Review Topics

INSR 260, Spring 2009
Bob Stine
Regression

Models

- Simple regression model (SRM) - marginal slope
 - Scatterplot of y on x, e on x
- Multiple regression model (MRM) - partial slope
 - Scatterplot matrix of y with \(x_1, \ldots, x_k \)
 - Collinearity, VIF
- Fitted values, residuals, errors

Assumptions

- Linear equation
- Independence
- Constant variance
- Normality
- Transformations (esp. logs)
- Durbin–Watson test, residuals
- Plot of e on \(\hat{y} \)
- Normal quantile plot

Categorical variables

- Dummy variables
- Use in seasonal models
- Interactions
Inference in Regression

Coefficients
- One slope \(H_0: \beta_j = 0 \) \(t \)-statistic, p-value, conf int
- All \(H_0: \beta_1=...=\beta_k=0 \) F-statistic (Anova table)
 - Test size of \(R^2 \)
- Some \(H_0: \text{some } \beta_j=0 \) Partial F
 - Test collection representing categorical variable
 - Test using Effect Test or by comparison of \(R^2 \) in models
 - Importance of avoiding multiple t-tests, multiplicity

Prediction
- Components of standard error
 - Random, unexplained variation (RMSE, \(\sigma_\varepsilon \))
 - Extrapolation ("distance value")
- Intervals
 - Confidence interval for mean \(\hat{\gamma} = E(Y|X_1,\ldots,X_k) \)
 - Prediction interval for individual future \(Y \) value
Exponential Smoothing

- Simple exponential smoothing
 - Geometrically weighted average of past values
 - Recursive form, updating equation: \(l_t = l_{t-1} + \alpha(y_t - l_{t-1}) \)

- Model with underlying state
 - Evolving underlying state: \(L_t = L_{t-1} + \alpha \varepsilon_t \)
 - Observation has mean \(L_{t-1} \): \(y_t = L_{t-1} + \varepsilon_t \)

- Prediction
 - Predict \(y_{n+f} \) using estimated state: \(\mathbb{E} y_{n+f} = L_n \) (same for all \(f \))
 - Error grows as extrapolate: \(\mathbb{E}(y_{n+f} - \hat{y}_{n+f})^2 = \sigma^2(1+(f-1)\alpha^2) \)

- Equivalent to IMA(1,1)
 - Exponential smoothing is special case of a non-stationary
 ARIMA model
Exponential Smoothing

IMA(1,1)
- Equation: \[y_t - y_{t-1} = -\theta a_{t-1} + a_t \]
- Predictions: \[\hat{y}_{n+1} = y_n - \theta a_n, \quad \hat{y}_{n+f} = \hat{y}_{n+1} \]

Same predictors
- Equation: \[l_t = l_{t-1} + \alpha(y_t - l_{t-1}) \]
- Predictor of \(y_t \) in exponential smooth is \(l_{t-1} \)
- Relabel \(l_{t-1} = \hat{y}_t \)
- Equation becomes: \[\hat{y}_{t+1} = \hat{y}_t + \alpha(y_t - \hat{y}_t) \]

 at \(t=n \) \[\hat{y}_{n+1} = \hat{y}_n + \alpha(y_n - \hat{y}_n) \]

 use observations \[\hat{y}_{n+1} = y_n + \alpha a_n \]
- Prediction equations agree with \(\alpha = -\theta \)

Implication
- If an IMA(1,1) looks like good fit, use expo smoothing
- If not, some other type of smoothing is appropriate
ARIMA Models

Stationarity
- Use differencing to produce stationary series

Correlation functions
- Autocorrelation function
- Partial autocorrelation function

Uses
- detect non-stationarity
- identify model
- evaluate/check residuals

Different types of dependence
- Autoregression
 - Geometric weighting of past errors, finite past observations
 - TAC decays geometrically, TPAC cuts off
- Moving Average
 - Geometric weighting of past observations, finite past errors
 - TAC cuts off, TPAC decays geometrically
ARIMA Models

Model identification
- Plots of data
- Correlation functions
 - Do residuals appear uncorrelated?
 - Box-Pierce, Box-Ljung statistics (avoid multiplicity)
 - Accumulate squared residual autocorrelations
- Selection criteria (AIC, SBC/BIC)
 - Penalized complicated models, reward for parsimonious specification

Prediction, prediction intervals
- Extrapolate form of model, recursively using predictions
 - Fill in y_{n+f} with \hat{y}_{n+f}, a_{n+f} with 0
- Predictions revert to mean
- Prediction standard errors grow toward $SD(y_t)$
General Comments

- Read questions carefully before answering

- Open textbook (no other books)
 - Buy a calculator if you want to use one.
 - No telephones, laptops, other electronics allowed.
 - Shut off ahead of time to avoid issues.

- Exam structure
 - Brief description of context of data
 - JMP output
 - Short answer
 - Multiple choice

- Get plenty of sleep the night before!