
ICPSR Blalock Lectures, 2003 Bootstrap Resampling
Robert Stine Lecture 2

Exploring the Bootstrap
Questions from Lecture 1

Review of ideas, notes from Lecture 1
- sample-to-sample variation
- resampling with replacement
- key bootstrap analogy

Topics for today
More examples of “basic” bootstrapping

- averages (proportion is an average)
- How many bootstrap samples?

Two-sample tests and the bootstrap
- two ways to resample
- one is “random” and one is “fixed”?

Calibrating BS intervals
- use the bootstrap to check BS intervals
- lots of computing

Efficient methods
If I summarize with something other than
the average, might the CI get shorter?

More Summer Program t-shirts
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Comments on Software

R
Free, fast, familiar (at least here)
Capable of doing bootstrap resampling
Also has “prepackaged” resampling tools

Key things needed for resampling
Essential

- sample with replacement.
- iterate the calculation of a statistic
- accumulate the results

Very helpful
- add your own simple functions
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Testing the Bootstrap
Pick a problem where we know the answer.

Confidence interval for the mean of a normal
population based on a sample average.
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Simulate data from normal
R has random number generator.

- rnorm generates normals
Fun to see at the variety of normal samples.

Normal confidence interval
         -0.39095771  0.05018254

Bootstrap interval
         -0.38447221  0.03901192

Comments
Did’t use the SE in finding the BS interval
SE “settles down” quickly, CI takes longer.
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Analysis of Osteoporosis Data
Analysis of mean value

Classical and bootstrap results agree (Lec 1)
SE                  CI      

Classical 0.16 [–1.7, –1.1]
Bootstrap 0.16 [–1.7, –1.1]

Conclude:
Population of postmenopausal women on
average have relatively low bone mass.

How many have severe osteoporosis?
Define severe as t-score < –2.5.
Prevalence in sample

13/64 = 0.203, about 20%.
What about an inference to the population?

Analysis of sample proportion
Average of 0/1 indicator is proportion.
Standard analysis

SE = 0.05
95% CI = [0.10, 0.30] = 0.20±0.1.
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Bootstrap Analysis
How to do the resampling?

As before, except keep track of the percentage
of observations in each bootstrap sample
whose t-score is less than –2.5.

Results are similar to classical
Bootstrap interval agrees with prior result,
namely [0.10, 0.29].  (really close)
Plots of the bootstrap distribution of the
estimator show the values that determine the
bootstrap interval.

- A kernel density shows a smooth
estimate of the shape of the population.

- The kernel density is not “tricked” into
giving artificially large bins like histogram.
(e.g. Some bins have several grid points.)

Bootstrap distribution agrees with the normal,
and how closely the bootstrap confidence
interval agrees with the classical result.

- Quantile plot shows similarity
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What happens in a more extreme case?
Define severe as t-score < -3.
Now only 3 of the 64 are “severe”
Classical interval is [-0.006, 0.100]

It has a negative limit!
Bootstrap in extreme case

Never gives a negative limit, here it gives the
interval [0,0.11].
Plot of bootstrap distribution shows why
standard interval fails: skewness in the
distribution of the estimator!
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Other procedures
• Standard interval for the proportion is

ˆ p ± 2
ˆ p (1- ˆ p )

n
Fails when the sample proportion is near zero
since it can be negative.
• Other methods exist that guarantee the right
coverage without needing the bootstrap.

Powerful notion
You learn a lot about your estimator by
looking at its bootstrap distribution.
If the distribution is close to normal

- Use your favorite tool to check for
normality

- If the bootstrap distribution is close to
normal, then

- Bootstrap results usually resemble the
classical results.
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What About Estrogen?

Standard analysis
Two groups

44 who used estrogen, 20 did not
Users of estrogen have higher t-scores (less
osteoporosis) than those who did not.

 Avg SE     CI
use estrogen -1.3 0.18 [–1.8,–1.1]
did not use -1.5 0.27 [–1.9,–0.7]

What’s the right test/CI to compare?
Some side issues to consider

- What about outliers?
- With outliers in the data, should we
compare sample means?
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Two-Sample Comparison
Two-sample t-test

Welsch interval
-0.4858549  0.8253224

Standard two-sample t-test
-0.4665447  0.8060122

The confidence interval for the difference in
population means includes zero

- or the p-value is larger than 0.05
Conclude that the difference is not significant.

Can you do this with the bootstrap?
How to do the resampling?
Resampling is more complex

Rather than a single collection of numbers
we have two sets of values: the t-scores and
the responses to the question of estrogen use.

Key issue
Do we preserve the group sizes?
Are they fixed, or are they random?
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Random resampling
Resample cases, not just the hip t-scores.

Bundle each subject’s data together
Parallel the observational nature of data.

The data was gathered by sampling 64
women and learning that 20 had not used
estrogen. Not experimental (i.e., chose to
sample 44 who used estrogen.)

Alternatively
If we were to go back and get another
sample, would we have to get 20 no’s and
44 yes’s?  No.

Fixed (experimental resampling)
Suppose instead that the data had been
gathered as part of an experiment that fixed
the number of women in each group.
Then we should preserve this feature of the
data in the bootstrap samples (i.e., sample from
the two populations separately).
This issue returns in regression.



Bootstrap Resampling Exploring the Bootstrap Lecture 2
ICPSR 2003 11

Bootstrap Results for Difference
Bootstrap differences: fixed sampling

2.5%      97.5%

-0.447453  0.8232793

Bootstrap differences: random sampling
2.5%      97.5%

-0.3974236  0.2971010

- Should the results be identical?

How many bootstrap samples?
How many seem needed for stability?

Would the results differ (in an important
way) if someone tried to reproduce your
analysis?

Crude rule of thumb:
200 for SE, 2000 for CI
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Fun with Sample Sizes
How large to make the bootstrap samples?

The usual situation.
Use the original sample size if you want to
understand the properties of a statistic
computed on samples of this size.

Use other sizes to play “what if” games.
- e.g. power calculations

What might happen with a much larger sample?
Would the comparison be significant if I had
more data, say 1000 observations rather than
just 64?
Investigate with larger bootstrap samples.
Beware of assumptions in case your small
sample is not representative.

Osteoporosis comparison
Generate BS samples of 1000 observations.
How many do you need in order to find a
significant different… a “bootstrap power
analysis”.
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Robust Estimators
Outliers and estimators

What should we do about an outlier?
- Ignore it
- Remove it
- Compromise

Why use the sample average if it is so
sensitive to the presence of outliers?

- It is the standard in all the books
- Optimality properties
- We know how to get a SE and CI.

Robust statistics offer insurance
- Compromise choice
- Results in an automatic downweighting
of unusual observations.

Choice of an estimator
Which is best: mean, median, or mode?
Optimal depends on shape of population.

Mean optimized for normal.
Median tolerates outliers, but inefficient.
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Trimmed Means
Definition

Trimmed mean is mean of the “middle”
- drop lowest 5%
- average the middle 90%
- drop the highest 5%

Special cases
- median = 50% trimmed mean
- average = 0% trimmed mean

Compromise as insurance against outliers.

Influence functions –you can read more
Influence functions graph how the value of a
statistic depends upon the location of the data
values.

- Mean’s influence function is linear
- Median is step function.

Trimmed mean is compromise
- Center of data is normal, so linear there
- Extremes have outliers, so count

Other choices are obvious (biweight).
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Picking a Robust Estimator
If robust estimators are so good, why don’t more
people use them?

Have not been taught about them.
They believe in the normality of data.
If the mean gives you an answer you like, why
use something else?
The mean is easy to work with since you have
simple formulas for both SE and CI.

Which estimator should I use?
You’d like to use the one that gives the
shortest CI (or has smallest SE).
But, this sort of optimality depends on the
population, which you don’t know.

Bootstrap to the rescue…
Use the bootstrap to get a confidence interval
for whatever estimator you want to use.
Use the bootstrap to see if the choice matters
much in your problem.
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Bootstrap Comparisons
Key feature of comparisons

Apply each estimator to the same bootstrap
samples.
Which is most variable?  Least variable?
Which has the widest interval?  Shortest?

Doing it
Just need three “containers” to hold the
different bootstrap replicated estimators.
Design of simulation

Use the same bootstrap samples for each!
Once you’ve generated the bootstrap
replicates of the estimators, compare them
using standard tools.
Do enough replications so that you believe
that the results are not going to materially
change if you were to repeat the resampling
simulation.
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Comparison Results: Osteoporosis
Data  (different data from in class)

Just work with the 40 in the “yes” group.
See if an outlier in that group has much effect.

Comparison boxplots in AXIS
Use the “compare” command
Use the “vertical” option.

Summary

Trimmed mean has the smallest SE.
Median has largest SE.
Take a more detailed look in class using more
features of the compare command window.

-2.15 -0.233-1.51 -0.872

Mean

Median

Trimmed
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Calibrating Bootstrap Intervals
How can you tell if the bootstrap intervals are
working?

- Not so easy to make a test case as it was for
the familiar problem of the average of normals.
- But hey, the bootstrap is a method for
evaluating any statistical procedure, so…

The double bootstrap (a.k.a., calibration)
- Bootstrap of a bootstrap.
- Evaluate how well the bootstrap interval
covers in the one place where the population
is known: sampling from the sample.
- Idea: its just a simulation…

(a) Outer layer draws a sample from the
sample (say, X*)

(b) Inner layer computes the boostrap
interval from this sample, call it I(X*).

(c) Outer layer checks to see how many
of the I(X*) intervals cover.

You only thought you had a fast computer!
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Review Questions
How large should my sample be in order to use
the bootstrap?

More is always better when it comes to
sample size.  If you have a small sample
though, the theory shows that the bootstrap
makes better use of the data than traditional
methods (e.g., t-test/interval).

How do I decide how many bootstrap
replications are needed?

You need enough so that the results are not
materially changed when the bootstrap
simulation is repeated.

Why bother to look at the bootstrap distribution?
Isn’t the confidence interval enough?

The bootstrap distribution will show you, for
example, how well the simulated distribution
of your statistic matches normality. In most
cases, the closer the bootstrap distribution
comes to normality, the closer the “standard”
results match those from the bootstrap.
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Does the size of each bootstrap sample have to
match the size of the original sample?

No, and in fact using other sample sizes lets
you explore alternative scenarios, such as
what level of significance you might have seen
with a larger sample (as an alternative to the
standard power calculations).

What choice did we consider for doing the
resampling needed for the two-sample test?

We considered two plans: one that fixed the
number of women in the two groups, and
another that allowed the group sizes to vary
with the samples.

How can a trimmed mean be a better estimator
of µ than the sample average?

The sample average is the “best” estimate of µ
available, if the sample comes from a normal
population.  If the population’s not normal, the
sample average is really poor.  The trimmed
mean is a compromise, based on the premise
that data is normal in the middle, and prone to
rogue outliers at the extremes.
The trimmed mean limits the effects of outliers.
If the data are not normal, the sample average
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can be a very poor estimator with high
sampling variation.

What’s the problem with removing outliers when
editing data prior to an analysis?

The confidence interval that you construct
after editing the data does not know that the
sample is not a real sample, but rather an
edited sample.  Perhaps your actions should
lead to a longer interval, since the data have
been manipulated.  The usual interval assumes
pristine data and does not account for the
editing process.

How can you decide if an alternative estimator
is going to produce a smaller standard error?

Bootstrap comparisons are one method:
compare the bootstrap distributions to see
which estimator has the smallest sample-to-
sample variation (std. error).

What does the influence function tell you?  What
is the influence function for the average?

Influence functions describe how points affect
an estimator.  For example, the influence
function for the mean is a line, indicating that
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the most influential points are those farthest
from the center of the data.

What’s an outlier and where do they come from?
Outliers come from many sources, and it’s
hard without careful analysis and complete
records to know.  Some come from typing
errors.  Others appear because they are part of
the process being measured: some
observations are simply very different from the
others.


