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APPROXIMATION TO BAYES RISK IN REPEATED PLAY

1
James Hannan

SUMMARY

This paper is concerned with the development of a dynamic theory
of decision under uncertainty. The results obtained are directly applicable
to the development of a dynamic theory of games in which at least one play-
er 1s, at each stage, fully informed on the joint empirical distribution of
the past choices of strateglies of the rest. Since the decision problem ‘can

is written in the language and notatlon of the general two person game, in
which, however, player I's motivation 1is completely unspecified.

Sections 2 - 7 consider a sequence game based on N successlve
plays of the same m by n game and culminate in Theorem 4 which exhibits
a usable sequence-strategy for II, consisting in the use at the (k+1)-st
play of a strategy Bayes against the perturbation of I's cumulative past
choice by the addition of [3n 2 Jem) 1/21( /2 z, with =z chosen at random
from the unit m-cube.

With |B| denoting the maximum difference within rows of II's
inutility matrix, Theorem b4 asserts that the expected inutility incurred
by this strategy across N plays, less N times the single-game Bayes
inutility against I's empirical distribution of choices within the N
plays, is bounded above by (302m/21"/2|B|N'/2, uniformly in N and in
I's N choices.

For fixed N, a sequence-strategy which minimizes the maximum
of the criterion of Theorem 4 1s characterized by a recursive program in
Section 4. Except in the trivial case where II has a dominant column,
the resulting min-max 1s bounded below by a non-zero multiple of N 1/2
(Theorem 2). 1In a slight generalization of Matching Pennies the solution
to the recursive program and the resulting min-max are explicitly exhiblted.

Sections 8 - 9 consider the sequence game when the component game
may be non-finite. For the restrictive class of non-finite games where a
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Bayes response satisfies a Lipschitz condition of order a > 0, Theorem 5
asserts that the criterion of Theorem U4 is O(z?k’a) when II's strategy
consists in the use of the values of this Bayes response at the successive
cumulative past choices of I. The game on the square with II's inutility
glven by squared deviation 1llustrates the non-vacuity of Theorem 5 for
a < 1.

For the class of games where I has only a finite number, m, '

of pure strategies, Theorem 6 asserts, under regularity conditions vacuously
satisfled by finite games, the truth of the natural generallzation of Theo-
rem 4 with the n of the strategy and bounds replaced by 2.

The appendix considers a semi-dynamic game suggested by an in-
terpretation of problem 13 (11i) in the first of these Contributions. . If
I uses a fixed randomized strategy x on each play independently, 1II's
expected inutility, less N times the single-game Bayes inutility against
X, 1s 0O(1) when II's strategy cholces are the values of any Bayes
response at the successive cumulative past choices of I (Theorem 7).

§1. INTRODUCTION

A finitary form of the (static) decision problem with numerical
utilities may be described briefly as follows: exactly one of n possible
decislons 1s required to be made 1n a context in which the decision-maker
knows only that one of m possible states of nature obtains and, for each
declslon and each state, the Inatility aij of decision j when state
1 obtains.

The problem of choosing a decision which will in some sense mini-
mize Inutility has been resolved by many principles of solution (12], [131],
and [16]. These principles have in each case been suggested and to some
extent supported by the additional assumptions associated with some class
of reallzations. In particular the classical Bayes principle introduces
the assumption that the state index 1 1is subject to a known (a priori)
probabllity distribution. Under this assumption, which is considered much
too restrictive for many realizations, a decision which minimizes expected
inutility 1is a very satlsfactory solution of the problem.

The present paper is concerned with a sequence of N decision
problems, which are formally alike except for the fact that the state of
nature may vary arbitrarily from problem to problem. Decisions are re-
quired to be made successively and 1t 1s assumed that they may be allowed
to depend on the e.d. (empirical distribution) of the states of nature
across the previous problems in the sequence. Tnis total lack of assumptions
regarding the behavior of the state sequence 1s a feature distinguishing
the present structure from many considerations of multistage processes




DAYXLS nion 1N REArEAITLD rlAf

(cf. for example [1], [9]).

In a certain sense the opportunity for minimizing the average in-
utility of the set of N decisions depends on the e.d. of the N states
involved. If this e.d. were known before any decisions had to be made,
this knowledge would enable the choice of a decision Bayes with respect to
this distribution. The repeated use of such a declsion would reduce the
average 1lnutillty across problems to the minimum expected inutility on a
single problem where the Bayes assumption holds and the probability dis-
tribution on the state index 1s the same as the e.d. of the N states in
the sequence problem (see (4.10)).

Another hypothetical situation, somewhat more suggestive for the
sequence problem, is that in which successive decisions are permitted to
depend on the successive e.d. of all states thru their respective presents.
The use of decislons Bayes with respect to these distributions reduces
average inutility to not more than the Bayes single-problem inutility with
respect to the N-state e.d. (see (6.4) ff.).

The most important conclusion of this paper is that the knowledge
of the successive e.d. of past states makes it constructively possible to
do almost as well at reducing the average inutility across problems as in
the case where N and the distribution of the N ,states are. known 1n~ad-
vance (or even as in the case of the ‘preceding paragraph). The sequence of
decisions exhibited which attain this performance is a sequence of random-
ized (not necessarily properly) decisions whose expectations are the values
of a sequence of smoothed verslons of the Bayes response at the successive

e.d. of previous states.

The idea of using the Bayes inutility agalnst the N-state e.d.
as a goal for the performance of a set of decisions (distinguished by the
term compound decision problem and with stochastic information on the
N-state e.d. replacing the knowledge of past e.d. in the sequence problem)
was enunciated in [14]. The program outlined in [14] for the rigorous in-
vestigation of compound decision problems was initiated in [6] and these
papers exerted a strong influence on the sequence development.

The Inadequacy of min-max solutions has long been noted in

connection with statistical decislon problems and (7], (8], [11], [14], [18],

(19], are particularly relevant. The fact that this inadequacy 1is always
present 1n certain compound decision problems was noted in [14] and [6].
An,example of a compound problem in which the min-max solution fails to be
a direct product is exhibited in [17].

Within the theory of games the need for a dynamic theory is docu-

mented in [13] and [10]. The main development of the present paper consti-
tutes an ébproach to the solution of a strong form of problem (13), part
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(11) in [10]. A weak form is considered in an Appendix. -

The use of the Bayes response across a sequence of games is co-
incldent with a one-sided version of "the method of fictitious play!, (3],
(4], and [15]. Theorem 5, applied to a zero sum game in which the hy-
potheses of the theorem are satisfied for both players, yields an interest-
ing bound on the rate of convergence of the method.

PART I. FINITE GAMES

§2. THE COMPONENT GAME, G

The waln purpose of this section is to introduce the notational
framework of a single finite game, later to be used as the genéric component
of a sequence of games. The single game terminology can also be applied to
the normal form of sequence games and for this purpose some extensions of
the concept of "regret" (the loss of [16]) are introduced. These may in-
duce interesting orderings in games with sufficient structure and, in
particular, will do so for the sequence games of Section 3.

Let G be a finite two-person general game in which players I
and II have, respectively, m and n strategies. Thelr spaces of
randomized strategies will be denoted by X and Y,

1 ]

- em) a basis vector in X ,

m
X=|]x-= (X1’ Koy weey X)) I Xy >0 }: Xy
1

L}

(1) i
Y = y=(y1: y2’ seey yn)lyJ?O

~M s
e
Cda
0]

and their pure stré%egies will be represented

(2) € = (e}, €5s
5 = (5], Sy ey sn) a basis vector in Y

In accord with the dominant decision theoretic orientation, the
game will be consistently viewed from the position of player 1IT. Nothing
will be assumed about player I's motivation and the game will be defined
only up to player II's inutility which will be descriped by a loss matrix
A. The elements of A w;ll be denoted by aij (or Ag), the rows by

Ai and the columns by Ad.

a,, Bip v an A1

(3) A = SRS B - [a'22...

a, 8 o e &n Am



DAYHS RLOA 1N R rbhad il Al

To exclude trivial games, it will be assumed that A has no dominant column,
for each ]

(&) max [eAj - min eAr}>o ,
€ r

and, to avoid notation distinguishing a subset of non-weakly-dominated col-
umns, that A has no dominated or duplicated column, for each j

(5) ead > ey for all e only if yy =1

The expectation of the loss when II uses a randomized strategy
y will be called the risk,

R(e, y) = ﬁyeAs = €A }‘,’yb = elAy

For given 1y, the risk function is representable as the vector, s = Ay,
and the mapping from Y to S = AY furnishes a convenient canonical form
for G. From the point of view of risk, G 1s identical with the game in
which II's pure strategles are m-vectors in the set of columns of A,

(6) ) g = (0’.‘, 00y Um) in {A‘) Az, sy An} 3
II's randomized strategles are m-vectors in the convex hull of the columns
of A,

(7) 3 = (31’ ey Sm) il’l S = [Ay | y in Y] )
and the risk of s in S 1is given by the scalar product
(8) R(e, s) = € _eco = €& o = €8

For each x in X the minimum of the expectation of risk,

min xs ,
s
is attained for s in the convex hull of the set of minimizing o¢. This
minimum will be called the Bayes risk against x and any minimizing s
will be called a Bayes strategy against x. Consldered as functions, #
agd s, on X, # will be termed the Bayes envelope, s a Bayes response.
It is convenient to extend their definition to the whole of m-space by

g(w) = min ws = min wo
(9) s o

e

s = any function to S such that ws(w) = #(w) for each W




102 HANNAN

Some continulty properties of the Bayes envelope and the risks of
Bayes strategies are immedliate consequences of their definitions. These
properties are little utilized in static game theory and their importance
here stems from thelr direct use and analogical value in connection with
the sequence games to be introduced in Section 3. )

The Bayes envelope is known to be concave and continuous in more
general games ([2]) Theorem 2.27). Here #, as the minimum of a finite
class of linear functions, 1s concave and plecewise linear, and

(10) (w=-w')s(w) <8(w) - 8(w') < (w-w)s(uw'")

Although any Bayes response will be discontinuous at every point of possible
ambigulty, each Bayes response possesses a local weak continuity at each w,

(11) ws(w') - 8(w) = wis(w') - s(w)] < (w - w')[s(w') - s(w)]
Introducing the several norms for m-vectors,

m

(12) vl = Z IVil [v| = mix Ivi‘ s
1

and the uniform bound on the variation of any Bayes response,

i

[B] = sup |s(w') - s(w)| max max [eo - #(e)]
w,w! o €

(13)

"

max max [Ai - min Ai} s
J 1 r

the inequality (11) may conveniently be weakened to

(14) ws(w') - 8(w)

IN

lw - w'l Istw') - s(w)| < fw - w']l |B]

]

Letting wj = [w | WAl g(w)], 8 1is linear on each Wj and each W.

i1s convex and closed. Each W. not containing a given w has a positive
distance from it and, letting d(w) be the minimum of these distances

(or + = 1if not otherwise defined), it follows that each ¢ which is
Bayes with respect to a w' 1n the open neighborhood

m
2: (wi - wi)2 < d%(w)

(and hence also each s(w')) 1s necessarily Bayes wilth respect to W,

m

(15) ws(w') - 8(w) >0 only if E: (wi - wi)e > de(w)
1
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The bound (11) 1s thus improved to zero for all lw = w!'] sufficiently
small, quite non-uniformly in w.

In zero-sum games against an intelligent opponent, attention has
been concentrated on the ordering of II's strategies induced by their
maximum risk. Letting R(s) denote

max e€s |,
€
the value of G 1s given by
R = min R(s)
s
and, by the min-max theorem,
(16) R = max min Xo = max #(x)
X o X

In games against Nature, the Bayes envelope 1s considered a
worthy defensive goal for II since it is usually felt that I's move is
in no way influenced by II's choice of strategy. As a cbnsequence, a
strategy s 1s evaluated for each x in X in terws of the "regret",
the additional expected risk above #(x) which it incurs,

(17) D(x, 8) = x3 - B(x)

D(x, s) 1s clearly non-negative and its maximum with respect to x is
frequently used to establish a complete ordering on S. It follows from
the concavity of 8 that £ [es - #(e)] > xs - #(x) and hence that
equallty holds in

max D(e, s) < max D(x, s)
€ X

Because of the assumption (&)

D(s) = max D(x, s) = max D(e, s) = max [es -#8(e)] >0 ,
X € €

(18)
D= min D(s) >0 ,
8

and, since
max [es - #(e)] = max Zk[es - #(e)] = max [xs - txﬂ(e)] ,
€ X b'e

the min-max theorem yilelds the representation,
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D = min max [xs - £ _#(e)] = max min [xs - £ 8(e)] !

(19) ) X X 3

i

max [B(x) - Z,0(e)]
X -

The restriction of the regret function, D(e, s), 1s assoclated
with the degenerate (pointwise) partition of I's pure strategies. De-
velopments 1n connection with the sequence games of Sectlon 3 suggest that,
in certain structured games, 1t may be of interest to consider modifications
of regret associated with more general partitions of I's bure strategiles.
Letting = be a function of € whose values partition I's pure strate-
gles, T a subset of S, define the T-envelope of maximum risks on the
partition n,

(20) 6T(x) = inf max es

seT e|n(e)
and define the regret of a strategy s, relative to the use of T with
the knowledge of =n(e), to be es - ET(n(e)) (cf. [8], [18]).

§3. THE SEQUENCE GAME, GV

GN will denote a game consisting of N successive plays of G
where the cholces of pure strategies 1n the component games are completely
unrestricted, II's choice in each component is allowed to depend on 1's
choices in previous components, and the loss is taken to be the sum (or
average) of the losses of the component games.

The component G will be considered purely from the point of
view of the normal form and the terminological accumulation will be reduced
by referring to pure strategies in the component G as moves. (The re-
sults of the paper will find their most immedizte application to games
where I's pure strategies are moves in the ordinary senss.)

Denoting non-randomized move sequences in GN by the direct
product of the m-vectors representing moves in the component games and in-
troducing the abbreviations

b 1 v "
£ = e g’ =
(1) r=1, 2, ... 1
a7 N
_€- - Eu 9; - 9_'_“ s
N . s N .
the total loss of any play in G° will be dencted by the function

(2 ) RN (E_) g ) - z ELZU;\:
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In the sequence game the unsymmetric treatment of the players will
be continued. It will not be necessary to introduce strategles for I since
the class of results to be obtalned will hold uniformly in the move sequences
of I. The present and following sectlions are exceptional only in that it
1s sometimes technically convenient to consider certain linear functions of
II's sequence risk which would be readily interpretable in terms of strate-
gies for I.

The determination of GN will be completed (and II's class of
Strategies implicitly circumscribed) by specifying the extent of II's
knowledge of N. Two alternative situations are envisaged:

N

the weak sequence game, N 1s known to II at each component;
the strong sequence game, N 1s completely unknown to IT.

The principal results of later sections will involve strong strategies and
hence will apply to either form of GN. In this connection 1t should be

noted that the selection by II cof a move sequence, $ok, in the strong
sequence game can only be accomplished by the selection of a move sequence,
X:%k, in G”. Such selection is implicit in all results involving strong

strategles.

Non-randomized sequence strategies for II will be denoted by
a(e) = XTck(§¥-1) and their risk given by the natural extension of (2).
Because of the linearity of the loss in the component moves, the sequence
risks attainable by arbitrary randomization are attained by the class of
randomized sequence strategies induced by product p-measures, y(e¢) = X$yk(£¥"1),
on the possible g¢. Letting
(3) s¥(KT) - ZK(E)GK = gyk(ek—1)°k ,

k*‘ )

such strategles will be denoted by s(e¢) = X?sk(g_ and their risk by

N N
(%) RN(e, s) = 81(6) Z ekck = Z eksk(_g_k—1)
- 1

The orderings induced by maximum risk and maximum regret in GN

will be considered briefly. Letting x = ?xJ be a product p-measure on e,

(5) B L G I e A G I TC LD R

and from this it follows that

N

(6) e mmng,g)gma( z:ﬂuk)=Nmm<Nx)=NR
€ X X

= 2 1
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¢
The lower bound in (6) will be attained and s(e) will minimax risk in
N 1r sk(gk") minimaxes risk in G for each ¢ and each k < N.
That this condition 1s also necessary, i1f II has only a constant risk
minimax s in G, follows from the recursive characterization: s(e)

minimaxes risk in GN, if and only if, for each ¢ ,

k-1
k(£¥~1) < kR - E; erJ(EJ'1), k=1,2, «.., N

(7) max es <
1

€

Thls prospect of a constant risk minimax s(e) in GV makes the maximum

risk ordering quite unattractive. Alternatively, if II has non-constant
risk minimax s 1in G it follows from (7) that II has multiple minimax
s(e) 1in 6" and additional principles will be required to discriminate
among these.

A similar treatment of regret in GN is possible. Expressing
the sequence game regret by

N N N
K (K1) - S ey = 3 op(eK, K E )
1 1 1

it follows from (2.17) that

N N
max Y D(X, s¥(K71)) = max S £ D(K, K(FT))
£ 1 X 1 -
(8) N N
k
> g(x) - & 8¢ )] =ND
2 w3 ECSERINIE

The conditions under which this lower bound will be attained, the recursive
characterization of minimax regret sequence strategies and the reasons for
dissatisfaction with the maximum regret ordering exactly parallel their
risk counterpart.

A classification of 1II's strategies will be based on their
degree of dependence on 1I's prior moves. Those in which this dependence
is unrestricted will be called recursive strategies. The subclass in which

sk is a function only of the empirical distribution of I's prior moves,

k-1

(9) e S e K=1,2, coo

will be called symmetric and denoted by s(E) =j(¥sk(Ek'1). For intro-
ductory investigations and comparisons, the class of strategies which are
not properly recursive will be distinguished. Such strategies could be
used by II 1in the absence of any information about I's past moves,
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wi1ll be called product strategles and represented by X?sk. Product strate-
gles in which all components are ldentical will be called power strategies
and denoted by the common component (or by [s]N).

For power strategles, the risk (4) reduces to a linear functicn

of EN,
N
“~(10) RN(E, s) = 2; eks = ENs > B(EN)
1
with equality if and only 1f s 1s Bayes against EN. Thus even if II

were restricted to power strategies, advance knowledge of EN would en-
able II to attaln an average risk across the N gemes which is equal to

the Bayes risk in a single game where I wuses the randomized strategy EN/N.

This suggests considering the regret assoclated with the ignorance of the
partition function EN, In the light of the possibllity of using power

strategies,

: N
(1) M, 5) = 3 H*(H) - @)
1

It should be noted of this modification of regret and, more
generally, of any modification 1nvolving the partition function EN, that

N

N N
BT(EN) = inf max E: €k3k = inf max [eksk - ﬁ(ek)] + 22 a(ek)
seT EyiEN : seT EFIEN : ]

and hence that in dealing with any
N
S Kk _ T

1

it may, without loss of generality, and will, without further comment,

henceforth be assumed that

(12) g(e) = min €eAd = 0 for each e
J
In the rest of the paper the modified regret (11) will be used
almost exclusively. It has the advantages of simplicity and single game
interpretability over the modification based on the envelope risk func-

tion of recursive strategiles,

N
€ksk(£¥-1)

(13) ﬁN(EN) = min max

2 Mt G
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In order to relate the results of later sections to those obtainable in
connection with the latter modification, it is of interest to prove

THEORRM 1. s M(EY) > s (BY) - (m - 1)'/25'/2 3

PROCOF. Letting Q be a p-measure on the N! permutations of
EN, the min-max theorem and the use of conditional expectation yield

N N
N k k, k-1 k k, k-1
ﬂ(EN)=mh1mm £ €8 (e ) = max min E "5 (e )
s Q Z B Qs 21: v
N
(%) = max min A A 1 ek']]sk(ek")
Q s Z QQ - -
N
- max ol e 15| &£

If P 4is uniform on the N! permutations,
8P[ek |_gk“] = (B - By -k )

EN - Ek'1 has the same distribution as EN'kH and (14) yields the lower

N
(15) oN(EY) > > £, #(E"/r)
1
For =1, 2, «.., N -1 it follows from (2.10) and
m m
> EU/N = Y El/r

1 1

that
(2) 2o (%) - (5-F) @
(16)

EB(T) %“%N"‘Ef{

|B

It can easily be verified (and is noted in [5] pp. 182-3) that

S O AU =




(@l
O
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and from this and two applications of the Schwarz inequality

o 2, 1/2
g5 5 [ (3 ) |

N

T

(1)

IA

- [\/J =)
S¥33
A4, FL

From (16) and (17)

N
Z KPE(Er/r) > E(EN) - (Z P—Y/Q/Q)(m _ 1)1/2 IB‘
1

and the proof of the theorem 1s complete.

§4. MINIMAX MODIFIED REGRET ORDERINGS IN GN

The results of later sections afford indirect proofs of theorems
on the efficacy of recursive strategies optimal in the weak (or 1in a certain
natural strong) ordering based on the modified regret (3.11). Exact char-
acterizations are obtainable in the form of recursive progrzms and, in a
slight generalization of Matching Pennles, explicit solutions are exhibited.

Some obvious properties of modified regret may be ncted. Con-
sideration of the m power moves for I shows that the meximum is non-
negative for each recursive s,

N
(1) DN(§)=max[Zeksk(£k")_a(EN)] > 0

€ 1

(It will later be seen that N—1/2IN(§) 1s bounded away from zero.) The
same consideration shows that the relative minimum of DN(g), over the
class of II's product strategies, 1s of the order of magnitude of N,

N N
(2) D(lesk) > max [e N g(Ne)} ND(Z sk/N) >ND .
1

1
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It is a most important conclusion of this paper that recursive
8 do not necessarily suffer from the weakness (2). Letting N denote
the minimum of DN(g) over the class of II's recursive strategies,
N
(3) ﬁ‘=MnDWg)=Mnmw-[}je%k@b*)_uﬁh} ,
8 8

€

- — 1

a byproduct of the proof of Theorem 4 consists in the exhibltion of a weak
symnetric strategy, s(E), such that Dﬁ(g) < (nzm/2)1/2N1/22B . A simi-
lar byproduct of Theorem 6 uniformly improves on this result and implies
that

(1) DV < (em)'/2n1/2 |

The problems of the exact determination of DN and a minimizing
8 have, in principle, a simple recursive solution. It follows from the
definition of a recursive s that DN has the representation

DN = min max [€1s1 + min max [egsg +

s ¢! 52 €2

+ min max [eNsN - E(EN)} . ] ] ,

sV N

and hence that minimizes DN(§) if for each 5?'1 and each r = N,
T=1) minimizes

3
N-1, ..., 1, sr(g

+ +
max [ersr + min max [er ]sr L cee

€r SP+1 eI'+1

(6)
+ min max [eNsN - ﬂ(EN) } e ] ]

SN N

Denoting the minimum with respect to s¥ of the expression (6) by

VN(ET'1), the sr(g?'l) minimizing (6) may be taken to be the symmetric
8, minimax in the auxillary game

(7) €S + VN(EP°1 + €)

Moreover,

VN(Er_]) = min max [ersr + VN(EP)]
T T
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and the min-max theorem ylelds

v (ETT)

max [ux") o & VED
XI" X

PPVN(ET) = FERTY L RN s (EY))

(8)

with FY an abbreviation for the operator which it replaces, and hence
‘the representation,

(9) oV - W) = 'R ... P s (EY))
from which follow the useful lower bounds,
N
(10) N > max [Z g(xk) - E‘X a(EN)] > max {Na(x) - ;5[ ]N ﬂ(EN)]
X = X X

— 1

These bounds could have been obtained more directly from

max DN(_e_, 8) = mex &, DN(_e_, s)
€ X =
(11)
N
= max [Z xX ﬁxsk(_g_kq) - & Z(EN)} .
X = .S

— 1

The weaker of the bounds (1¢) can be used to obtain a more ex-
plicit lower bound for DN which esteblishes the optimality, in the order
of magnitude of their modified regrets, of the strategies of Theorems &4
and 6.

. Considering the covering of X" by the closed sets Xj =
(x | xAJ = 8(x)], (2.4) insures that no single Xj covers and consequently
there exlsts some X, in X such that s(xo) has determinations ¢ and
o' with

2 = 2
(12)  n® =N Z IBV(o - o) = > (o - 0l) x4 >0
o 1

THEOREM 2. If A satisfiles (2.4) there exists x
satisfying (12) and for any such X

]
0

V> M(x,) - £y s(EY) > (2x) /2072,
(x,)
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PROOF. For any such Xqs Nﬂ(xo) - ﬁ(EN) > max[(NxO - EN)c,
(Nx, - EN)a'] and, representing this maximum by the average of the sum and
absolute difference, ‘

(13) £ [m( >-¢(EN>]>
x N o - tho

N IEN(G - a')]/2

Because of the assumption that h 1s positive, the random variable
EN(c - 0') 1s asywptotically normal with mean 0, variance Nn®, and
the absolute moment of the standardized variable approaches that of the
standard normal which is (2/x)1/2- Thus

(14) o 1B (e - el /2 = (2x)7 /202

[xo

and the bound of the theorem follows from (10), (13) and (14).

Theorems 4 and 6 exhiblt a strong recursive s* for which
(15) DMNe, s%) < N'/2(6m)'/2 |5 .

Theorem 2 and this result suggest ordering strong strategies by

N
(16) U(s) = sup N°1/2DN(§) = sup max N'1/2 [ E: eksk(gk'1) - ﬁ(EN) s
N N eN ]
since they insure that
(17) h(en)”1/2 < inf U(s) < (6m)'/2 | B|
s

No program for strong strategies optimal in the ordering (16) has been

found and, after concluding the present section with an example 1n which
weak optimal strategies can be obtained explicitly, much of the rest of the
paper is devoted to a comparatively simple class of usable strong strategies.

EXAMPLE 1. MATCHING m-SIDED PENNIES®

[1/p, o 0 . . . 0
0 1/p2 0 e 0 0
A=| o 0 1/p3 co+ + 0 Jo<pyi=1,2,...,m, }: Py = 1

| © 0 0 e 1/pm
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Here

g(w) = min wi/pi ,
i

p 1In Y 1s the unique min-max strategy for II and has the constant risk
1, pin X 1is the unique max-min x and pAY = 1 for all j.

The auxillary games (4.7) can be solved explicitly by a backward
-Induction. At stage N the 1-th row of the inutility (4.7) is expressible
as y?/pi - 8(E"" 4+ €(1)) and defining ug >0 by

wy/py - o(E 4 eq1)) - max - o (B 4 (1)

it follows easily from the concavity of & in general and the particulars
of the example that

i}

2

Zp EI(EN_1 + eN) - min Z(EN“‘ + €)
) €

(1)
<o(ET 4 p) - s (EVT) -

Consequently

max [Y?/pi p(E" 4 e(i))] 2 max - g(EN" 4 (1))

and 1s minimized unlquely by

m
Al (-2 ) s,
1

(2)

pi[1 + B(EN_] + e(1)) - ?fpia(EN_1 + eN) ] ,

with the minimum being the constant risk of yN in the auxiliary game,
1 - er(EN’] + eN). A similar argument applies at each, including the
induction, stage and ylelds at stage r that the i-th row of (4.7) is

expressible

N
(3) yi/pi + |[N-»- ¢ N-rg (EP—] + (1) + Z X )j\ R
(p] r+l

that its meximum with respect to 1 1s minimized uniquely by
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N
i . -1 x
i = Py [1 c‘i’[p]N_rﬁ(Er +<~:(i)+I§1 ¢ )
(%) N
gr-! k ,
T Eppyti-re ! + % e )}

and hence that the minimum 1s the constant risk of yr in the auxiliary
game,

N
(5) N-r+1 - ¢ ﬁ(Er“] + 2: K )
[p]N-T+1 r

r=T depend also on N, hence define a

It may be noted that the y (E
sequence strategy only in weak GN, and a more complete notation would

make this explicit.

In view of the apparent complexity of the strategy (4) it is of
some Interest to note that it could be constructively attained by the
following compound randomization: choose ¢ with distribution that in-
duced on the values of

N
2 e
r+1

by the product p-measure [p]N'P, for each fixed ¢ wuse the strategy
yr]g with

r _ r-1 -1
(6) yi|§ = Py [l + g (E + e(i1) + &) - Zpﬁ(EF + € + g)J

Since E(Er'1 + e(i) + ¢) = p(EFT 4 t) unless y(Er'] + t) determines a
unique column j and 1 = j, it follows from (6) that yrlg = p when
y(Er'1 + ¢) 1s not unique, assigns probability 1 to the column j
associated with },T(EP"1 + ¢t) when that column is sufficiently pre-eminent,
and is in general an Iinterpolate between p and the j-th column defined

by

(7) Yi|. = Py

with
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Taking r equal to 1 in (5) it follows that
N
(8) DN=N—Z[]N6(Zek) :
p 1

and hence that, in this example, equality holds in (4.10). Since [p]N

assigns positive measure to each ¢ and

£ e o) - 0

(p

for any s, the sequence strategy y(E|N) defined by (4) has the modified
regret for all EN, a fact which could also have been inferred from
the behavior of the yr(Er_j) in the auxiliary games. The general bounds
on DN, (L.4) and the class of lower bounds of Theorem 2, have appropriate
speclalizations which assert (assuming 1/p1 > .. > 1/pm) that

1/2
R et ) B LR EE

These bounds could be much improved but serve to illustrate the order of
magnitude of the asymptotic evaluation.

The program for finding the v(ET) envisaged in (4.8) could
be carried out directly as follows. Consider the maximization in FN in
the stages, over xN such that ﬂ(xN) = C, then over 0 < c¢ < 1. For the
former, each x? > cpy and

Z(XN) - &£ y Z(EN—1+ eN) <c
.

(10)
- [cpjﬁ<EN'1 +e(j))+ (0 - cpj)ﬂ(EN")}

where j 1s the index of a column attaining 6(EN"). Equality holds in
(10) if x? = ij and since the coefficient of ¢ on the right is non-
negative, the latter maximization is accomplished at c¢ = 1, yielding

(11) A s EY)) = 1+ e s (N1 4 Ny

Because the maximizations in the operators are attained for x not depend-
ing on the values of other eJ, an easy 1iteration 1s possible and yields
the result (5).
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§5. THE H, u CLASS OF RECURSIVE RESPONSES

If 8 1s a Bayes response (2.9), the recursive strategy for GN
with sk(§¥°]) = s(Ek“l) for k =1, 2, ... has some interesting aspects.
It is the strategy usually attributed to II in the "method of fictitious
play" ([3], [15]) evaluation of a zero-sum G. It was noted in [15] that
alternative use of s(Ek) (which exceeds the concept of a recursive
strategy) lmproves the convergence rate of the evaluation and it will be
seen in Section 6 that

N
S Xs(EX) < o (BY)

1

If s were uniformly continuous on X it would be possible to conclude
from this that

N
S Ks(E) <o (@) + o)

1

uniformly in e. Unfortunately s 1s necessarily discontinuocus and the
conclusion is easily shown to be false for any A satisfying (2.4). (It
will be seen in Section 8 that in certain non-finite games neither of these
objections will continue to apply.) The present section defines and ex-
amines a class of sequences of responses, s*k, which induce responses
uniformly continuous on X for each k, weakly monotone in k for each
X, and, under appropriate conditions on H (in addition to (1)), con-
verging weakly in k to s for each x, with first k-differences con-
verging to zero in norm, uniformly in Xx.

k

ILet H k =20, 1, ... be a non-decreasing sequence of positive
numbers such that hk = Hk/k k=1,2, ... 1s a non-increasing sequence,
(1) o< <H < ... ' >nf > ...

Introduce the abbreviation A%Y = A% - AT and 1et u be any p-measure on
the unit m-cube, Z = [z = (z], cee, zm) | o< zy < 1], such that, for
each q < r and each t1 < tg, the distribution function of za9%
satisfies the Lipschitz condition,

(2) wlz |ty < 2a%/ 1A% < £) < L(t, - t,)

Letting o be a Bayes response (2.9), which is pure-strategy valued and
such that o(cw) = o(w) for each ¢ > 0, define for each k = 1, 2,
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m
K _ k-1 _ 1
(3) g**(w) = Zuo(w + H z) on {w l E; Wy o= k - 1J
1
It may be noted that s*k is independent of the ambigulty in the choice
of o since o 1is amblguous at w + BTy only if (w + HK=12)897 = o

for some q 7 r, and for each fixed w, Hk’1, qQ, r, the set of =z

satisfying this equation has p-measure zero by (2). Since the range of o
is the columns of A, s*k may be represented somewhat more explicitly,

n
s*k(w) = z: AAju [z | olw + Hk"]z) = Aj }
1
(34) n . m
. -1,]
= ZA%(P—-—A‘I{-_{«E) on Zwi=k—1
H
1 .

For fhe comparison of different terms of the sequence (3) it is
convenient to consider the sequence of responses induced on the common

domain X,

s*K(x) = s+ (0 = 1)x) = E ok - 1)x + H'2)

(5) i

& o(iz) if k =1

E o(x - 15 2) 1 k>
Letting & = o((k - 1)x + B2 - (kx4 Hz) it follows from

S kx + HYz)a > > HO(x - 1)x + B 'z)a

that [kH¥™' - (k - 1)HS]Jxa > 0 for each z and hence it is easily veri-
fied that
(6) xs %< x] > xs+¥* 1 (%]

k-1

Tt further follows from (2.11) that xo(x + h¥ 'z) - xs(x) < mh Bl and

from (2.15) that this difference is zero if

m
k-1 2 2
2? (h Zi) < d(x)

From the latter,
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(7) xs*¥(x) = s(x) 1f n¥' < '/25(x)

A constructive proof of the continuity of s*k[x] is obtainable
from the definition of the o-function and the assumption (2) on u. Be-
cause of the homogeneity of the o-function it will be convenient to obtain
this as one of the byproducts of a lemma which will furnish a main tool in
the proof of Theorem 3 in Section 6.

ILEMMA 1. If w and w' are m-vectors, ¢ 1s a
pure strategy valued, positive-homogeneous Bayes
response and u satisfies (2), then

2
| €ow + 2) - Eolw' +2)] <L 5 [B] |w' - vl

PROOF. Letting Tjk =lz | o(w+2) =243, a(w' + 2) = Ak],
Z“ci(w +2) - Eﬁci(w' + z) 1s expressible as

Jjk
J#k
and
(8) |goq(w+2) - gow +2) < 3 |Agk1[u(Tjk) + (T 5]
Jj<k
However, for z in Tjk 1t follows that (w + z)AJX <0< (W' + z)aJK
and hence that
(9) wadK < zaKd o yipdk
From (2) and (9) at most one of “(Tjk) and u(Tkj) is positive and

(10) (T ) + u(Ts) <L (v - wadK /143K oL e - v

The bound of the lemma follows from (8), (10) and an elementary computation
verifying that

> 1ad%| < |B] n®/
j<k

Assuming without loss of generality that |B] > a >a8,, > .0 >a,_ = 0,

i1 = Yi2 ~ Tin
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2 (g5 - ay) - Zaij I

]

> 148K

J<k Jj<k Jj<k Jj<k

n n

= 2: (n - j)aij - z;(k - ayy
j=1 K=1
n

=), (n + 1 - 2r)air < |B] 2: (n +1 - 2r)
=1 r<(n+1)/2

< IBl n®/4

thus completing the proof of the lemma.

) It should be noted that the covering of Tjk by a non-null
zAkJ—interval (9) 1s apt to be loose for n > 2. This weakness of Lemma 1
will be effectively remedied in Part II where Lemma 2 will, for a different
condition on 4, yield a bound which does not depend on the number of
IT's strategies.

The use of Lemma 1 with w = x/hk’1, w! = :v('/hk'1 shows that the
risk vector s*k[x] satisfies a Lipschitz condition in each component,

2
(11) |s*¥(x] - s#*K(x1)] <1 B || lX =X K> 1
h

The choice, w = x/hk", w! = x/hk, ylelds the uniform bound on the first
k-difference

2

x| <L B Bl HE'BTE]:T]

-
\

(12) |s*K[x] - s=

§6. MODIFIED REGRET OF RECURSIVE STRATEGIES s*(E)

This section considers strong recursive strategies 8* obtained
from sequences of responses (5.3) by evaluation at Ek“1,

(1) sRET) - 2 o(E s E ) k-, e,

Theorem 3 will exhibit explicit uniform bounds for EN(EJ s*), the

difference between the risk incurred by s* in the sequence game GN,

N
(2) Rl(e, s%) = > Kaul(gT) |
1
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and the risk 6(E') which could have been attained had II known N eand
I's N-cumulation EN at each stage and had minimized his risk over the
class of power strategles by the use of [s(EV )N

N

(3) s(EN) = Y ¥s(EN) = min ENs .
)

1

An important tool in the proof of Theorem 3 and in the motivation
of the strategy (1) is an algebraic identity for the form

N
1
which 1is obtainable from a summation by parts and 1s easily verified
directly,
N-1

N-1
2: €ksk - ENSN . 2: E¥‘1(sk _ sk+1) . 2: ek(sk _ Sk+1)
1

1

(%)

= T1(§) + TE(E) + T3(§)

with the Ti functions defined by positional correspondence.
tra-recursive strategy with s® = s(EX), T, (s)
and each of the terms of T, (s) + T (s)

For the ex-
attains its minimum @ (EY)

is non-positive. Thus the non-
available sequence strategy X s(Ek) would lead to a non-positive regret

and this fact creates considerable Interest in recursive strategies which
"estimate" X?s(Ek).

The choice (1) of s* 1is in part motivated by the following
heuristic consideration of the Ty T, (s) < 0 when = S(Ek-1) and

might be expected to remain moderate wheq ¥ - s (Ek k
function near s; such a choice would also insure that T is near its
minimum. T would be moderate if the difference vector sk(Ek Ty -
s¥*1(EX) 15 small which would follow if s¥[x] is sufficiently continuous
in x for each ¥k and has small k-differences for each x. It was seen

in Section 5 that the s* have qualifications of this type and Theorem 3
displays precise bounds on 1ts performance.

with the s

THEOREM 3. If s* is any recursive strategy (1), H

satisfies (5.1), u satisfies (5.2), and 8 = Z“ iz,
then for each N and e

N
- 1V |B] < DN(e, s¥) <H NoB| + L 1;— ( E: ’%Z _.2%,) |B|
H H
1
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PROOF. It will be convenient to use a form of (%) involving
N+1
3 ’

N N N
(5) Zeksk _ ENSN+1 + z Ek—](sk _ Sk+1> + z €k(3k _ sk+1)
1 1 1

k

K-1,) = 6%, (5) permits the repre-

Introducing the abbreviation c(Ek" + H
-sentation

N
DN(_E_; E*) - EN gu0N+1 _ g(EN) + Z Ek—1(8“0k _ 8uok+1) +
1

N
; ek(c‘fuok - 5“0k+1),
(6)

o

N
e {ENGNH _ g(EN) . Z Ek—l(ck _ Ky
1

N
S k(oK - oktT) ]
1

As a contribution to both bounds of the theorem it follows from
(2.11) that

(7) 0 < B a(EY) < - H2leM! - o (EY))

ck+‘), whence by

From the definition of of, EX(X - K1) > - HXz (X -
N+
> 0,

summation by parts on the right and the use of the bounds, H“I

Yzao
zo® < |zl |B],

N

E: B (X - K1) > 1z - HO2e' -

1

(8) N
S - B Dzek > - HY |zl |3

1

From (6), (7) and (8), DN(E, X?ok) > - uN lz|l |B] for each z and the
lower bound of the theorem follows upon taking expectation with respect

to u-.
From Ekq(ok - ok+]) < - Hk°1z(ak - K x - 2, ..., N, 1t
follows by summation by parts on the right that
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N N
(9) Z Ek—'l (Uk _ ak+] ) < HNZUN+1 _ HTZO'Q - Z (Hk _ Hk-] )zak'f'] ,
1 2

and from (9) and the upper bound (7) that

N
ENGN+1 _ G(EN) . }: E#—l(ck _ ck+1)
1

(10) HNZG(EN) - H'ze° - E: (Hk - Hk-1)zokH

IA

WY |zl |B|

IA

whence the first part of the upper bound of the theorem follows by expecta-
tion with respect to u.

The term
N
k, k K+1
E, ) el -
1

is alone in that there is no interesting upper bound for the integrand
which 1s uniform in € for.each 2z. The expectation of the summands,
KsX(EX-T) - s*k+1(5k)], could however be partitioned into a continuity
term and a difference term which could then be bounded by the use of
(5.11) and (5.12). Any such bound can be slightly improved by a direct
application of Lemma 1 with w = B /HET!, wt = EX/HX. With this identi-
ficat&on, Wy - w£ is by (5.1) non-negative if e? 0 and non-positive

if ei = 1,

and the conclusion of the lemma 1s that

2
(12) ek{s*km“") - sfk”mk)} <L |3 {k

-1 k-2 ]
HK-1 K

The second part of the upper bound of the theorem follows from (12) by
summation with respect to k and the proof of the theorem is now complete.

§7. CHOICE OF H, u IN s*(E)

For any H, u satisfying (5.1) and (5.2) abbreviate the upper
bound of Theorem 3 by
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> N
(1) w1 1 (Y 2 -5 ) |l
; H H
For fixed u 1t will be shown that UN and

sup N—1/2UN

1

admit simple minimizing H 1in the respective classes of weak and strong
H. The resulting minimums are increasing functions of 16 and the mini-
mum of the sup of this product over all A satisfying (2.4) is attained
when u 1s uniform on Z. This cholce of u and the associated strong

H for which

sup N“1/2UN
N

1s winimal yield Theorem 4 as a corollary to Theorem 3.

By minimizing successively with respect to H', H®, ceey HN'l,

within the constraints (5.1) it follows that

N
(2) 2, 2/H > 2N/HY with equality ire H' - B2 - ... - gV ,

1
and hence that UM 1s bounded below by & linear form in KV and 1/HN,

2
(3) N, W) > [HNB + L%N/HN} 18] > N'/2[1n2e1'/2 |5
with equality iff H 1s the weak Hy with
1/2

(%) Hy = By = .. = B} = (In?/ue] ' y1/2

To obtain a strong H winimizing

sup N"I/EUN

N

consider first the class of strong H with o <
sup N*' /20N - if a=0 or =). For such H

N N
1im N1/ Z -?Eg-e-limNue Z k1/2 _k ,
; H a N : a
(5)
- 2 y1/2 2
1im [N 1/QHNB E;-E_W_ ] = pa -1, 2 1 ’
N Lo b oo
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and hence .
sup N°'/20% > TIm w1 /20N » [ea + 3 L n®/sa ] IB| .
N N
However, for Hk = ozk‘/2 =1, 2, «.s, it follows from
N N / N / . /
2 2 -1/2 -i/2 B 1/2
(6) z -I:[Y =3 Z < = f t dt = 3 N
1 1 o}

that N"}/QUN < [6a + 3Ln2/ha] |B| for each N, and hence that this
choice of H minimizes

sup N /QUN
N

in the class with
5 N-1/2HN .
N

Since 8a + 3Ln°/ka > (31026172 with equality iff a = [3Ln2/se]'/2,

(7) swﬁp N"/EUN(_P__I, p) > [311‘126]1/2 |B|

and this lower bound 1s attained from below for the strong H with

1/2
(8) HX = [31n2/ke] @ k'/2 K =1, 2,

The upper bounds (3) and (7) are increasing functions of 1Le and
wlll hold renewed interest after a specification of u. Before doing this
it may be noted that the attaining Hy in (3) and H in (7) satisfy

UN(_}L Uv) ~J3 UN(_I:I_N: H), Hk = *3k/N Hll\é

Thus the bound attained by the strong strategy s* determined by H ex-
ceeds by the factor J3 the bound attained by the weak strategy §§ de-
termined by L{-N’ and s* 1s less conservative than §_f\§ for k < N/3

and more conservative for k > N/3.

The assumption that L 1is minimal for a given u satisfying
(5.2) yilelds

(9) L(p, A) = max sup u[t1 < za97/ 1A% < ta]/(t2 - t,)
qQ,r t,<t,

and

sup 8L(u, A)
A



BAYES RISK IN REPEATED PLAY 125

(over the class of A satisfying (2.4)) 1s expressible as

(10) 8 sup sup u[t] < za < t2]/(t2 - t1) ,
a t. <t
1-"2
where a 1s the generic m-vector with |a] = 1 and not all a; of the

same sign. It may be verified that the expression (10) does not increase
in the change from u to the symmetrification of u under coordinate
permutation, and hence that the attempt to minimize it may be confined to
the class of symmetric u. Here 8 =m 5uz] and from

<za <t >ult, -a <z, <t,]

=8, =0>a >-1, it follows that

£
oy
]
o
&
I
&
n
1
]

sup ult, < za< t,) > nlt, < z, < t,]

1 - -

and hence that
(11) sup 6L(u, A) > m( 8“21) p> m/2 ,
A

where p 1s the essentlial sup of the p-density of z, and the second
inequality comes from the fact that, for fixed p > 1,

1/p
?L’uz1 > f z,p dz, = 1/2p
o)
However, if u 1is taken to be uniform on Z, SLZ1 = 1/2 and assuming
without loss of generality that a, =1,
m m
ulty czact] = & w [t1 -2 B S e Sty - )z | gy, Zm]
2 2

< Eu(tg-t1)=t2—t1 ’

80 that the lower bound of (11) is attained for this choice of u.

For p wuniform on Z, Le =m/2 by (12) and the preceding. The
optimal weak Hy of (4) are then given by H§ = [n2/2m]1 QN‘/2
k =1,2, ..., N, and for the weak sy thereby defined it follows from
(3) and Theorem 3 that

1/2 1/2
(13) - N'/2(n2n/8] / 1Bl < DV(e, ) < N'/2(n2m/2] / |B|
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The lower bound can easily be improved to zero by noting the non-negative-
ness of E?[ck - ak+‘] in Section 6. A more important improvement will
consist in a treatment of g& parallel to Theorem 6 which will show that
n may be taken to be 2 in the strategy and bounds, regardless of the
number of II's pure strategles.

The optimal strong H of (8) are, for u uniform on Z, given
by

1/2
(1) H¢ = [3n%/2m] K /2 K=1,2, oo

and the behavior of the resulting strong strategy s* 1s the most Iimportant
single result of this paper. As a corollary to Theorem 3 via (1), (8),
and (14),

THEOREM 4. If u 1is the uniform measure on the
m-cube Z, H satisfies (7.14), o(w) minimizes
wo for each m-vector w and s*(E) 1s defined by
s*k(Ek") = Zi“cx(Ek'1 + Hk'1z), ¥ =1, 2, «v., then
for all N and ¢,
1/2
- n'/? [3n2m/8 } B

N

1/2
< ZS KoK (EK-T) _ g (EV) < n'/2 [3n2m/2] IB|
1

As in the case of §§ and the bound (13), Theorem 6 will furnish the uni-
form improvement that, quite irrespective of the number of II's pure
strategies, Theorem 4 remains true when the n of the strategy and bounds
is taken to be 2.

PART II. NON-FINITE GAMES
§8. NOTATION; EXTENSIONS; BEHAVIOR OF X? s(E571)

In non-finite games where the Bayes response 1s sufficiently
smooth, the generalization of the recursive strategy s with sk(£¥'1) =
S(Ek—1) has maximum modified regret of lower order than N'/2, The treat-
ment of such games 1s essentially simpler and, indeed, preceded and moti-
vated the construction of s* for finite games. Section 8 extends the
structure and notation of Part I to a class of non-finite games, briefly
consider the degree of extenslon of the results of Part I and investigates
" some aspects of the behavior of the generalized X? S(Ek'1).
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Let M denote the set of 1I's pure strategies, € represent a
generlc pure strategy and the p-measure assigning probability 1 to e.
Let N and & do the same for II's strategles and let II's inutility be
glven by

(1) Al >0 on Mx N

o]
€
As 1n Section 2 it is convenient to parametrize II's strategles by their
risk, lettlng o denote the generic element of the set of functions on

M, [A§|5 in NJ]. The scalar product, eg = Z. o, 1s then the value of

o at €, the loss resulting when II wuses o¢ and e obtains. Within
this parametrization randomized Strategies for II will be denoted by s

and defined by

(2) €s = & €0 = & AE

where y 1s the generic p-measure on a fixed Sigma-algebra of subsets of
N which includes the points o¢ and, for each €, the inverse image under
Ag of the Borel subsets of the real line.

Letting W Dbe the class of measures w each of which is con-
fined to some finite subset of M, X the subset of p-measures x in W,
define

(3) wo = & o

The Bayes envelope is then the function on W,

g(w) = inf wo
o

It will be assumed that this infimum is attained for each w and hence
that there is at least one Bayes response, o(w),

(L) wo(w) = 8(w).

To consider GN with a non-finite component game, notation de-
fined by natural extension will be freely transported from Part I. The
notation and arguments of Section 3 thru (3.16) are capable of direct trans-
lation and the proof of Theorem 1 fails only because of the possible extent
of the domain of EN, hence will apply to the finite-M games of Section 9.
In thils connection, and because of extensive future usage, the translation
of (3.9) is notable. Ek'] 1s that element of W with
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"(e) = [number of e‘, e2, cee, ek", vhich equal €]
(5) k_’ .
= Z EJ(e) k=1,2 ... :
1
The material proper to 3Section 4 on the mwodified regret ordering
in weak G has the same translation capabilities thru (4.11). Theorem 2

falls only because (L.12) does and the translation of its proof (and of .
(4.10)) shows that the existence of an Xo» Such that c(xo) has deter-
minations ¢ and ¢! for which ha(xo) = & le(oa - ¢')]% >0, implies

X
the principal conclusion of that theorem, °

DV - inf sup [zz k(g#—1) - ﬁ(EN)]

(6)
> No(x,) - £ N g(EV) > (2x)""/2ny'/2

*o

The developments of Sections 5 and 7 and part of the proof of
Theorem 3 will be used in connectlion with the proof of Theorem 6 in Section
9. In the more general context of the present section it will be of inter-
est to consider some implications of the identity analogous to (6.4),

N N-1
(7) Z Eksk - ENSN " Z E:l((sk _ sk+1) s
) .

1

concerning the behavior of the recursive strategy Xh s(Ek and of the
extra-recursive strategy XN s (EX).

As when the component game 1is finite, it follows from (7) that
the latter has non-positive modified regret,

N
(8) 2; ¥s(EX) < g (EY)

1

N N

Letting ¢'" denote the order reversal of ¢,

N N
(9) > oe¥s(ER) = Y K - BT
1

1

and from this representation 1t follows, as in connection with the proof
of Theorem 1, that
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N N
Zp 3 fS(E) = Y £, 8(E/r)
1 1

(10)
N
< oV(EY) < max > Ks(EX) .
JEN T

Turning to X? S(EX7"), 1t 1s again more convenient to consider
the variant of (7) which involves SN+1 and yields the representation

i

N N
> K@) e (E) = Y Ee(E*T) - s@))
! 1

(11)

IN

N
> FlsE!) - s(@))
1

This upper bound suggests the investigation of conditions under which there
exists a Bayes response 8 which is continuous in the sense that

(12) 1im els(x) -~ s(x + te)] = o
t=0*

It 1is easily established that the existence of a dominant deter-
mination of s(x) 1s a necessary condition for (12). For, 1if s 1is a
non-dominant determination of s(x), t > 0, s' and €' such that
xs' = 8(x) and e'(s - 8') > 0, then it follows from

te's(x + te') + #(x) < 8(x + te') < (x + te')s' = te's' + g(x)

that e'ls - s(x + te)] > €'(s - s'), hence is uniformly bounded away from
zero.

If o 1s a dominant Bayes response in the sense that, for each
X, o(x) 1s a dominant determination of s(x), a sufficient condition
that o satisfy (12) is the sequential compactness of the class of risk
functions, (o(x) | x € X}, relative to polntwise convergence on M. That
the 1imit in (12) exists follows from the easily established monotonicity
in t of eo(x + te), that the 1limit o' of o(x + tde) for a sequence
tJ approaching 0 1s Bayes wilth respect to x follows from
x[o(x + te) - o(x)] < teo(x), and that elo(x) - o'] = 0 1s insured by
the dominance of o(x).

By restriction to the class of non-finite games where a dominant
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Bayes response o exlists and satisfles a Lipschitz conditlon of order
a > 0 uniformly in x, 1t 1s assured that there exists a finite constant
L. such that

e{c(x) - o(x + te)] < L’() E t)

-

(13)

for all t > 0, €, x .

Within this class of games the modified regret of the recursive strategy
X? o(EX7)  1s readily bounded by the use of (11) and yields

THEOREM 5. If there exists a dominant Bayes response
o satisfying (13) for a > 0, then

N N
o < DN(_S, Xy U(Ek")) - Y KB saE) <1 Tk
. 1

1

The following example shows that Theorem 5 1s not vacuous for
@ < 1, and thus that X$ c(Ek'1) is sometimes extremely good for the
purpose of reducing maximum modified regret.

EXAMPLE 2. SQUARED DEVIATION ON THE UNIT SQUARE. Let M and
N be unit intervals, AZ = (e - 6)2. Then o 18 in the collection of
[(e-5)2105551] and

Xg = Zx(e - 6)2 = ﬁx(e - gxe)2 + gxe - 5)2

Hence the unique Bayes strategy with respect to x has eo(x) = (e - txf)e
and a short calculation shows that the left hand side of (13) is given by

2
[ () ] e e

8o that (13) is satisfied with L = 2, a = 1.

This example may be contrasted with the game on the unit square
with Az = |le - &|. Here es(x) = iy le - 8] with respect to any
p-measure y on ©& assigning probability 1 to the interval of medians
of the distribution x (the set of numbers & such that x[0, &),

x(8, 1] < 1/2), and it may be verified by consideration of two possible
€, (0, 1, 0, 1, ...) and (1, O, 1, O, ...), that for any determination
of s(x)

oup (e, 33 02 ) > 3 [2g1] >0

=
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§9. UNIFORM IMPROVEMENT OF THEOREM 4 WHEN M I3 FINITE

When M consists of m elements €, a generalization of Theorem
4 can be developed under conditions vacuously satisfied by finite games.
The e wlll be represented by the m-space basls vectors and G differs
from the G of Part I only in that the set of o 1s an arbitrary, rather
than a finite, subset of m-space.

For convenience the existence of attaining o, (8.4%), will again
be assumed as Will the existence of a finite bound on the variation of the
Bayes response,

(1) Bl = sup |s(w) - s(w')| < =

w,w!
These assumptions, together with (8.1), permit the use of the analogue of
(3.12),

(2) g(e) = min eo = min AZ = 0 for each € ,
a o)

without loss of generality in dealing with modified regret.

By considering the class of u which are uniform distributions
on certain subsets of Z (instead of the class satisfying (5.2)), a func-
tional substitute for Lemma 1 will be obtained from the examination of the
effects of a simple class of transformations of the integral tu o(w + 2).
The special case of u uniform on Z will then combine with the natural
generalization of the proof of Theorem 4 to yield Theorem 6.

For any subset 2Z' of Z which is contained in a subspace of
linear dimension m' and has positive m'-dimensional Lebesgue measure
A(Z'), define Hoy by the density

(3) dug, /X = 1/A(2') on Z', O otherwise
The following lemma will then apply to any w of this type.

IEMMA 2. If tor ¢ >0, w and w' in W, T 1is
the transformation on 2!,

Tz = (W' + z)/c - w ,
then, foreach 1= 1, 2, ..., m,

8u ci(w +2z) - Zu

A oi(w' +2)

zl
< Bl [‘ - uy (T2') + ' (1 - c)+] .
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PROOF. Expressing zci(w' + z) as a Lebesgue integral with
integration variable v, transforming via 2z = Tv and using the homo-
genelty of o, noting ci(w + 2) > 0 and the domination of Hor DY

MA(ZY),

Zﬂi(W’ + Z) = f Gi(W' + V) W% = Cm' f i('w' + Z) ——(-ZT—)-
VA TZ!
(%) '
> o Jf (w + z) dug,
TZ!
Partitioning Z' by TZ',
(5) og(w v 2) < 1 = ugy (@] 1Bl + [ oylw+ 2) dupy

TZ!

whence by subtraction the difference of the lemma is bounded above by

(6) [V - uy (121 1Bl + (1 - ) f oy (W + 2) duy, -
WA

1
The proof is completed by usi the bound (1 - ¢™ )* |B| for the integral
ing g

!
in (6) then weakening by (1 - c® )" = (1 = c)"(1 + ¢+ ... + cm'—1) <
m' (1 -c¢)F
The rest of this section will be devoted to applications of Lemma
2 to the particular case where Z' = Z.

Z - TZ 1is the subset of Z such that c(wi + Zi) - wi falls
outside the unit. interval for at least one 1. Hence

m 1
W 1 + W
i i
1 -y (TZ) < zz Koy [ 2y <—g - Wy O Zy >—(p—— - W, ] ,
1

and since each zy has the uniform distribution on (0, 1), the bound of

Lemma 2 1s in this case bounded above by

+

(1) lBl[‘Z‘ (—wgi- W) 5 (wwi-l—;ﬁi"-) cn0 - o)
1 1

By taking c¢c = 1 1in (7) (and in (7) with w and w' inter-
changed) there follows a uniform strengthening of the bound deducible from
lemma 1,

(8) | Z”Z o(w + 2) - Zuz o(w' + z)| < |B| |w' - w] .
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This can be used with w and w' 1identified as for (5.11) and (5.12) to
obtaln the strengthening of thelr respective particularizations to the
case p = ug-. For Xk > 1

(9) B AT~ S
(10) ls*K(x] - ¥ [x]| < |B| [.JE - _ng.] .
h h

For all k > 1 such that mh¥ < 1, (10) may be distinctly improved by

direct applications of* (7). For w and w' as for (5.12) and c = hk°1/hk,

k
k+1 h

(11) Si[X}‘S{"’[X}S‘B]m[]-;E:T] )
while from the interchange of w and w' and c = h]'{/hk"1 it follows
that the negative of the left hand side of (11) has the same upper bound,
and hence
(12) |s¥K1x] - s« x]| < |B] m |1 - n

) X} - X < m —hjz_-:r
The possibility of distinct improvement in the bound (12) as compared with
(10) follows from the fact that (1 - n¥/n¥7'] = D' - (x - 1)ES1 /xS <
¥~ by (5.1), while the bound (10) will be of order of magnitude k172
when the Hk are of order k1/2.

The most important use for Lemma 2 will be to bound

tu Z ek(ck - oK)
1

in the speclal case u = Koo As in Section 6 the bounds obtainable from
the use of (9) and (10) (or (12)) can be slightly improved upon by direct
applications of (8). Taking w = Ek'1/Hk’1, w! = Ek/Hk, there follows
from (8) and (6.11) a generalization and improvement of the particulari-
zation of (6.12),

e Koty - o) | < i3] | ]

whence by summation with respect to k

N N
(14) Z“Z Z ek[ (X7 + B Nz) - o (BX + sz)] < |B| (Z .I:I?k. - -ﬁ%)
! 1
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The bound (14) can be further reduced for sufficliently large N
by a substitute for (13) which is obtained directly from (7). For k >1
the choice of ¢ = Hk/Hk'1 yields

- Kl kK =1y qeKH! [ . ( -Hk—l *l
(15) e { (BY) - s (Ek)}ngl [ o= () ?__)

ard this improves on (13) iff k - 2 > KT By bounding the left hand
side by |B| when k = 1, 1t follows that

N

N-1 N

k-1

o) X ek ek g gm [0 Y Ree (0 - ) ]

H H
1 1 2

Since 1 - Hk_1/Hk = (ka - ka'1)ka < 1/k, the second term of this bound

is 0(ln N) and when the H  are of order kT/2 it is easily verified
thet the bound (16) is asymptotically two thirds of that given by (14).

Noting that the proof of Theorem 3 used the finiteness of the
class of II's pure strategies only thru the implied existence of o(w)
attaining 6(w) and the bound (6.12) for

N
kX, k kK+1
8u 2: e (0" - o )
1

it follows that the explicit assumption of the existence of o(w) and the
bound (14%) prove that for u = u, the conclusion of Theorem 3 with n = 2
applies to s* with

g K (BXTy - z, o(EX71 4 HET'2)
z

FPurther, the investigation of Section 7 of the behavior of the resulting
upper bound with respect to cholce of H 1s immediately applicable and
yields the promised improvement and generalization of (71.13),

N
(17) 0 < ZZ K sz o (El'{—1 + f %? z) - G(EN) < N1/2 Jem |B] ,

1

as well as that of Theorem &4,

THEOREM 6. If My is the uniform measure on the
m-cube 2 and o(w) minimizes wo for each m-vector

W, then;for all N and ¢,
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- N2 15w B

N
k -1 6k
SZ]‘E?/’“ZU(ER + /-E-z -ia(EN)gNl/2 \/—6711—]}3] .

As was noted in Section 8, the natural generalization of Theorem

1 1s applicable here and, with Theorem 6, proves

g: ekcfuz U(Ek—] +\/—~6-—lra;-‘z) —9N(EN)
1

(18)
SN’/E(Jm -1 +Jém )IB[

That of Theorem 2 proves that the strategy of Theorem 6 incurs a maximum
modified regret optimal in order of magnitude if there exists X, satlsfy-

ing (4.12).

APPENDIX. SEMI-DYNAMIC GAMES
It may be of interest to compare the behavior of s* in N
(Theorems 4 and 6) with that of an estimated Bayes response, X§S(Ek—1L
in a context suggested by the interpretation of problem 13 (i1) in [(10] as

a semi-dynamic finite game in which I wuses a fixed but unknown power
(x)¥ 1n 6N In this context sequence strategles for II are

strategy
simply ordered by their (unknown) expected inutility and for each recursive
EP

N N

ZZ eksk(_e_kq) = £ z xsk(_e_k"]) > Ne(x) .
1 1
The expected risk of the estimated Bayes response, ‘X$ s(Ek’]L

is

N N
(1) g > KsET) = Y Exs(E)
1 1

Letting PX be the [x)¥ measure of the set of E such that

>m: (Eljf/k - xi\)e > a%(x) ,
1
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it follows from (2.15) that

k

(2) Exs(EX) < (1 - PX) 8(x) + PX(8(x) + |B|] = 8(x) + PX |B]

and hence that
N-1

N
(3) £> Ks(EX) < No(x) + (1 - Pk) |B|
1

The Pk may be bounded in many ways and for the present purpose it is
important only that, for each fixed X,

is a finite constant. The latter follows from the bound

2

PX < 3[% (Eljf/k - xi)e} /a* (x)

and a routine calculation verifying that the right hand side 1s a bounded

function of k'z, and thus proves

THEOREM 7. For each fixed x, there exists C(x) < »
such that

N
o<z > eKg(E) - Ne(x) < C(x) |B] .
X1
1

The bound of the theorem may be replaced by a uniform bound.
Using (2.11) and the fact that the expectation of the scalar product of
X - Ek/k with any fixed m-vector is zero, (2) may be replaced by

m +

(1) £ xs(B) < 9(x) + gZ[xi—E};_/k} 3]

1

Since
m

2 % [Xi - EJ:f/kT - 3 Ixy - Bkl
1 .

1

while by two applications of the Schwarz inequality
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m m
(5) S £l - Bl <2 Y <120 - xR <k P - )R
1 1

it follows from (1) and (4) that
N N-1
£ > Ke(E) - wx) < [1 fsm-1)EY k"/e] 1B ~
1 1

(6)
' Y/ /2 g

(m -
The quantity bounded in the theorem and in (6) is a modification
of regret natural to the semi-dynamic game. ZIF(E, X? s(Ek'l)) exceeds
it by the non-negative term, N8 (x) - ZB(E&). By (2.10), Ng(x) - E(EN) <
(Nx - EN)S(EN) and an argument similar to the previous paragraph proves

(7) 0 < M(x) - £3(E) < 5w - 1)'/2N/2 |B]

If s(x) has a unique determination o(x), (2.15) can be used to improve
(1) to

(8) Ne(x) - E£0(BY) = £ENo(x) - s(B)) < n |B] PN,

while if s(x) has multiple determinations, not identical a.e. (x), 1t
follows from (7) and Theorem 2 that No(x) - ﬁﬂ(Eﬁ) is of exact order N
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This example (and the general program 1t exemplifies) was suggested b
the knowledge that Professor Stein had obtained optimal resultgg%n If*Latch}Z
ing Pennies [3s].

ADDED IN THE PROOF

Professor Blackwell has recently noted, [2s], that Theorems 1 and
3 of [1s] yield a sequence strategy for II in (G )z, sk(ek'1, ok'1)

Z - o130 = 7
depending on 53 " and g# 1 only thru k=1 edol  and EE;1, such that

N
Prob.{liml% I:Z ekck~z(EN)}= O}: 1 .

1
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For purposes of comparison, it is Interesting to note that his proof can
be used to show that thls strategy satisfies

N
£ E: Ko¥ - ﬁ(EN) < (Wem + 1)N]/2IB1
1

bnder the same assumptions as for Theorem 6 of the present paper.
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