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Overview

® Resembles prior textbook occupancy example

s Time series of revenue, costs and sales at Best Buy,
in millions of dollars

o Quarterly from 1995-2008

@ Similar features
oLog transformation
o Seasonal patterns via dummy variables
» Testing for autocorrelation: Durbin-Watson, lag residuals
sPrediction with autocorrelation adjustments

® Novel features

»Use of segmented model to capture change of regime
»Decision to set aside some data to get consistent form




Forecasting Problem

@ Predict revenue at Best Buy for next year
»Q1, 1995 through Ql, 2008
253 quarters
s Forecast revenue for the rest of 2008
s Estimate forecast accuracy

@ Evident patterns
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o Forecast of profit needs an estimate of cost of
goods sold and amount of sales: then difference.




Initial Modeling

® Quadratic trend + quarterly seasonal pattern

@ Overall fit is highly statistically significant

Summary of Fit

RSquare 0.959712
RSquare Adj 0.955426
Root Mean Square Error 632.221
Mean of Response 4952.975
Observations (or Sum Wgts) 53

@ Nonetheless model shows problems in residuals

Residual by Predicted Plot Residual by Row Plot

Revenue Residual
Residual

0 2500 5000 7500 12500 20 30 40 50
Revenue Predicted Row Number

oTrend in the first quarter of each year (red) appears
different from those in other quarters... interaction.




Two Ways to Fix

@ Two approaches

o Add interactions that allow slopes fo differ by quarter
- Do you want to predict quadratic growth?

oLog transformation

@ Use log

o Curvature remains, but variance seems stable with
consistent patterns in the quarters
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Model on Log Scale

@ Model of logs on time and quarter is highly
statistically significanf,

Summary of Fit

RSquare
RSquare Adj 0.986
Root Mean Square Error 0.073872
Mean of Response 8.324368
Observations (or Sum Wgts) 53

Indicator Function Parameterization

0.987077 Term Estimate Std Error DFDen t Ratio Prob>|t|
Intercept -298.6066 5.316919 48.00 -56.16 <.0001*
Time 0.1533451 0.002656 48.00 57.73 <.0001%
Quarter[1] 0.2856838 0.02846 48.00 10.04 <.0001%
Quarter[2] -0.164648 0.029005 48.00 -5.68 <.0001*
Quarter(3] -0.09888 0.028982 48.00 -3.41 0.0013%

@ But residuals show lack of it and dependence

Residual by Predicted Plot Residual by Row Plot
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@ Why does slope (% growth rate) seem to change?




Modified Trend

@ Introduce “period” dummy variable
oExclude first two years of data (8 quarters)
> Add Pre-Post Dot Com indicator
o Allows slope to shift at start of 2002
s Another shift is possible!

@ Better model?
s Summary statistics

Indicator Function Parameterization

= Term Estimate Std Error DFDen tRatio Prob>|t|
Summary of Fit Intercept -408.1624 8.094352  38.00 -50.43 <.0001*
RSquare 0.998093 Time 0.2081232 0.004048  38.00 51.41 <.0001*
RSquare Adj 0.997792 Quarter[1] 0.306712 0.010896  38.00 28.15 <.0001*
Root Mean Square Error 0.025882 Quarter(2] -0.147721 0.011102  38.00 -13.31 <.0001*
Mean of Response 8.473075 Quarter|[3] -0.083811 0.011053 38.00 -7.58 <.0001*
Observations (or Sum Wgts) 45 Pre/Post Dot Com[post] 167.27411 9.912849  38.00 16.87 <.0001*

: Time*Pre/Post Dot Com[post] -0.083569 0.004953 38.00 -16.87 <.0001%
»Residual plots

Residual by Predicted Plot Residual by Row Plot

Huge shift in
rate of growth
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Autocorrelation?

@ Dependence absent from sequence plot
o Confirmed by Durbin-Watson, residual scatterplot

Durbin-Watson

Durbin- Number
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@ No need to add lagged residual as explanatory
variable; all captured by trend + seasonal

Indicator Function Parameterization
Term Estimate Std Error t Ratio

Intercept
Time
Quarter[1]
Quarter[2]
Quarter[3]

Pre/Post Dot Com[post]
Time*Pre/Post Dot Com[post]
Lag Residuals

-407.8512
0.2079678
0.3072369
-0.148054
-0.083831
166.99646

-0.08343
0.1691184

8.821915
0.004412
0.011212
0.011246
0.011189
10.55057
0.005272
0.165917

-46.23
47.14
27.40

-13.16
-7.49
15.83

-15.82

1.02




More Diagnostics

@ Residual plots show little remaining structure
» Similar variances in quarters?
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Forecasting

@ Forecast log revenue for rest of 2008

oUnsj = (-408.162 + 167.274 + Q) + seasonal
(0.20812-0.08357) time time trend

»Overall intercept plus adjustment for pre/post

@ Examples for Q2, Q3, Q4 of 2008

295341 = (-408.162 + 167.274 - 0.148) Q2
+ 0.12455 (2008.25)
~ 9.092

o9s3:2 = (-408.162 + 167.274 - 0.084)
+ 0.1245 (2008.50)
% 9.187

6953+3 = (—408.162 + 167.274)
+ 0.1245 (2008.75)
~ 9.302




Forecast Accuracy

® Since model does not have autocorrelation and
data meet assumptions of MRM, we can use the
JMP prediction intervals

@ One period out
o531 + 025 SE(indiv pred) = 9.0415 to 9.1587

@ Two periods out
o ¥s32tt 025 SE(indiv pred) = 9.1363 9.2540

@ Three periods out
¥s3.3tt 025 SE(indiv pred) = 9.2510 9.3692




Prediction Intervals

@ Obtain predictions of revenue, not the log of
revenue

@ Conversion
sForm interval as we have done on transformed scale
s Exponentiate

9.0415 to 9.1587 =% & 22085 1o 74087
$8446 to $9497 (million)

@ As in prior example, the prediction interval is
much wider than you may have expected from
the R and RMSE of the model on the log scale.

> Small differences on log scale are magnified on $ scale




Alternative Segments

@ Prior approach adds two variables to segment
osDummy variable for period allows new intercept
o Interaction allows slope to change

@ Models fit in the two periods are "disconnected”

sNot constrained to be continuous or intersect where the
second period begins

@ Alternative approach forces con’rlnul’ry

> Add one parameter for
change in the slope

sNo dummy variable needed.

o Intercept defined by the
location of the prior fit.




Building the Variables

@ Model comparison
sBreak in structure (kink) at time T
oBefore (t < T) : Yt =Po + P Xt + &
oAfter (1 >T):Y: =00+ (P1 + O)Xt + &

s Choose g so that means match at time T
BO'l'BlXT: O(o+(B1+6)XT = 0(0=BO—6XT

eHence, only need to estimate one parameter, ©

@ To fit with regression, add the variable Z;
oZ+ =0 for t<T, Zi = Xy = Xy for t> T
sBefore T: no effect on the fit since O
oAfter T: Bo + B1 Xt + 0 Zt = Bo + P1 Xt + O (Xt - X7)
= (Bo = 6XT) + (B1+6) Xt




Changing the Slope

@ Added variable is very simple
oPrior to the change point, its O
o After the change point, its (x - time of change)

@ Picture shows "dog-leg” shape of new variable
with Kink at the change point

New
Variable




Example

@ Fit with distinct segments

Indicator Function Parameterization

Summary of Fit Term Estimate Std Error DFDen tRatio Prob>|t|
RSquare 0.998093 Intercept -408.1624 8.094352 38.00 -50.43 <.0001*
RSquare Adj 0'997792 Time 0.2081232 0.004048 38.00 51.41 <.0001%
Root Mean Square Error 0.025882 Quarter[1] 0.306712 0.010896 38.00 28.15 <.0001*
Mean of Response 8.473075 Quarter[2] -0.147721 0.011102 38.00 -13.31 <.0001%
Observations (or Sum Wgts) ) 45 Quarter[3] -0.083811 0.011053 38.00 -7.58 <.0001*

Pre/Post Dot Com[post] 167.27411-.9.912849 38.00 16.87 <.0001*
Time*Pre/Post Dot Com[post]/ -0.083569 0.004953 38.00 -16.87 <.0001%

@ Fit with continuous joint
oAlmost as large R, with one less estimated parameter
o Similar shift in slope in two models.

Indicator Function Parameterization

Summary of Fit Term Estimate Std Error DFDen tRatio Prob>|t|

Intercept ~ -397.4332 6.166522  39.00 -64.45 <.0001*
22332:: Adj 8:33;22; Time 0.003083  39.00 65.76 <.0001*
Root Mean Square Error 0.026804 Time Post _ -0.081303 ' 0.004988  39.00 -16.30 <.0001*
Mean of Response 8473075 Quarter[1] 0.3042508 0.011209  39.00 27.14 <.0001*
Observations (or Sum Wats) ae Quarter[2] -0.149787 0.011446  39.00 -13.09 <.0001*

Quarter[3] -0.084844 0.011433  39.00 -7.42 <.0001*




Summary

@ A basic trend (linear, perhaps quadratic) plus
dummy variables is a good starting model for
many time series that show increasing levels.

@ Log transformations stabilize the variation, are
easily interpreted, and avoid more complicated
trends and interactions.

& Dummy variables can model a “trend break”.

oModels do not anticipate the time of another frend
break in the future.

o Special "broken line” variable models shift in slope with
one parameter, forcing continuity.

@ R? is misleading when you see the prediction
intervals when fitting on a log scale.




