Multiple Regression Model

INSR 260, Spring 2009 Bob Stine

Overview

Multiple Regression Model (MRM)

Estimators, terminology

similar to SRM

Assumptions

new plots

Inference

new test

Prediction

similar to SRM

Examples

(from Bowerman, Ch 4)

- Fuel consumption
- Sales management

Multiple Regression Model

- Equation has \mathbf{k} explanatory variables Mean $E Y|X = \beta_0 + \beta_1 X_1 + ... + \beta_k X_k = \mu_{y|x}$ Observations $y_i = \beta_0 + \beta_1 x_{i1} + ... + \beta_k x_{ik} + \epsilon_i$
- Assumptions (as in SRM)
 - Independent observations
 - \circ Equal variance σ^2
 - Normal distribution around "line"

$$y_i \sim N(\mu_{y|x}, \sigma^2)$$
 $\epsilon_i \sim N(0, \sigma^2)$

 β_0 , β_1 , ..., β_k , σ^2

Least Squares

- Criterion
 - $_{\odot}$ Find estimates that minimize sum of squared deviations min_a $\Sigma(y_i a_0 a_1 \times_{i1} ... a_k \times_{ik})^2$
- Fitted values, residuals
 - Fitted values (on the line) $\hat{y} = b_0 + b_1 x_{i1} + ... + b_k x_{ik}$
 - Residual deviations $e = y \hat{y}$
- \odot Standard error of regression (estimate of σ^2)

$$\sigma s^2 = \sum e_i^2/(n-k-1)$$

- degrees of freedom

Goodness of Fit

- R-squared statistic
 - Square of correlation between Y and Ŷ
 - Percentage of "explained" variation
 - Always increases as variables are added to equation

$$R^2 = \frac{\text{Explained SS}}{\text{Total SS}}$$

- Adjusted R-squared
 - Will not increase unless s² gets smaller
 - Difference from R² increases as k increases

$$\overline{R}^2 = 1 - \frac{s^2}{\text{var(y)}}$$

Checking Assumptions

- Scatterplots of Y on X₁, Y on X₂

Data

Scatterplot matrix

y = weekly natural gas consumption X_1 = average temperature X_2 = chill index (wind, clouds, temp)

Correlations							
	FUELCONS	TEMP	CHILL				
FUELCONS	1.0000	-0.9484	0.8706				
TEMP	-0.9484	1.0000	-0.7182				
CHILL	0.8706	-0.7182	1.0000				

Partial vs Marginal

SRM

MRM

Summa	ry of Fit				
RSquare		0.97363			
RSquare A	RSquare Adj				
Root Mear	0.367078				
Mean of R	esp <mark>onse</mark>	10.2125			
Observation	ons (or Sum Wgts)	8			

Slopes differ

Paramete	er Est <mark>i</mark> mat	es		
Term	Estimate	Std Error	t Ratio	Prob> t
Intercept	13.108737	0.855698	15.32	<.0001*
TEMP	-0.090014	0.014077	-6.39	0.0014*
CHILL	0.082495	0.022003	3.75	0.0133*

More Diagnostics

Overall plots (MRM version of SRM scatterplots)

- Leverage plots (partial regression plots)
 - Simple regression view of MR slope, one for each slope

Inference

- Standard error of the slope is affected by correlation among explanatory variables
 - Variance inflation factor (Chap 5)Var(slope in MRM) ≈ Var(slope in SRM) VIF

$$\operatorname{Var}(b_j) = \frac{\sigma^2}{\sum_i (x_{ij} - \overline{x}_j)^2} \left(\frac{1}{1 - R_{X_j | X_{m \neq j}}^2} \right)$$

- Three equivalent methods for each estimated slope and the intercept
 - Confidence interval
 - t-statistic
 - p−value

Parameter Estimates							
Term	Estimate	Std Error	t Ratio	Prob> t	Lower 95%	Upper 95%	VIF
Intercept	13.108737	0.855698	15.32	<.0001*	10.909095	15.308379	
TEMP	-0.090014	0.014077	-6.39	0.0014*	-0.126201	-0.053827	2.07
CHILL	0.082495	0.022003	3.75	0.0133*	0.0259356	0.1390543	2.07

Overall F Test

- Test both slopes simultaneously
 - $\Theta H_0: \beta_1 = \beta_2 = 0$
 - Ratio of variance explained to remaining variation
- Test of the size of R² statistic

$$F = \frac{R^2/k}{(1-R^2)/(n-k-1)}$$

Analysis of Variance						
		Sum of				
Source	DF	Squares	Mean Square	F Ratio		
Model	2	24.875018	12.4375	92.3031		
Error	5	0.673732	0.1347	Prob > F		
C. Total	7	25.548750		0.0001*		

Prediction

- No simple plot
 - Extrapolation effect is more subtle
- Software is needed to identify extrapolation
 - Options in Fit Model to save various standard errors as well as prediction and confidence intervals
 - Add an extra row (before fitting) to get JMP to predict a new case

•				Pred Formula	StdErr Pred	Lower 95% Mean	Upper 95% Mean	StdErr Indiv	Lower 95% Indiv	Upper 95% Indiv
	FUELCONS	TEMP	CHILL	FUELCONS	FUELCONS	FUELCONS	FUELCONS	FUELCONS	FUELCONS	FUELCONS
1	12.4	28	18	12.07	0.21	11.54	12.61	0.42	10.99	13.16
2	11.7	28	14	11.74	0.25	11.11	12.37	0.44	10.61	12.88
3	12.4	32.5	24	12.16	0.21	11.61	12.71	0.43	11.07	13.26
4	10.8	39	22	11.41	0.20	10.89	11.94	0.42	10.33	12.49
5	9.4	45.9	8	9.64	0.16	9.23	10.04	0.40	8.61	10.66
6	9.5	57.8	16	9.23	0.28	8.50	9.95	0.46	8.04	10.41
7	8	58.1	1	7.96	0.22	7.39	8.54	0.43	6.86	9.07
8	7.5	62.5	0	7.48	0.24	6.86	8.11	0.44	6.35	8.61
9	•	70	8	7.47	0.33	6.63	8.31	0.49	6.21	8.73

Sales Example

Question

- Evaluation of sales representatives
- Response is annual company sales in territory
 - y measured in thousands of units

Several explanatory variables

- ▼<u>Time</u> (months) with the company
- Total sales of company and rivals in territory (potential)
- Advertising expenditure in territory
- Company's market share in prior four years
- Change in company's market share

Initial Graphical Analysis

Correlations								
	Sales	Time	MktPoten	Adver	MktShare	Change		
Sales	1.0000	0.6229	0.5978	0.5962	0.4835	0.4892		
Time	0.6229	1.0000	0.4540	0.2492	0.1062	0.2515		
MktPoten	0.5978	0.4540	1.0000	0.1741	-0.2107	0.2683		
Adver	0.5962	0.2492	0.1741	1.0000	0.2645	0.3765		
MktShare	0.4835	0.1062	-0.2107	0.2645	1.0000	0.0855		
Change	0.4892	0.2515	0.2683	0.3765	0.0855	1.0000		

Multiple Regression

Overall fit

Leverage plots

Model Summary

Overall fit

Summary of Fit	
RSquare	0.915009
RSquare Adj	0.892643
Root Mean Square Error	430.2319
Mean of Response	3374.568
Observations (or Sum Wgts)	25

Analysis of Variance						
		Sum of				
Source	DF	Squares	Mean Square	F Ratio		
Model	5	37862659	7572532	40.9106		
Error	19	3516890	185099	Prob > F		
C. Total	24	41379549		<.0001*		

Individual estimates

- Interpretation of these estimates?
- Why linear? Implications of model are very strong.

Parameter Estimates								
Term	Estimate	Std Error	t Ratio	Prob> t				
Intercept	-1113.788	419.8869	-2.65	0.0157*				
Time	3.6121012	1.1817	3.06	0.0065*				
MktPoten	0.0420881	0.006731	6.25	<.0001*				
Adver	0.1288568	0.037036	3.48	0.0025*				
MktShare	256.95554	39.13607	6.57	<.0001*				
Change	324.53345	157.2831	2.06	0.0530				

Prediction

- Conditions for another rep (not one of these 25)
 - Sales were 3082

Time with company 85.42

Market potential
35,182.73

Advertising 7,281.65

Market share9.64

Change in share0.28

Prediction results

- Plug values for explanatory variables into equation
- ⋄ Prediction $\mathring{y} = 4182$
- © Confidence interval for mean 3884.9 to 4478.6
- Prediction interval for rep 3233.6 to 5129.9
- Benchmarking implication: How is this rep doing?

Summary

Multiple Regression Model (MRM)

Estimators

partial (MRM) vs marginal (SRM)

Assumptions

leverage plots

Inference

F-test

Prediction

Software