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Overview

@ Review categorical variables

@ Polynomial trends

@ Seasonal patterns via indicators

@ Testing for omitted patterns: Durbin-Watson

@ Prediction

@ Example (from Bowerman, Ch 6)

»Planning staffing levels for a seasonal business:
Hotel occupancy

»Other examples in Chapter 6 Time Series Regression




Categorical Variables

@ Two special types of explanatory variables

» Indicators
- Shift the regression line up or down by altering the intercept of
the fitted model for cases in a subset

= Interactions
- Alter the slope for a particular group, capturing different levels of
association between y and x within subsets

@ Particularly relevant test: Partial F-test

eUsed in general to test whether a subset of slopes in a
regression model are zero

o Test whether the slopes (interaction) or the intercepts
(categorical slopes) differ among the groups




Forecasting Problem

@ Predict occupancy rates for hotel
214 years of monthly data, n = 168
oForecast occupancy during the next year
sProvide a measure of the forecast accuracy

@ Evident patterns
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= Color-coding can also help verify the seasonality

Table 6.4




Modeling Approach

@ Decomposition (also in Ch 7)
Data = Trend + Seasonal + Irregular

@ Trend
Simple functions of time that are easily
forecasted, such as linear or quadratic growth

@ Seasonal
Repeating patterns, such as those related to
weather or holidays

@ Irregular
»May be dependent and predictable




Initial Modeling

@ Linear frend + Monthly seasonal pattern

oMultiple regression with time trend (month = 1,2,3...)
and monthly dummy variables (11 indicators, dec omitted)

@ Overall fit is highly statistically significant

Analysis of Variance

Sum of
Squares Mean Square
3327046.9 277254
71570.2 462

3398617.1

Summary of Fit

RSquare

RSquare Adj
Root Mean Square Error 21.48822
Mean of Response 722.2976
Observations (or Sum Wgts) 168

0.978941
0.977311 F Ratio
600.4501
Prob > F

<.0001*

@ Specific coefficients by-and-large differ

Effect Tests

Source DF
Model 12
Error 155
C. Total 167

Indicator Function Parameterization

Term
Intercept
Time
Month[Jan]
Month[Feb]
Month[Mar]
Month[Apr]
Month[May]
Month[Jun]
Month[Jul]
Month[Aug]
Month[Sep]
Month[Oct]
Month[Nov]

Estimate
518.86538
1.953083
-27.01609
-71.82631
-56.13654
25.267521
12.671581
106.43278
229.19399
250.66947
38.216392
27.406166
-74.11835

Std Error
6.518866
0.034272
8.130527

8.12901
8.127637
8.126409
8.125325
8.124385

8.12359
8.122939
8.122433
8.122072
8.121855

DFDen
155.00
155.00
155.00
155.00
155.00
155.00
155.00
155.00
155.00
155.00
155.00
155.00
155.00

Prob> |t|
<.0001*
<.0001%
0.0011*
<.0001*
<.0001%
0.0022*
0.1209
<.0001%
<.0001%
<.0001%
<.0001%
0.0009*%
<.0001*

Source
Time
Month

Nparm
1
11

DF
1
11

Sum of
Squares
1499569.3
1771253.7

F Ratio
3247.624
348.7284

Prob > F
<.0001%
<.0001%




Residual Diagnostics

@ Substantial pattern was missed
»Big R? does not guarantee a "good” model

@ Two residual plots are essential when have time
series data:

- familiar plot of e on ¥

- sequence plot of the residuals
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Two Ways to Fix

@ Two approaches
»Add inferactions that allow slopes to differ by season
o Transform the response to stabilize the variance

@ Log transformation
oNatural log (base e)

Overlay Plot
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Revised Model

@ Very impressive fit overall (on log scale)

Indicator Function Parameterization

Summary of Fit

RSquare
RSquare Adj
Root Mean Square Error

0.988665
0.987787
0.021186
Mean of Response 6.563887
Observations (or Sum Wgts) 168

Do NOT compare R? statistic to prior model
response variable is not the same as in the

Term
Intercept
Time
Month[Jan]
Month([Feb]
Month[Mar]
Month[Apr]
Month[May]
Month[Jun]
Month[Jul]
Month[Aug]
Month[Sep]
Month[Oct]
Month[Nov]

Estimate
6.2875573
0.0027253
-0.041606
-0.112079
-0.084459
0.0398331
0.0203951
0.1469094
0.2890226
0.3111946
0.0559872
0.0395438
-0.112215

@ Interpretation of slope for time
sRate of growth: about 0.3% per month

Std Error
0.006427
3.379e-5
0.008016
0.008015
0.008013
0.008012
0.008011

0.00801
0.008009
0.008009
0.008008
0.008008
0.008008

@ Interpretation of dummy variables
o Shift intercept relative to December

DFDen
155.00
155.00
155.00
155.00
155.00
155.00
155.00
155.00
155.00
155.00
155.00
155.00
155.00

t Ratio
978.26
80.65
-5.19
-13.98
-10.54
4,97
2.55
18.34
36.09
38.86
6.99
4,94
-14.01

Prob>|t|
<.0001*
<.0001%
<.0001*
<.0001*
<.0001%
<.0001*
0.0119*
<.0001%
<.0001*
<.0001*
<.0001%
<.0001*
<.0001*

since the
prior model




Residual Diagnostics

@ Pattern remaining?

Residual by Predicted Plot Residual by Row Plot
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Residual
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@ How should the model be improved - if at all?
oWhat types of variables are missing from the model?
eWhat is a simple revision of the model?

@ Note: text does not revise the model




Revised Model

@ Model with an additional quadratic component
> Suggests rate of growth is slowing
o Statistically significant improvement?

Summary of Fit Indicator Function Parameterization

RSquare 0.989874 Term Estimate Std Error DFDen t Ratio Prob>|t|
RSquare Adj 0.989019 Intercept 6.2724878 0.007035 154.00 891.55 <.0001*
Root Mean Square Error 0.02009 Time 0.0032592 0.000129 154.00 25.35 <.0001*
Mean of Response 6.563887 Time:l['Jime]: -3.159e-6 7.369e-7 154.00 -4.29 <.0001*

: Month[Jan -0.041606 0.007601 154.00 -5.47 <.0001%
Observations (or Sum Wgts) 168 Month[Feb] -0.112111 0.0076 154.00 -14.75 <.0001%
Month[Mar] -0.084516 0.007599 154.00 -11.12 <.0001*
Month[Apr] 0.0397572 0.007598 154.00 5.23 <.0001%
Month[May] 0.0203067 0.007597 154.00 2.67 0.0083*
Month[Jun] 0.1468146 0.007596 154.00 19.33 <.0001%
Month[Jul] 0.2889278 0.007595 154.00 38.04 <.0001*
Month[Aug] 0.3111061 0.007594 154.00 40.97 <.0001*
Month[Sep] 0.0559114 0.007594 154.00 7.36 <.0001%
Month[Oct] 0.039487 0.007593 154.00 5.20 <.0001%
Month[Nov] -0.112247 0.007593 154.00 -14.78 <.0001*

® Further structure?

Residual by Predicted Plot Residual by Row Plot

Log Occupied
Residual
Residual
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Testing Residual Dependence

® Durbin-Watson test

o Test whether adjacent residuals appear dependent

s Test related to autocorrelation between residuals
- Autocorrelation is correlation between “rows” in the data table,
whereas the usual correlation is between “columns”

@ Lag plot of residuals

Linear Fit

Residual Log Occupied = 0.000194 + 0.3257149*Lag
Residuals

Summary of Fit

RSquare 0.103026
RSquare Adj 0.09759
Root Mean Square Error 0.018336
Mean of Response 0.000105
Observations (or Sum Wgts) 167

Parameter Estimates

Term Estimate Std Error t Ratio Prob>|t|
Intercept 0.000194 0.001419 0.14 0.8914
Lag Residuals 0.3257149 0.074819 4.35 <.0001*

e1- 0.03

o
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@ Regression summary

Durbin-Watson

Durbin- Number
Watson of Obs. AutoCorrelation Prob<DW
1.3322276 168 0.3147 <.0001*




Adjusting for Autocorrelation

® Two reasons to adjust

o Improves short-term forecast accuracy
e Corrects errors in claimed statistical significance

@ Comparison of forecast errors

Do not model dependence
Yntl = Bo + [31 Xnt,1 + o0 + Bk Xn+1,k + €n+l
Unit = bo + b1 Xns11 + oo + bk Xnuik + O
»Modeling dependence
€ = (P €t + at, Var(a:) = (1-?) Var(et) < Var(e)
9n+1 = bo + by Xn+ll + o0 + bk Xn+lk + @en

@ Dependence distorts standard error estimates

oFailure to recognize the presence of dependence
produces spurious claims of accuracy.




Simple Adjustment

@ Add the lagged residuals from the current

model as an explanatory variable
o Text describes more elaborate methods (p 311)

Summary of Fit

RSquare
RSquare Adj

0.990798
0.989951
Root Mean Square Error 0.019085
Mean of Response 6.565967
Observations (or Sum Wgts) 167

Indicator Function Parameterization

Term
Intercept
Time
Time*Time
Month[Jan]
Month[Feb]
Month[Mar]
Month[Apr]
Month[May]
Month[Jun]
Month[Jul]
Month[Aug]
Month[Sep]
Month[Oct]
Month[Nov]

Estimate
6.2736436
0.0032199
-2.932e-6
-0.039028
-0.112117
-0.084519
0.0397564
0.0203076
0.1468168
0.2889308
0.3111094
0.0559145
0.0394895
~0.112245

Std Error
0.006752
0.000125
7.116e-7
0.007362

0.00722
0.007219
0.007217
0.007216
0.007216
0.007215
0.007214
0.007214
0.007214
0.007213

DFDen
152.00
152.00
152.00
152.00
152.00
152.00
152.00
152.00
152.00
152.00
152.00
152.00
152.00
152.00

t Ratio
929.09
25.80
-4.12
-5.30
-15.53
-11.71
5.51
2.81
20.35
40.05
43.12
7.75
5.47
-15.56

Prob> |t|
<.0001%
<.0001%
<.0001*
<.0001%
<.0001*
<.0001*
<.0001%
0.0055%
<.0001%
<.0001*
<.0001*
<.0001%
<.0001*
<.0001*

Lag Residuals 0.328304 0.078043 152.00 421 <.0001*%

@ Residual plots show little remaining structure
»Other variables are still missing. Are these important?
sWe'll ignore them for the moment and build forecasts.
o Durbin-Watson is always OK after this correction




Forecasting

@ Forecast log occupancy several periods out

oUnsj = (6.2736 + bj) + seasonal
0.00322 (n+j) - 0.00000293(n+j)? + time trend
0.328! (en) autocorr

o Autocorrelation effect drops off geometrically,
having little influence past a few fterms

@ Point estimates for January, February

@9168+1 = (62736—00390) +
0.00322 (169) - 0.00000293(169)% +
0.328 (0.0456)
~ 6.2346 + 0.4605 + 0.0150 = 6.7101

o1e8s2 = (6.2736-0.1121) +
0.00322 (170) - 0.00000293(170)? +
0.3282 (0.0456)
~ 6.1615 + 0.4627 + 0.0049 = 6.6291




Forecast Accuracy

® More accurate in the near term because of the
dependence between adjacent errors

sBenefit of autocorrelation decreases as extrapolate out
oMust trick IMP info making the correct intervals
»Following are approximate intervals; JMP shown next

@ One period out: use RMSE of fitted model

oJ16841 * to251520 RMSE = 6.7101 + 1.98 (0.0191)
~ 6.6723 to 6.7479

@ Two periods out: inflate RMSE by sqrt(1+¢?)

o 168+21 1 025152RMSE(1402)/2 = 6.6291+1.98(0.0191)(1+.3282)/2
~ 6.589 to 6.669

@ m periods out: inflate RMSE by
sqri(l +92 +© * + .. + ¢ 4™V = sqri(1/(1-¢2))

16




JMP Calculations

@ Prediction interval
¥ + to2s RMSE (Extrapolation) (Autocorrelation)

“distance value”
@ Four components determine width of interval
1.t-percentile... ~ 2 for 95% coverage
2.RMSE... SD of unexplained factors
3.Extrapolation... increases as forecast farther from data
4.Autocorrelation... extrapolate residuals beyond 1 period

@ JMP adjusts for the first 3, but not the fourth

» Software "does not know” that we've plugged in predicted
values of residuals rather than using known residuals

oIncrease in length of interval is very small unless
autocorrelation @ is close to 1.




JMP Calculations, cntd

@ The autocorrelation adjustment is the square
root of the expression on the bottom of slide 16

1_|_¢2_|_¢4_|__|_@2(m—1)

@ This portion of the data table for hotel

occupancy shows the data and columns.

Residuals |Formula Log Log Indiv Log Indiv Log Adjustment 95% PI, 95% PI,
-0.0146867 0.02007|  6.69189| 677121 | el ]
-0.0106001 0.02007|  6.82202] 690133 e .| e
-0.0238339 0.02015|  6.96190|  7.04152] | e ]
0.00338923 0.02010
-0.0084815 0.02011|  6.73851|  6.81799| | e ]
-0.0139638 0.02014|  6.72248|  6.80207| | e ]
-0.0090122 0.02015|  6.57461|  6.65421 | e ]
.01952859 0.02023|  6.69830| 677823 | e ]
04564133 0.02069|  6.66917|  6.75091| 1|  6.66949|  6.75059||
0.015 6.62912 0.02029 6.58903 !

=S SS eSS S

sqrt(1+phi~2) Slightly wider

=]
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Estimated future
residual




Prediction Intervals

® We need predictions of the occupancy, not the
log of the occupancy
sPredictions from model are on a log scale

® Conversion
sForm interval as we have done on transformed scale
s Then “undo” the transformation (here, exponentiate)

6.6695 to 6.7479 = 56723 g 07506
790 to 855 rooms

@ Interval is much wider than you may have
expected from the R? and RMSE of model

o Differences get far larger when exponentiate




Summary

@ Polynomial trends are useful when lack other,
substantive explanatory variables
»Be cautious extrapolating a trend

@ Dummy variables model regular seasonal effects,
but the magnitude of the variation often

increases with the level

@ Log transformation stabilizes the variation and
captures geometric growth

@ Durbin-Watson statistic tests for presence of
autocorrelation in underlying model errors




