Regression Models for Time Trends

INSR 260, Spring 2009 Bob Stine

Overview

- Review categorical variables
- Polynomial trends
- Seasonal patterns via indicators
- Testing for omitted patterns: Durbin-Watson
- Prediction
- Example (from Bowerman, Ch 6)
 - Planning staffing levels for a seasonal business:
 Hotel occupancy
 - Other examples in Chapter 6 Time Series Regression

Categorical Variables

- Two special types of explanatory variables
 - Indicators
 - Shift the regression line up or down by altering the intercept of the fitted model for cases in a subset
 - Interactions
 - Alter the slope for a particular group, capturing different levels of association between y and x within subsets
- Particularly relevant test: Partial F-test
 - Used in general to test whether a subset of slopes in a regression model are zero
 - Test whether the slopes (interaction) or the intercepts (categorical slopes) differ among the groups

Forecasting Problem

Table 6.4

- Predict occupancy rates for hotel
 - ∘14 years of monthly data, n = 168
 - Forecast occupancy during the next year
 - Provide a measure of the forecast accuracy

Evident patterns

- Growth
- Seasonal
- Variation

Color-coding can also help verify the seasonality

Modeling Approach

- Decomposition (also in Ch 7)
 Data = Trend + Seasonal + Irregular
- Trend Simple functions of time that are easily forecasted, such as linear or quadratic growth
- Seasonal Repeating patterns, such as those related to weather or holidays
- IrregularMay be dependent and predictable

Initial Modeling

- Linear trend + Monthly seasonal pattern
 - Multiple regression with time trend (month = 1,2,3...) and monthly dummy variables (11 indicators, dec omitted)
- Overall fit is highly statistically significant

Summary of Fit	Analys	is of Var	iance			
RSquare	0.978941			Sum of		
RSquare Adj	0.977311	Source	DF	Squares	Mean Square	F Ratio
Root Mean Square Error	21.48822	Model	12	3327046.9	277254	600.4501
Mean of Response	722.2976	Error	155	71570.2	462	Prob > F
Observations (or Sum Wgts)	168	C. Total	167	3398617.1		<.0001*

Specific coefficients by-and-large differ

Indicator Function Parameterization								
Term	Estimate	Std Error	DFDen	t Ratio	Prob> t			
Intercept	518.86538	6.518866	155.00	79.59	<.0001*			
Time	1.953083	0.034272	155.00	56.99	<.0001*			
Month[Jan]	-27.01609	8.130527	155.00	-3.32	0.0011*			
Month[Feb]	-71.82631	8.12901	155.00	-8.84	<.0001*			
Month[Mar]	-56.13654	8.127637	155.00	-6.91	<.0001*			
Month[Apr]	25.267521	8.126409	155.00	3.11	0.0022*			
Month[May]	12.671581	8.125325	155.00	1.56	0.1209			
Month[Jun]	106.43278	8.124385	155.00	13.10	<.0001*			
Month[Jul]	229.19399	8.12359	155.00	28.21	<.0001*			
Month[Aug]	250.66947	8.122939	155.00	30.86	<.0001*			
Month[Sep]	38.216392	8.122433	155.00	4.71	<.0001*			
Month[Oct]	27.406166	8.122072	155.00	3.37	0.0009*			
Month[Nov]	-74.11835	8.121855	155.00	-9.13	<.0001*			

Effect	Tests				
			Sum of		
Source	Nparm	DF	Squares	F Ratio	Prob > F
Time	1	1	1499569.3	3247.624	<.0001*
Month	11	11	1771253.7	348.7284	<.0001*

Residual Diagnostics

- Substantial pattern was missed
 Big R² does not guarantee a "good" model
- Two residual plots are essential when have time series data:
 - familiar plot of e on ŷ
 - sequence plot of the residuals

Two Ways to Fix

- Two approaches
 - Add interactions that allow slopes to differ by season
 - Transform the response to stabilize the variance
- Log transformation
 - ∘Natural log (base e)

Can also show original on log scale (better for presenting)

Revised Model

Very impressive fit overall (on log scale)

Summary of Fit	
RSquare	0.988665
RSquare Adj	0.987787
Root Mean Square Error	0.021186
Mean of Response	6.563887
Observations (or Sum Wgts)	168

Indicator	Indicator Function Parameterization							
Term	Estimate	Std Error	DFDen	t Ratio	Prob> t			
Intercept	6.2875573	0.006427	155.00	978.26	<.0001*			
Time	0.0027253	3.379e-5	155.00	80.65	<.0001*			
Month[Jan]	-0.041606	0.008016	155.00	-5.19	<.0001*			
Month[Feb]	-0.112079	0.008015	155.00	-13.98	<.0001*			
Month[Mar]	-0.084459	0.008013	155.00	-10.54	<.0001*			
Month[Apr]	0.0398331	0.008012	155.00	4.97	<.0001*			
Month[May]	0.0203951	0.008011	155.00	2.55	0.0119*			
Month[Jun]	0.1469094	0.00801	155.00	18.34	<.0001*			
Month[Jul]	0.2890226	0.008009	155.00	36.09	<.0001*			
Month[Aug]	0.3111946	0.008009	155.00	38.86	<.0001*			
Month[Sep]	0.0559872	0.008008	155.00	6.99	<.0001*			
Month[Oct]	0.0395438	0.008008	155.00	4.94	<.0001*			
Month[Nov]	-0.112215	0.008008	155.00	-14.01	<.0001*			

- Do NOT compare R² statistic to prior model since the response variable is not the same as in the prior model
- Interpretation of slope for time
- Interpretation of dummy variables
 - Shift intercept relative to December

Residual Diagnostics

Pattern remaining?

- How should the model be improved if at all?
 - What types of variables are missing from the model?
 - What is a simple revision of the model?
- Note: text does not revise the model

Revised Model

- Model with an additional quadratic component
 - Suggests rate of growth is slowing
 - Statistically significant improvement?

Summary of Fit	
RSquare	0.989874
RSquare Adj	0.989019
Root Mean Square Error	0.02009
Mean of Response	6.563887
Observations (or Sum Wgts)	168

Indicator	Indicator Function Parameterization								
Term	Estimate	Std Error	DFDen	t Ratio	Prob> t				
Intercept	6.2724878	0.007035	154.00	891.55	<.0001*				
Time	0.0032592	0.000129	154.00	25.35	<.0001*				
Time*Time	-3.159e-6	7.369e-7	154.00	-4.29	<.0001*				
Month[Jan]	-0.041606	0.007601	154.00	-5.47	<.0001*				
Month[Feb]	-0.112111	0.0076	154.00	-14.75	<.0001*				
Month[Mar]	-0.084516	0.007599	154.00	-11.12	<.0001*				
Month[Apr]	0.0397572	0.007598	154.00	5.23	<.0001*				
Month[May]	0.0203067	0.007597	154.00	2.67	0.0083*				
Month[Jun]	0.1468146	0.007596	154.00	19.33	<.0001*				
Month[Jul]	0.2889278	0.007595	154.00	38.04	<.0001*				
Month[Aug]	0.3111061	0.007594	154.00	40.97	<.0001*				
Month[Sep]	0.0559114	0.007594	154.00	7.36	<.0001*				
Month[Oct]	0.039487	0.007593	154.00	5.20	<.0001*				
Month[Nov]	-0.112247	0.007593	154.00	-14.78	<.0001*				

Further structure?

Testing Residual Dependence

- Durbin-Watson test
 - Test whether adjacent residuals appear dependent
 - Test related to autocorrelation between residuals
 - Autocorrelation is correlation between "rows" in the data table, whereas the usual correlation is between "columns"
- Lag plot of residuals

Linear Fit								
Residual Log Occupied = 0.000194 + 0.3257149*Lag Residuals								
Summary	Summary of Fit							
RSquare		0.103026						
RSquare Adj		0.09759						
Root Mean So	quare Error	0.018336						
Mean of Resp	oonse	0.000105						
Observations	(or Sum Wgts)	167						
Paramete	r Estimates							
Term	Estimate	Std Error	t Ratio	Prob> t				
Intercept	0.000194	0.001419	0.14	0.8914				
Lag Residual	s 0.3257149	0.074819	4.35	<.0001*				

Regression summary

Durbin-Watson						
Durbin - Watson 1.3322276		AutoCorrelation 0.3147	Prob <dw <.0001*</dw 			

Adjusting for Autocorrelation

- Two reasons to adjust

 - Corrects errors in claimed statistical significance
- Comparison of forecast errors
 - Do not model dependence

$$y_{n+1} = \beta_0 + \beta_1 x_{n+1,1} + ... + \beta_k x_{n+1,k} + \epsilon_{n+1}$$

 $\hat{y}_{n+1} = b_0 + b_1 x_{n+1,1} + ... + b_k x_{n+1,k} + 0$

Modeling dependence

$$\xi_{t} = \varphi \ \xi_{t} + a_{t}, \quad Var(a_{t}) = (1-\varphi^{2}) \ Var(\xi_{t}) \le Var(\xi_{t})$$

$$\hat{y}_{n+1} = b_{0} + b_{1} \ x_{n+1,1} + ... + b_{k} \ x_{n+1,k} + \hat{\varphi} e_{n}$$

- Dependence distorts standard error estimates
 - Failure to recognize the presence of dependence produces spurious claims of accuracy.

Simple Adjustment

- Add the lagged residuals from the current model as an explanatory variable
 - Text describes more elaborate methods (p 311)

Summary of Fit	
RSquare	0.990798
RSquare Adj	0.989951
Root Mean Square Error	0.019085
Mean of Response	6.565967
Observations (or Sum Wgts)	167

Indicator Fi	unction Para	ameterizat	ion		
Term	Estimate	Std Error	DFDen	t Ratio	Prob> t
Intercept	6.2736436	0.006752	152.00	929.09	<.0001*
Time	0.0032199	0.000125	152.00	25.80	<.0001*
Time*Time	-2.932e-6	7.116e-7	152.00	-4.12	<.0001*
Month[Jan]	-0.039028	0.007362	152.00	-5.30	<.0001*
Month[Feb]	-0.112117	0.00722	152.00	-15.53	<.0001*
Month[Mar]	-0.084519	0.007219	152.00	-11.71	<.0001*
Month[Apr]	0.0397564	0.007217	152.00	5.51	<.0001*
Month[May]	0.0203076	0.007216	152.00	2.81	0.0055*
Month[Jun]	0.1468168	0.007216	152.00	20.35	<.0001*
Month[Jul]	0.2889308	0.007215	152.00	40.05	<.0001*
Month[Aug]	0.3111094	0.007214	152.00	43.12	<.0001*
Month[Sep]	0.0559145	0.007214	152.00	7.75	<.0001*
Month[Oct]	0.0394895	0.007214	152.00	5.47	<.0001*
Month[Nov]	-0.112245	0.007213	152.00	-15.56	<.0001*
Lag Residuals	0.328304	0.078043	152.00	4.21	<.0001*

- Residual plots show little remaining structure
 - Other variables are still missing. Are these important?
 - We'll ignore them for the moment and build forecasts.
 - Durbin-Watson is always OK after this correction

Forecasting

Forecast log occupancy several periods out

$${}^{\circ}\hat{y}_{n+j} = (6.2736 + b_j) +$$
 seasonal $0.00322 (n+j) - 0.00000293 (n+j)^2 +$ time trend $0.328^{j} (e_n)$ autocorr

- Autocorrelation effect drops off geometrically,
 having little influence past a few terms
- Point estimates for January, February

$$\hat{y}_{168+1} = (6.2736-0.0390) + \\ 0.00322 (169) - 0.000000293(169)^2 + \\ 0.328 (0.0456) \\ \approx 6.2346 + 0.4605 + 0.0150 = 6.7101$$

$$\hat{y}_{168+2} = (6.2736-0.1121) + \\ 0.00322 (170) - 0.000000293(170)^2 + \\ 0.328^2 (0.0456) \\ \approx 6.1615 + 0.4627 + 0.0049 = 6.6291$$

Forecast Accuracy

- More accurate in the near term because of the dependence between adjacent errors
 - Benefit of autocorrelation decreases as extrapolate out
 - Must trick JMP into making the correct intervals
 - ∞ Following are approximate intervals; JMP shown next
- One period out: use RMSE of fitted model

```
\circ \hat{y}_{168+1} \pm t_{.025,152} RMSE = 6.7101 ± 1.98 (0.0191) ≈ 6.6723 to 6.7479
```

Two periods out: inflate RMSE by $sqrt(1+\hat{\varphi}^2)$

```
\circ \hat{y}_{168+2} \pm t_{.025,152}RMSE(1+\hat{\varphi}^2)^{1/2} = 6.6291 \pm 1.98(0.0191)(1+.328^2)^{1/2}
≈ 6.589 to 6.669
```

ø m periods out: inflate RMSE by sqrt(1 + $\hat{\varphi}^2$ + $\hat{\varphi}^4$ + ... + $\hat{\varphi}^{2(m-1)}$ ≈ sqrt(1/(1- $\hat{\varphi}^2$))

JMP Calculations

Prediction interval

ŷ ± t.025 RMSE (Extrapolation) (Autocorrelation) "distance value"

Four components determine width of interval

1.t-percentile...

≈ 2 for 95% coverage

2.RMSE...

SD of unexplained factors

3.Extrapolation...

increases as forecast farther from data

4. Autocorrelation...

extrapolate residuals beyond 1 period

JMP adjusts for the first 3, but not the fourth

- Software "does not know" that we've plugged in predicted values of residuals rather than using known residuals

JMP Calculations, cntd

The autocorrelation adjustment is the square root of the expression on the bottom of slide 16

$$\sqrt{1 + \hat{\varphi}^2 + \hat{\varphi}^4 + \dots + \hat{\varphi}^{2(m-1)}}$$

This portion of the data table for hotel occupancy shows the data and columns.

							STATE OF STA	
•	Lag Residuals	Pred Formula Log	StdErr Indiv Log	Lower 95% Indiv Log	Upper 95% Indiv Log	RMSE Adjustment	Corrected 95% PI,	Corrected 95% PI,
	Residuals		LOG	marv Log		Aujustinent	33/011,	33/011,
161	-0.0146867	6.73155	0.02007	6.69189	6.77121	•	•	•
162	-0.0106001	6.86167	0.02007	6.82202	6.90133	•	•	•
163	-0.0238339	7.00171	0.02015	6.96190	7.04152	•	•	•
164	0.00338923	7.03509	0.02010	6.99538	7.07479	•	•	•
165	-0.0084815	6.77825	0.02011	6.73851	6.81799	•	•	•
166	-0.0139638	6.76228	0.02014	6.72248	6.80207	•	•	•
167	-0.0090122	6.61441	0.02015	6.57461	6.65421	•	•	•
168	0.01952859	6.73826	0.02023	6.69830	6.77823	•	•	•
169	0.04564133	6.71004	0.02069	6.66917	6.75091	1	6.66949	6.75059
170	0.015	6.62912	0.02029	6.58903	6.66920	1.0525	6.58726	6.67097
	7					1	K	

Prediction Intervals

- We need predictions of the occupancy, not the log of the occupancy
 - Predictions from model are on a log scale
- Conversion
 - Form interval as we have done on transformed scale
 - Then "undo" the transformation (here, exponentiate)

6.6695 to 6.7479 \Rightarrow $e^{6.6723}$ to $e^{6.7506}$ 790 to 855 rooms

- Interval is much wider than you may have expected from the R² and RMSE of model
 - Differences get far larger when exponentiate

Summary

- Polynomial trends are useful when lack other, substantive explanatory variables
 - Be cautious extrapolating a trend
- Dummy variables model regular seasonal effects, but the magnitude of the variation often increases with the level
- Log transformation stabilizes the variation and captures geometric growth
- Durbin-Watson statistic tests for presence of autocorrelation in underlying model errors