Data Mining
Model Selection

Bob Stine
Dept of Statistics, Wharton School
University of Pennsylvania
From Last Time

• Review from prior class
 • Calibration
 • Missing data procedures
 Missing at random vs. informative missing
 • Problems of greedy model selection
 Problems with stepwise regression.
 So then why be greedy?

• Questions
 • Missing data procedure: Why not impute?
 “Add an indicator” is fast, suited to problems with many missing.
 Imputation more suited to small, well-specified models.
 EG. Suppose every X has missing values. How many imputation models do you need to build, and which cases should you use?
Topics for Today

• Over-fitting
 • Model promises more than it delivers

• Model selection procedures
 • Subset selection
 • Regularization (aka, shrinkage)
 • Averaging

• Cross-validation
Model Validation

• Narrow interpretation
 • A predictive model is “valid” if its predictions have the properties advertised by model
 • Calibrated, right on average
 • Correct uncertainty, at least variance

• Must know process that selected model
 • Cannot validate a model from a static, “published perspective”
 • Stepwise model for S&P 500 looks okay, but...

<table>
<thead>
<tr>
<th>Source</th>
<th>DF</th>
<th>Sum of Squares</th>
<th>Mean Square</th>
<th>F Ratio</th>
<th>Prob > F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model</td>
<td>29</td>
<td>0.00424379</td>
<td>0.000146</td>
<td>14.1056</td>
<td><.0001*</td>
</tr>
<tr>
<td>Error</td>
<td>52</td>
<td>0.00053947</td>
<td>0.000010</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C. Total</td>
<td>81</td>
<td>0.00478325</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Model Validation

- Fails miserably (as it should) when used to predict future returns
 - Predictors are simply random noise
 - Greedy selection overfits, finding coincidental patterns

\[\pm 2 \text{ RMSE} \]
Over-Fitting

• Critical problem in data mining
 • Caused by an excess of potential explanatory variables (predictors)

• Claimed error rate steadily falls with size of the model

• “Over-confident”
 • Model claims to predict new cases better than it will.

• Challenge
 • Select predictors that produce a model that minimizes the prediction error without over-fitting.
Multiplicity

• Why is overfitting common?

• Classical model comparison
 • Test statistic, like the usual t-statistic
 Special case of likelihood ratio test
 • Designed for testing one, a priori hypothesis
 • Reject if $|t| > 2$, p-value < 0.05

• Problem of multiple testing (multiplicity)
 • What is the chance that the largest of p z-statistics is greater than 2?

| p | $P(\text{max } |z| > 1.96)$ |
|-----|-----------------------------|
| 1 | 0.05 |
| 5 | 0.23 |
| 25 | 0.72 |
| 100 | 0.99 |
Model Selection

• Approaches
 • Find predictive model without overfitting
 • Three broad methods

• Subset selection
 • Greedy L_0 methods like forward stepwise
 • Penalized likelihood (AIC, BIC, RIC)

• Shrinkage
 • Regularized: L_1 (lasso) and L_2 (ridge regression)
 • Bayesian connections, shrink toward prior

• Model averaging
 • Don’t pick one; rather, average several

Next week
Subset Solution

- Bonferroni procedure
 - If testing p hypotheses, then test each at level α/p rather than testing each at level α.
 - $\Pr(\text{Error in } p \text{ tests}) = \Pr(E_1 \text{ or } E_2 \text{ or } \ldots \text{ or } E_p) \leq \sum \Pr(\text{Error } i^{th} \text{ test})$
 - If test each at level α/p, then $\Pr(\text{Error in } p \text{ tests}) \leq p(\alpha/p) = \alpha$

- Not very popular... easy to see why
 - Loss of power
 - Cost of data-driven hypothesis testing

<table>
<thead>
<tr>
<th>p</th>
<th>Bonferroni z</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>2.6</td>
</tr>
<tr>
<td>25</td>
<td>3.1</td>
</tr>
<tr>
<td>100</td>
<td>3.5</td>
</tr>
<tr>
<td>100000</td>
<td>5.0</td>
</tr>
</tbody>
</table>
Discussion

- **Bonferroni is pretty tight**
 - Inequality is almost equality if tests are independent and threshold α/p is small

- **Flexible**
 - Don’t have to test every H_0 at same level
 - Allocate more α to ‘interesting’ tests
 - Split $\alpha=0.05$ with $\frac{1}{2}$ to p linear terms and $\frac{1}{2}$ to all interactions

- **Process matters**
 - Look at model for stock market in prior class
 - Many predictors in model pass Bonferroni!
 - The selection process produces biased estimate of error σ
 - Use Bonferroni from the start, not at the end
Popular Alternative Rules

• Model selection criteria
 • AIC (Akaike information criterion, C_p)
 • BIC (Bayesian information criterion, SIC)
 • RIC (risk inflation criterion)

• Designed to solve different problems
 • “Equivalent” to varying p-to-enter threshold
 • AIC, C_p: Accept variable if $z^2 > 2$
 Equivalent to putting p-to-enter ≈ 0.16
 • BIC: $z^2 > \log n$
 Aims to identify the “true model”
 • RIC: $z^2 > 2 \log p \approx$ Bonferroni
 The more you consider, the stiffer the penalty
Penalized Likelihood

• Alternative characterization of criteria

• Maximum likelihood in LS regression
 • Find model that minimizes -2 log likelihood
 • Problem: always adds more variables (max R^2)

• Penalized methods
 • Add predictors so long as

 $-2 \text{ log likelihood} + \lambda \ (\text{model size})$

 decreases

• Criteria vary in choice of λ
 • 2 for AIC, $(\log n)$ for BIC, $(2 \log p)$ for RIC
Example

- JMP output
 - Osteo example
- Results
 - Add variables so long as BIC decreases
 - Fit extra then reverts back to best
- AIC vs BIC
 - AIC: less penalty, larger model

What happens if try either with stock market model?
Shrinkage Solution

- Saturated model
 - Rather than pick a subset, consider models that contain all possible features
 - Good start (and maybe finished) if $p << n$

- Shrinkage allows fitting all if $p > n$

- Shrinkage maximizes penalized likelihood
 - Penalize by “size” of the coefficients
 - Fit has to improve by enough (RSS decrease) to compensate for size of coefficients

 - Ridge regression: $\min \text{RSS} + \lambda_2 b'b$
 - LASSO regression: $\min \text{RSS} + \lambda_1 \sum |b_j|$

RSS analogous to $-2 \log \text{likelihood}$

$\lambda = \text{regularization parameter, a tuning parameter that must be chosen}$

$p = \# \text{possible Xs}$
Lasso vs Ridge Regression

\[\text{min RSS, } \Sigma |b_j| < c \]

Corners produce selection

\[\text{min RSS, } \Sigma b_j^2 < c \]

Interpret \(\lambda \) as Lagrange multiplier.
Cross-Validation Solution

• Common sense alternative to criteria
 - Apply the model to new data
 - Estimate ‘hidden’ curve plot of over-fitting

• No free lunches
 - Trade-off
 More data for testing means less for fitting:
 Good estimate of the fit of a poorly estimated model.
 Poor estimate of the fit of a well estimated model.

• Highly variable
 Results depend which group was excluded for testing
 Multi-fold cross-validation has become common

• Optimistic
 Only place I know of a random sample from same population

• Multi-fold: leave out different subsets
Variability of CV

• Example
 • Compare ‘simple’ and ‘complex’ osteo models
 Need to fit both to the same CV samples… Not so easy in JMP
 • Evaluate one model

• Method of validation
 • Exclude some of the cases
 • Fit the model to others
 • Predict the held-back cases
 • Repeat, allowing missing data to affect results
 • Compare out-of-sample errors to model claims

• Is assessment correct?
 • Under what conditions?
Osteo Example

- CV 50 times, split sample
- Variability
 - If only did one CV sample, might think model would be 20% better or 15% worse than claimed!

Test cases look worse

Test cases look better
CV in Data Mining

• DM methods often require a three-way CV
 • Training sample to fit model
 • Tuning sample to pick special constants
 • Test sample to see how well final model does

• Methods without tuning sample have advantage
 • Use all of the data to pick the model, without having to reserve a portion for the choice of constants
 • Example: method that has “honest” p-values, akin to regression model with Bonferroni

• Caution
 • Software not always clear how the CV is done
 • Be sure CV includes the choice of form of model
Lasso

• Regularized regression model
 • Find regression that minimizes
 \[
 \text{Residual SS} + \lambda \sum |\beta_i| \]
 where \(\lambda \) is a tuning constant
 • Bayesian: double exponential prior on \(\beta \)
 • Scaling issues
 What happens if the \(\beta \)'s are not on a common scale?

• L₁ shrinkage
 • Shrink estimated parameters toward zero
 • Penalty determines amount of shrinkage
 Larger penalty (\(\lambda \)), fewer variable effects in model
 • Equivalent to constrained optimization
Lasso Example

• How to set the tuning parameter λ?

• Empirical: Vary λ to see how fit changes
 • Cross-validation, typically 10-fold CV
 • Large values of λ lead to very sparse models
 Shrinks all the way back to zero
 • Small values of λ produce dense models
 • CV compares prediction errors for choices

• Implementations
 • Generalized regression in JMP Pro
 • glmnet package in R (See James et al, Ch 6)
 More “naked” software than JMP or Stata
Lasso Example

- Fit L_1 regression, Lasso
 - Plot estimated coefficients as relax penalty
 - Implemented in JMP as “generalized regression”

Where to stop adding features?

osteomodel
Lasso Example in R

- Follow script from James
 - See on-line document “Glmnet Vignette”
- Similar output
 - Less formatting, but more accessible details
Discussion of CV

• Use in model selection vs model validation
 • Shrinkage methods use CV to pick model
 • Validation reserves data to test final model

• Comments on use in validation
 • Cannot do selection and validation at same time
 • Flexible: models do not have to be nested
 • Optimistic
 Splits in CV are samples from one “population”
 Real test in practice often collected later than training data
 • Population drift
 Populations often change over time; CV considers a snapshot

• Alternatives?
 • Bootstrap methods
Take-Aways

• Overfitting
 • Increased model complexity often claims to produce a better fit, but in fact it got worse

• Model selection methods
 • Criteria such as AIC or p-value thresholds
 • Shrinkage methods such as lasso

• Cross validation
 • Multiple roles: validation vs model selection
 • Flexible and intuitive, but highly variable
Some questions to ponder...

• If you fit a regression model with 10 coefficients, what’s the chance that one is statistically significant by chance alone?
 • How can you avoid this problem?

• If you have a coefficient in your model that has a $t\approx 2$, what is going to happen to its significance if you apply split-sample CV?

• Why is cross-validation used to pick lasso models?

• Is further CV needed to validate a lasso fit?
Next Time

• Thursday Newberry Lab
 • Hands-on time with JMP, R, and data
 • Fit models to the ANES data
 You can come to class, but I won’t be here!

• Friday July 4th holiday