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Abstract

A constant rebalanced portfolio is an investment strat-
egy which keeps the same distribution of wealth among a
set of stocks from day to day. There has been much work on
Cover’s Universal algorithm, which is competitive with the
best constant rebalanced portfolio determined in hindsight
[3, 9, 2, 8, 14, 4, 5, 6]. While this algorithm has good per-
formance guarantees, all known implementations are expo-
nential in the number of stocks, restricting the number of
stocks used in experiments [9, 4, 2, 5, 6]. We present an
efficient implementation of the Universal algorithm that is
based on non-uniform random walks that are rapidly mix-
ing [1, 12, 7]. This same implementation also works for
non-financial applications of the Universal algorithm, such
as data compression [6] and language modeling [10].

1. Introduction

A constant rebalanced portfolio (CRP) is an investment
strategy which keeps the same distribution of wealth among
a set of stocks from day to day. That is, the proportion of
total wealth in a given stock is the same at the beginning of
each day. Recently there has been work on on-line invest-
ment strategies which are competitive with the best CRP
determined in hindsight [3, 9, 2, 8, 14, 4, 5, 6]. Specifically,
the daily performance of these algorithms on a market ap-
proaches that of the best CRP for that market, chosen in
hindsight, as the lengths of these markets increase without
bound.

As an example of a useful CRP, consider the following
market with just two stocks [9, 5]. The price of one stock
remains constant, and the price of the other stock alternately
halves and doubles. Investing in a single stock will not in-
crease the wealth by more than a factor of two. However,
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a ����	� ���
 CRP will increase its wealth exponentially. At the
end of each day it trades stock so that it has an equal worth
in each stock. On alternate days the total value will change
by a factor of �� �� 
�� �� � �� 
����� and �� �� 
�� �� ��� 
����� , thus
increasing total worth by a factor of ����� every two days.

The main contribution of this paper is an efficient imple-
mentation of Cover’s UNIVERSAL algorithm for portfolios
[3], which Cover and Ordentlich [4] show that, in a market
with � stocks, over � days,

performance of UNIVERSAL
performance of best CRP

� �
� � � � 
"!	# �%$

By performance, we mean the return per dollar on an invest-
ment. The above ratio is a decreasing function of � . How-
ever, the average per-day ratio, �&�'�(�)� � � 
 !(# � 
 �*&+ , increases
to � as � increases without bound. For example, if the best
CRP makes one and a half times as much as we do over a
day of 22 years, it is only making a factor of � $

, �-* �.�0/ � $
1 �

as much as we do per year. In this paper, we do not con-
sider the Dirichelet ��2��� � $2$'$ � �2��� 
 UNIVERSAL [4] which
has the better guaranteed ratio of ��3 �'�	� � � � 
 !(# � .

All previous implementations of Cover’s algorithm are
exponential in the number of stocks with run times of4 � � !	# � 
 . Blum and Kalai have suggested a randomized ap-
proximation based on sampling portfolios from the uniform
distribution [2]. However, in the worst case, to have a high
probability of performing almost as well as UNIVERSAL,
they require

4 � � !(# � 
 samples. We show that by sampling
portfolios from a non-uniform distribution, only polynomi-
ally many samples are required to have a high probability
of performing nearly as well as UNIVERSAL. This non-
uniform sampling can be achieved by random walks on the
simplex of portfolios.

2. Notation and Definitions

A price relative for a given stock is the nonnegative ratio
of closing price to opening price during a given day. If the



market has � stocks and trading takes place during
�

days,
then the market’s performance can be expressed by

�
price

relative vectors, ���� � � �� � � $2$'$ � ���� 
 � ����	��
�� , where ��� � is the
nonnegative price relative of the � th stock for the � th day.

A portfolio is simply a distribution of wealth among the
stocks. The set of portfolios is the ����� � 
 -dimensional
simplex,

� ��� �� ��
 !	� ����� �
� � � ��� � � � 1� 

$
The CRP investment strategy for a particular portfolio �� �
CRP !"�� redistributes its wealth at the end of each day so that
the proportion of money in the � th stock is

� � . An invest-
ment using a portfolio �� during a day with price relatives�� increases one’s wealth by a factor of ��$# �� �&% � � � � $Therefore, over � days, the wealth achieved by CRP !" is,

'
+ � �� 
 � +(� � �

��# �� � $
Finally, we let ) be the uniform distribution on

�
.

3. Universal portfolios

Before we define the universal portfolio, suppose you
just want a strategy that is competitive with respect to the
best single stock. In other words, you want to maximize the
worst-case ratio of your wealth to that of the best stock. In
this case, a good strategy is simply to divide your money
among the � stocks and let it sit. You will always have at
least �! times as much money as the best stock. Note that
this deterministic strategy achieves the expected wealth of
the randomized strategy that just places all its money in a
random stock.

Now consider the problem of competing with the best
CRP. Cover’s universal portfolio algorithm is similar to the
above. It splits its money evenly among all CRPs and lets
it sit in these CRP strategies. (It does not transfer money
between the strategies.) Likewise, it always achieves the
expected wealth of the randomized strategy which invests
all its money in a random CRP. In particular, the bookkeep-
ing works as follows:

Definition 1 (UNIVERSAL) The universal portfolio algo-
rithm at time � has portfolio �* + , which for stock � is, on the
first day *�� + � �2��� , and on the end of the � th day,

* � + �-,/.10 � ' + �2�0 
43 ) �2�0 
,�. ' + �2�0 
53 ) �6�0 
 � � � � � � � $2$'$
(Recall that ) is the uniform distribution over the ���1� � 
 -
dimensional simplex of portfolios,

�
.)

This is the form in which Cover defines the algorithm.
He also notes [4] that UNIVERSAL achieves the average
performance of all CRPs, i.e.,

Perf. of UNIVERSAL �
�(

+ � �
�* + # �

# �� + �87 . ' � �2�0 
53 ) �2�0 

4. An efficient algorithm

Unfortunately, the straightforward method of evaluating
the integral in the definition of UNIVERSAL takes time ex-
ponential in the number of stocks. Since UNIVERSAL is
really just an average of CRP’s, it is natural to approximate
the portfolio by sampling [2]. However, with uniform sam-
pling, one needs

4 �)� !(# � 
 samples in order to have a high
probability of performing as well as UNIVERSAL, which
is still exponential in the number of stocks. Here we show
that, with non-uniform sampling, we can approximate the
portfolio efficiently. With high probability ( �9�;: ), we can
achieve performance of at least ��<�8= 
 times the perfor-
mance of UNIVERSAL. The algorithm is polynomial in�'��= , >@?�A(��'�B: 
 , � (the number of stocks), and

�
(the number

of days).
The key to our algorithm is sampling according to a

biased distribution. Instead of sampling according to ) ,
the uniform distribution on

�
, we sample according to C + ,

which weights portfolios in proportion to their performance,
i.e., 3 C + � �� 
 �

'
+ � �� 
,/. ' + �6�0 
43 ) �6�0 


In the next section, we show how to efficiently sample from
this biased distribution.

UNIVERSAL can be thought of as computing each com-
ponent of the portfolio by taking the expectation of draws
from C + , i.e.,

*�� + � 7 . 0 � 3 C + �2�0 
 � E !D/E/FHGJI 0 �/K (1)

Thus our sampling implementation of UNIVERSAL aver-
ages draws from C + :
Definition 2 (Universal biased sampler) The Universal
biased sampler, with L samples, on the end of day � chooses
a portfolio �M + as the average of L portfoliosdrawn indepen-
dently from C + .

Now, we apply Chernoff bounds to show that with high
probability, for each � , MN� + closely approximates *O� + . In order
to ensure that this biased sampling will get us M � + � * � + close
to 1, we need to ensure that *O� + isn’t too small:

Lemma 1 For all �QP � and �9P � , * � + � �2�(��� � � 
 .



Proof. WLOG let � � � and � �� � � �� � $2$'$
� �+ � 1

, be-
cause this makes * �+ smallest. Now, * �+ is a random variable
between 0 and 1 (see (1)), and the expectation of a random
variable

1 P � P � is ��� ��� � , �+ Prob � � ��� 
43 � . Thus,

* �+ � E !D/E/F6G I 0 � K � 7 �+ C + � � �0 � 0 � ���  
	 3 � $
Furthermore, � �0 � 0 � ���  � � � � 1 � $2$'$ �

1 
 � �� � � 
 � , is a
shrunken simplex of volume �� � � 
 !	# � times the volume
of
�

, since
�

has dimension � � � . The average perfor-
mance of portfolios in this set is �� � � 
 + times the average
over

�
, because for each of � days, a portfolio in this set� � � 1 � $2$'$ �

1 
(� �&�	� � 
 �� performs �� � � 
 as well as the cor-
responding portfolio �� � �

. So the probability of this set
under C + is ��� � 
 !(# � ��� � 
 + and,

* �+ � 7 �+ �&�� � 
 !	# � �&�� � 
 + 3 � � �2�(� � � � 
 $ �

Combining this lemma with Chernoff bounds, we get:

Theorem 1 With L � � � � � � � � 
 > ?�A(��� � �/: 
 � = � samples,
the Universal biased sampler performs at least �� � = 
 as
well as Universal, with probability at least �� : .
Proof. Say each *�� + is approximated by M/� + . Furthermore,
suppose each M�� + � *�� + �� � =.� � 
 . Then, on any individual
day, the performance of the �M + is at least �� � =.� � 
 times
as good as the performance of �* + . Thus, over

�
days, our

approximation’s performance must be at least �&���$= � � 
 � �
���= times the performance of UNIVERSAL.

The multiplicative Chernoff bound for approximating a
random variable

1 P � P�� , with mean � , by the sum �
of L independent draws is,

Pr I ��� ����� 
 � L K P�� # �������� * � $
In our case, we are approximating each *�� + by L samples,
our lemma shows that the expectation of *�� + � �

is � �
�'�(� � � � 
 � �'�	��� � � 
 , and we want to be within � � =.� � .
Since this must hold for � � different *�� + ’s, it suffices for,

� # ��� � *�� � � � � ! � � �!� P :
� � �

which holds for the number of samples L chosen in the
theorem.

�

The biased sampler will actually sample from a distribu-
tion that is close to C + , call it " + , with the property that

7 . � C + � � 
 �#" + �
� 
 � 3 � P = +

for any desired = +%$ 1
in time proportional to > ?�A ��'& . It is

not hard to verify that the estimates from " + and C + differ by
at most a factor of �� � = + 
 . By applying Chernoff bounds
as described above the Universal biased sampler performs
at least �&�9��= 
 ��9� = + 
 as well as Universal (note that = + is
exponentially small).

5. The biased sampler

In this section we describe a random walk for sampling
from the simplex with probability density proportional to

( � �� 
�� '
+ � �� 
 � +(� � �

��# �� � $
Before we do this, note that sampling from the uni-

form distribution over the simplex is easy: pick � � �
reals � � � $'$2$ �

� !(# � uniformly at random between 0 and 1
and sort them into ) � P $2$'$ P*) !(# � ; then the vector�') � � ) � �+) � � $2$'$ � ) !(# � �#) !	# � � � �+) !(# � 
 is uniformly dis-
tributed on the simplex.

There is another (less efficient) way. Start at some point� in the simplex. Pick a random point ) within a small dis-
tance : of � . If ) is also in the simplex, then move to ) ;
if it is not, then try again. The stationary distribution of a
random walk is the distribution on the points attained as the
number of steps tends to infinity. Since this random walk
is symmetric, i.e. the probability of going from � to ) is
equal to the probability of going from ) to � , the distribu-
tion of the point reached after � steps tends to the uniform
distribution. In fact, in a polynomial number of steps, one
will reach a point whose distribution is nearly uniform on
the simplex.

In our case, we have the additional difficulty that the de-
sired distribution is not the uniform distribution. Although
the distribution induced by

(
can be quite different from the

uniform density, it has the following nice property.

Lemma 2 The function
( � �� 
 is log-concave for nonnega-

tive vectors.

Proof. The function � >@?�A ( is convex. The derivative
of >@?�A ( at �� is is the vector

(-, � �� 
 � � "/.0 � !" � � " �0 � !" � � $'$2$ �
"/10 � !" � 
 .

The matrix 2 ,3, of second derivatives has � � � th entry � "/4 "650 � !" � � .
Thus 2 ,3, � � (7, � (8, is a negative semidefinite matrix, im-
plying that >@?�A ( is a concave function in the positive or-
thant.

�

The symmetric random walk described above can be
modified to have any desired target distribution. This is
called the Metropolis filter [13], and can be viewed as a
combination of the walk with rejection sampling: If the
walk is at � and chooses the point ) as its next step, then



move to ) with probability ����� �� � 0 ��� �0 ��� � 
 and do nothing
with the remaining probability (i.e. try again). Lovasz
and Simonovits [12] have shown that this random walk is
rapidly mixing, i.e. it attains a distribution close to the sta-
tionary one in polynomial time.

For our purpose, however, the following discretized ran-
dom walk has the best provable bounds on the mixing time.
First rotate

�
so that it is on the plane � � 1

and scale it
by a factor of �'� � � so that it has unit diameter. We will
only walk on the set of points in

�
whose coordinates are

multiples of a fixed parameter : $ 1
(to be chosen below),

i.e. points on an axis parallel grid whose “unit” length is : .
Any point on this grid has ��� neighbors, 2 along each axis.

1. Start at a (uniformly) random grid point in the simplex.

2. Suppose
� �
	 
 is the location of the walk at time 	 .

3. Let ) be a random neighbor of
� �
	 
 .

4. If ) is in
�

, then move to it, i.e. set
� �
	 � � 
 � )

with probability " � ����� �� � 0 ��� �0 ��� � 
 , and stay put with
probability ��#" (i.e.

� ��	 � � 
�� � �
	 
 ).
Let the set of grid points be denoted by  . We will ac-

tually only sample from the set of grid points in
�

that are
not too close to the boundary, namely, each coordinate � � is
at least �! � + for a small enough = . For convenience we will
assume that each coordinate is at least �� � ! � + � . Let this set
of grid points be denoted by  . Each grid point � can be
associated with a unique axis-parallel cube of length : cen-
tered at � . Call this cube � � � 
 . The step length : is chosen
so that for any grid point � ,

( � � 
 is close to
( �') 
 for any) � � � � 
 .

Lemma 3 If we choose : ��� ��� � � �� � ! � + � + then for any grid point�
in  , and any point ) � � � � 
 , we have

�� � � 
 # � ( � � 
 P ( �') 
 P �� � � 
 ( � � 
 $
Proof. Since ) � � � � 
 , ����� � � ) � � � � � P : . For any price
relative ��� , the ratio ��� ���� � � � is at most ����� � � 5� 5 . This can be
written as

������
� � � � ) � � � � 
� � � ������ �� � :� � 


Since each coordinate is at least �� � ! � + � we have that the

ratio is at most �� � �B:(��� � � 
&
 . Thus the ratio
0 ��� �0 � � � is at

most �� � �/:(� � � � 

 + and the lemma follows.

�
The stationary distribution  of the random walk will

be proportional to
( � � 
 for each grid point

�
. Thus when

viewed as a distribution on the simplex, for any point ) in
the simplex,

 �� ) 
 �&� � � 
 # � P 3 C + �') 
 P! ��') 
 �� � � 


The main issue is how fast the random walk approaches
 . We return to the discrete distribution on the grid points.
Let the distribution attained by the random walk after 	
steps be "�" , i.e. "�" � � 
 is the probability that the walk is
at the grid point � after 	 steps. The progress of the random
walk can be measured as the distance between its current
distribution " " and the stationary distribution as follows:

�@� "#" �$ �@� � �
� E�% � "#"	� � 
 �& �� � 
 �

In [7], Frieze and Kannan derive a bound on the conver-
gence of this random walk which can be used to derive the
following bound for our situation.

Theorem 2 After 	 steps of the random walk,

�@� " " �& �@� � P � # ')(1 G �+* 1-, G�. � ��� � � 
 �

where / $ 1
is an absolute constant.

Corollary 1 For any = + $ 1
, after

4 � �	� � � � � � 
 � >@?�A ! � +� & 

steps, �@� " " �0 �@� � P = + $
Proof (of theorem). Frieze and Kannan prove that

� �@� " " �& �@� � P�� #1'32�(54 �1-6 � >@? A �
 � �87  �9 � 3 �

/�: �
where / $ 1

is a constant, 3 is the diameter of the con-
vex body in which we are running the random walk,  � is����� � E�%  �� � 
 , : is a parameter between 0 and 1, and

 #9 � �
� E;%=<�>5?5@ * AB* C .�D�EF.>G?5@ * AB* C .�.&H 9

 �� � 
 $
In words,  �9 is the probability of the grid points
whose cubes intersect the simplex in less than : frac-
tion of their volume. The parameter 7 is defined1 as����� � " + � � 
 >@? A1I & ��� �J ��� � , where " + is the initial distribution on
the states.

For us the diameter 3 is 1. We will set : � �� and choose: small enough so that  K9 is a constant. This can be done
for example with any : P �� � ! � + � . To see this, consider

the simplex blown up by a factor of �L i.e. the set �L � �� ) � ) � 1 � % � ) � � �L  $ Now the set of points with integer
coordinates correspond to the original grid points. Let M be
the set of cubes on the border of this set, i.e. the volume
of each cube in M that is in �L � is less than �� . Then by

1The N we use here differs slightly from the definition in [7], where

NPORQ1SUTUVXW &�Y V�Z[ Y V�Z1\^]U_ W &+Y V�Z[ Y V-Z . However, the theorem holds with either

choice of N .



blowing up further by 1 unit, we get a set that contains all
these cubes. But the ratio of the volumes is

� �L � � 
 !
���L 
-! � �&� � : 
 ! $

Also, the performance of these border grid points can only
be �� � : 
 + better than the corresponding (non-blown up)
points in the corresponding points. Thus  9 P �&� � : 
 ! � + �� for :<P �� � ! � + � .

Thus the bound above on the distance to stationary be-
comes

� �@� "�"�  �@� � P�� # 'U(54 �1 >@? A �
 � � � 7 �

/ : �
Next we observe that by our choice of starting point (uni-
form over the simplex) 7 is exponentially small. Thus we
can ignore the second term in the right hand side. Finally
we note that  � is at least : ! � �! � + 
 + , which simplifies the
inequality to

�@� " " �& �@� � P � # 'U(54 �1 ��� � � 
 �

Our choice of : (=
4 � �� ! � + � + ) implies the theorem (with a

different / )).

�

5.1. Collecting samples

Although generating the first sample point takes4 � � �	� � ��� � � 
 � 
 steps of the random walk, future samples
can be collected more efficiently using a trick from [11]. In
fact, the position of the random walk can be observed ev-
ery

4 � � � � � � � 
 � 
 steps to obtain sample points with the
property that they are pairwise nearly independent in the
following sense. For any two subsets

� � M of the simplex,
two sample points * and 0 satisfy

� '�� � *1� � � 0 � M 
 � '�� � *1� � 
 '�� � 0 � M 
 � P =
This can be used to reduce the number of samples. We

collect completely independent groups of samples, each
sample consisting of pairwise independent samples, and
then compute the average of the groups.

As an implementation detail, one can do the random
walk as follows. Choose an initial point at random on the
simplex, as described earlier, and then choosing an individ-
ual component at random. Increase (or decrease) that com-
ponent by : , and then decrease (or increase) the remaining
components by :��(��� � � 
 . Use the same rejection technique
to decide whether to actually take that step in the random
walk.

6. Conclusion

We have presented an efficient randomized approxima-
tion of the UNIVERSAL algorithm. Not only does the ap-
proximation have an expected performance equal to that of
UNIVERSAL, but with high probability ��J� : 
 it is within�� � = 
 times the performance of universal, and runs in time
polynomial in >@? A �L , �2� = , the number of days, and the num-
ber of stocks. With money, it is especially important to
achieve this expectation. For example, a

,�1��
chance at 10

million dollars may not be as valuable to most people as a
guaranteed 5 million dollars.

While our implementation can be used for applications
of UNIVERSAL, such as data compression [6] and lan-
guage modeling [10], we do not implement it in the case
of transaction costs [2] or for the Dirichelet ��2��� � $2$'$ � �'��� 

UNIVERSAL [4].
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