05,0.19121,0.75879), and approximative 50%, 60%,
70%, 80%, and 90% confidence intervals of the true value, 1000 observations
and 200 realizations. Solid square is the true value: solid circle is the plug-in
estimate; empty circles are generated combinations.
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Figure 14: Approximate 90% confidence region based on 200 realizations of the
true kurtosis/autocorrelation combination for the Assi D return series under the
assumption that the observations have been generated by a GARCH(1,1) model.
Solid square is the nonparametrically estimated value, solid circle is the plug-in
estimate.
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Figure 15: Approximate 90% confidence region based on 200 realizations of the
true kurtosis/autocorrelation combination for the Assi D return series under
the assumption that the observations have been generated by an EGARCH(1,1)
model. Solid square is the nonparametrically estimated value, solid circle is the
plug-in estimate.
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Figure 16: Approximate 90% confidence region based on 200 realizations of the
true kurtosis/autocorrelation combination for the Assi D return series under the
assumption that the observations have been generated by an ARSV(1,1) model.
Solid square is the nonparametrically estimated value, solid circle is the plug-in
estimate.
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Figure 17: Approximate 90% confidence region based on 200 realizations of the
true kurtosis/autocorrelation combination for the SEB return series under the
assumption that the observations have been generated by a GARCH(1,1) model.
Solid square is the nonparametrically estimated value, solid circle is the plug-in
estimate.
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Figure 18: Approximate 90% confidence region based on 200 realizations of the
true kurtosis/autocorrelation combination for the SEB return series under the
assumption that the observations have been generated by a GARCH(1,1) model
with t-distributed errors (ν = 7). Solid square is the nonparametrically estimated
value, solid circle is the plug-in estimate.
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Figure 19: Approximate 90% confidence region based on 200 realizations of the
true kurtosis/autocorrelation combination for the SEB return series under the as-
sumption that the observations have been generated by an EGARCH(1,1) model.
Solid square is the nonparametrically estimated value, solid circle is the plug-in
estimate.
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