
ICPSR Blalock Lectures, 2002 Bootstrap Resampling
Robert Stine Lecture 5

More Regression, More Confidence Intervals
More Everything!

Review with some extensions
Questions from Lecture 4

- Robust regression and the handling of outliers
Animated graphics

Lisp-Stat
- Alternative free software package
- Excels at interactive graphics
- Written in language lisp

Axis software interface
Comparison of resampling methods

Observations         Residuals
Equation-dependent No Yes
Assumption-dependent Some More
Preserves X values No Yes
Maintains (X,Y) assoc Yes No
Conditional inference No Yes
Agrees with usual SE Maybe Yes
Computing speed Fast Faster
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New things for today…
Longitudinal data

- Longitudinal (panel) data
- Generalized least squares

Logistic regression (a.k.a., max likelihood)
- Estimating the “error rate” of a model

Path analysis, structural equations
Missing data

- A bootstrap version of imputation
Some theory and chinks in the bootstrap

- Dependence
- Special types of statistics (sample max)

Confidence intervals for the BS
- Justification and improvements

Yes.  More t-shirts too!



Bootstrap Resampling Special Topics and Confidence Intervals Lecture 5
ICPSR 2002                                                                                                                                                           3

Robust Multiple Regression
Motivation

Exploratory methods need exploratory tools
Classical tools + data editing = problems
Robust regression automatically weights

Analogy to insurance policy
Fitted model using least squares

Duncan occupation data, 45 occupations
Slopes not significantly different

Variable       Slope       SE            t        p-value
 Constant      -6.06      4.27      -1.4      0.16
 INCOME      0.60      0.12       5.0      0.00
 EDUC           0.55      0.10       5.6      0.00

R2  = 0.828 s   = 13.369

Reformulated to give the difference as estimate.
- Diagnostic plots show outlier effects
- Difference signif on trimmed data (see R script)
- Effect is not significant on full data set (below)

Variable       Slope         SE        t                  p-value
 Constant -6.06 4.27 -1.4 0.16
 INCOME 0.053 0.20 0.3 0.80
 INC+ED 0.55 0.10 5.6 0.00

R2  = 0.828 s   = 13.369
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Robust Fits for Duncan Model
Biweight fit, with explicit difference

Output suggests a significant difference
- Shows asymptotic SE for estimates
- Agrees with our “drop three” analysis.

Robust Estimates (BIWEIGHT, c=4.685):
Variable       Slope       Std Err    t-Ratio   p-value
Constant -7.42 2.97 -2.497      0.02
INCOME 0.34 0.14  2.404      0.02
INC+ED 0.43 0.068  6.327      0.00

More robust fit suggests more significant
- Robust “tuning constant” set to 2
- Note: resulting iterations need not converge

Robust Estimates (BIWEIGHT, c=2):
Variable       Slope       Std Err    t-Ratio   p-value
 Constant -8.44 2.41 -3.496     0.00
 INCOME 0.40 0.11  3.464     0.00
 INC+ED 0.43 0.056  7.663     0.00

Check the weights for this last regression.
What happens with bootstrap resampling?

- Observation resampling
- Residual resampling
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Bootstrap Resampling Robust Regression

Random resampling (biweight, c=2)
Summary of bootstrap estimates of difference

- Difference in slope of income and education
Mean =  0.410    , SD =  0.358   B=500
2.5%        5%           50%          95%     97.5%
-0.497    -0.315        0.380        0.950      1.18

Random resampling
Gives much larger estimate of variation (.358 vs
.11) and indicates the difference is not significant.

Very non-normal…
- Is the standard deviation meaningful here?

-1.16 2.09-0.35 0.462 1.27

Density of COEF-INCOME_B 

-1.01 1.94-0.276 0.462 1.2
Data Scale

Quantile plot of COEF-INCOME_B 
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Residual resampling gives…
Numerical summary

- much, much smaller SE value
- smaller than original asymptotic value (0.11).

Mean =  0.392    SD =   .081  n=500
2.5%        5%       50%      95%     97.5%
 0.225     0.254     0.391    0.519     0.551
Consequently, it finds a very significant effect.
Bootstrap distribution more normal.

-0.0868 0.6890.107 0.301 0.495

Density of COEF-INCOME_B 

-0.0515 0.6540.125 0.301 0.478
Data Scale

Quantile plot of COEF-INCOME_B 

What to make of it?
Different conclusions

- Manual deletion gives significant effect
- Resampling with BS does not (random resample)
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Bootstrapping a Longitudinal Model
Freedman and Peters (1984)

Full citation in bibliography
Regional industrial energy demand

10 DOE regions of the US
Short time series for each region

18 years 1961-1978 .

Model
Qrt = ar + b Crt + c Hrt + d Prt + e Qr,t-1 + fVrt

+ ert

where
Qrt = log energy demand in region r, time t
Crt, Hrt = log cooling, heating degree days
Prt = log of energy price
Vrt = log value added in manufacturing

Model includes a lagged value of the response as a
predictor (a.k.a. “lagged endogenous variable”).

Error assumptions Block diagonal
No remaining autocorrelation (can’t allow this)
Arbitrary “spatial” correlation
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Generalized Least Squares
Estimators

Need to know covariance structure in order to get
efficient parameter estimates

Var(e) = V  180x180 block matrix

Textbook expression
 b̂  = (X’V-1 X)-1  X’V-1 Y

SE for b̂  comes from
VAR b̂   =  (X’V-1 X)-1 

Problem
- Don’t know V or its inverse, so estimate it from
the data itself.
- However, most would continue to use the
formula that presumes you knew the right V.

Results of F&P’s simulations
GLS standard errors that ignore that one has to

estimate V are way too small
BS SE’s are larger, but not large enough
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Simulation Results
From the paper of Freedman and Peters…

Estimate  SE SE* SE**

a1 -0.95 0.31 0.54 0.43
a2 -1.00 0.31 0.55 0.43
CDD 0.022 0.013 0.025 0.020
HDD 0.10 0.031 0.052 0.043
Price -0.056 0.019 0.028 0.022
Lag 0.684 0.025 0.042 0.034
Value 0.281 0.021 0.039 0.029

Method of bootstrap resampling
Sample years

- Assumed independent over time.
Bootstrap calibration

Use bootstrap to check bootstrap (double BS)
Values labeled SE** ought to equal SE* (which

serve role of true value), but they’re less.
BS is better than nominal, but not enough.
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Prediction Accuracy
How well will my model predict new data?

Develop and fit model to observed data.
How well will the model predict new data?
Optimistic assessment

If test the model on the data used to construct it,
you get an “optimistic” view of its accuracy.

Cross-validation (a.k.a.  hold-back sample)
Investigate predictive accuracy on separate data.

Bootstrap approach
Build a bootstrap replication of your fitted model,

say M*, based on a bootstrap sample from the
original data.

Use the M* to predict the bootstrap population,
i.e.  use M* to predict the observations Y in the
original sample.

Use the error in predicting Y from M* to estimate
the accuracy of this model.

Efron and Tibshirani discuss other resampling
methods that improve upon this basic idea.
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Example of Prediction Error
Duncan regression model

Least squares fit to the sample data
- Estimate s2 to be s2 = 13.372 = 178.8.

Theory
Prediction error will be a higher than this estimate,
by about (1 + k/n), where k denotes the number of
predictors.  Revises our estimate up to 186.7.

Theory makes big assumption
Presumes that you have fit the “right model”.

Bootstrap results
Indicates that the model predicts about as well as
we might have hoped, given the adjustment of
1+2/45.
Mean =   182.    SD =   16.1      B=203
2.5%        5%       50%       95%     97.5%
  168.      168.    177.         212.      216.

150 350200 250 300
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Logistic Regression

Categorical response
Predict choice variable (0/1)
Calculation is iterative least squares algorithm

- same method used in robust regression.
Efron and Gong (1983) discuss logistic regression as

well as the problem of model selection.
Classification error

Efron (1986) considers validity of observed error
rates and uses bootstrap to estimate “optimism”.

Bootstrapping logistic regression
Procedurally similar to least squares

- bootstrap gives distribution for coefficients
- interpretation of coefficients is different

Coefficient standard errors
Output shows asymptotic expressions

Prediction: Is the model as accurate as it claims?
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Importance of Prediction Error
How do you pick a model?

Interpretation
Prediction

“Natural criterion” since you don’t have to make
pronouncements of true models.

Pick the model that you think predicts the best…
That is, pick the model (or set of predictors) which
has the smallest estimated prediction error.

Selection bias
When we pick the model that has smallest error, we
get an inflated impression of how good it is.

Random variation, not real structure
Such “selection bias” is very severe when we
compare more and more models

Happens in context of stepwise regression
Example

stepwise regression and financial data.
Moral

Honest estimates of prediction error are essential
in a data-rich environment.
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Structural Equation Models
Path analysis

Generalized in Lisrel
Collection of related regression equations

Blau and Duncan recursive model
Comparison of direct and indirect effects
Observation resampling

F's ED

F's Occ

R's ED

R's First

R's Occ
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Computing example
Simulated sample from the Blau&Duncan model.
Recursive
Questions compare direct versus indirect effects.

Multivariate methods
Uncertainty in structural equation models.
General reference

Beran and Srivastava (1985), Annals Stat.
Goodness-of-fit in structural equations

Bollen and Stine (1990, 1992). Soc. Meth.
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Theory for Bootstrap
Sometimes don’t need a computer

Simple statistics which are weighted averages
- Sample average
- Regression slope with fixed X.

Bootstrap SE almost usual SE in these cases
- Under fixed resampling in regression

Key analogy revisited
Notation

F is population distribution
Fn is distribution of sample
Fn* is distribution of bootstrap sample
q is parameter, s is statistic’s value

Think in terms of distributions:
q = S(F) vs. s = S(Fn)

Error of the statistical estimate is
s – q =  S(Fn) – S(F)

In bootstrap world,
 s = S(Fn) vs. s* = S(Fn*)
Error of the statistical estimate is

s* – s = S(Fn*) – S(Fn)
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A Flaw - Bootstrapping the Maximum

Behavior at extremes
M = Max(X1, ..., Xn)
95% Percentile is roughly (x(4), x(1))

BUT...

Expected value of sample max M is larger than the
observed max about 1/2 of the time,

Pr [ E X(1) ≥ x(1) ] ≥ 0.5 ,

so the bootstrap distribution misses a lot of the
probability.

Why does the bootstrap fail?
Not a “smooth” statistic

max depends on “small” feature of Fn.
Sampling variation of real statistic

S(Fn) – S(F)
is not reproduced by the bootstrap version

S(Fn*) – S(Fn)
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Illustration
Simulation

Simulate the max of samples of 100 from normal
population, using the “bootstrap” command menu
item,

Estimator max
Sampling rule normal-rand 100
Number trials 1000

Bootstrap distribution
Use AXIS to simulate what the distribution of the
sample maximum looks like

1 52 3 4

Bootstrap results for a random sample
Normal sample

Define sample “norm” of 100 normals, using

“normal-rand 100”

and be sure to convert to values!
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Bootstrap
Resampling from this fixed sample,

Estimator max
Sampling rule resample norm
Number trials 1000

0 20.5 1 1.5

The observed max of the data is the max of a
bootstrap sample with probability

1 – (1 - 1n )n  ≈ 1 – 
1
e  = 0.63

Discussion
Sample alone does not convey adequate information
in order to bootstrap maximum.
Have to add further information about “tails” of the
population (parametric bootstrap)
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Regression without a Constant

Leave out the constant
Force the intercept in the fitted model to be zero.
Average residual

Residual average is no longer zero. Mean of
residuals must be zero when have a constant term
in the regression model.

Effect on residual-based bootstrap
Resample residuals

The distribution of “bootstrap errors” from which
you sample has a non-zero mean value

BUT
by assumption the true distribution of the errors
has mean zero.

Consequence: the bootstrap fails.
Bootstrap estimates of variation contain spurious
source of variation

Whose fault is this?
Residual resampling requires model validity.
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Bootstrapping Dependent Data
Sample average

Example:  standard error of mean
Data:  “equal correlation” model

Corr(Xi, Xj) = 1 i=j Var = s2

Corr(Xi, Xj) = r i≠j
True standard error of average

    Var(X— )= (1/n2) Var (S Xi)
= (1/n2) (S Var(Xi) + S Cov(Xi,Xj))

= 
s2
n   + 

rs2$n(n-1)
n  

=  
s2
n  (1 + r(n-1)) 

Does not go to zero with larger sample size!
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Bootstrap estimate of standard error
Sample with replacement as we have.

Bootstrap estimate is  
s2
n  

Bootstrap does not “automatically” recognize the
presence of dependence and gets the SE wrong.

What should be done?
Find a way to remove the dependence.
Preserve dependence

Resample to retain the dependence (variations on
random resampling), as in the Freedman and
Peters illustration.

Model
Find a model for the dependence and use this
model to “build in” dependence into bootstrap.

Generic tools
Recent methods such as block-based resampling
and sub-sampling offer hope for model-free
methods.
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Missing Data and the Bootstrap
Places to read more

Efron (1994) “Missing data and the bootstrap”
Davison and Hinkley (1997)

Bootstrap Methods and their Application
Two approaches to missing data

Key assumption: Missing at random
(1) Use estimator that accommodates missing

e.g., EM algorithm
(2) “Impute” missing and analyze complete data.

Imputation
Multiple imputation is currently “popular”
Refined version of hot deck
Propensity scores

Bootstrap approach to imputation
Bootstrap version

- Fill in the missing values preserving variation
- Fit to complete data

Use associated bootstrap estimate of variation
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Correlation Example
Setup

Two variables (X and Y), with missing on Y

- 2 3- 1 0 1 2

Assume linear association (lots of assumptions)
Can predict/fit Y from X

How to generate the bootstrap samples
Cannot just fill in missing Y with predictions

Would understate variation.

- 2 3- 1 0 1 2
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Alternative
Fill in Y using the method resembling fixed X
resampling from regression

- 2 3- 1 0 1 2

Results
Sensitivity

Example estimates of “sensitivity of analysis” to
presence of missing data.

Missing imputation adds variation.
Similar to goal of multiple imputation.
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Bootstrap Confidence Intervals
Two basic types

Percentile intervals
Use ordered values of the bootstrapped statistic.

t-type intervals
BS t-intervals have the form of

estimate ± t-value (SE of estimate),
Use the bootstrap to find the right “t-value”, rather
than looking up in a table.

We have focused on the percentile intervals
- go with the graphs!

Alternatives
Percentile intervals

- bias-corrected
- accelerated

BS-t intervals
- best if have a SE formula
- can be very fast to compute

Double bootstrap methods
- use the BS to adjust percentiles.
- bootstrap the bootstrap.
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Standard Percentile Interval
Procedure

Start with large number (B ≈ 2000) reps
Sort the replications and trim off the edges
BS interval is the interval holding remaining

Example with Efron LSAT data
Correlation
Stability in the extremes requires much more data
than to compute standard error.
SE is more easy to obtain

Compare SE’s based on B=200 to CI  based on
same replications.
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Some Theory for Percentile Intervals
When does it work?

Suppose BS analogy is perfect.
- percentile intervals work

Suppose there is a transformation to perfection.
- percentile intervals still work
- example of Fisher’s z-transform for corr.

Suppose there is also some bias.
- need to re-center
- bias-corrected intervals

Allow the variance to change as well
- need further adjustments
- accelerated intervals

Example of LSAT data
Enhanced intervals tend to become more skewed.
No need to believe that the Gaussian interval is
correct ... is this small sample really normal?
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Second Example for the Correlation
Initial analysis

State abortion rates, with DC removed (50 obs)
- Use filter icon to select those not = DC

Sample correlation and interval
corr(88, 80) =  0.915
90.0% interval = [  0.866   0.946 ]

Standard interval relies on a transformation
which makes it asymmetric.

Bootstrap analysis
Percentile interval [0.861, 0.951 ]
Bias-corrected percentile [0.854, 0.946 ]
Accelerated percentile [0.852, 0.946 ]

0.819 0.9780.858 0.898 0.938

Density of CORR_B 
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Enhancements
Double bootstrap

Use the BS to improve the BS
Review logic of a confidence interval.
Bootstrap the bootstrap

- Similar to idea in Freedman and Peters
- Second layer of BS resampling determines

properties of top layer.

Special computing tricks
No longer get histogram/kernel of BS dist.
Balanced resampling

Computational device to get better simulation
estimates at the cost of complicating how you can
use the BS replications of the statistic.

Importance sampling to learn about extremes.
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Things to Take Away
Resampling with longitudinal data

Done to preserve correlation of process.
Requires some assumptions for time series.

Bootstrap for generalized least squares
BS standard error larger than nominal.
Actual SE appears to be larger still.

Resampling in a structural equation
Select observations and fit model to full data set, not
one equation at a time.
Many terms in this models are nonlinear
combinations of regression coefficients, much like
the location of the max for a polynomial.

Percentile intervals
Percentile intervals are easy to obtain.
Enhancements are needed to improve the coverage
when the sampling distribution is skewed.
Bootstrap-t designed to be fast and more accurate in
certain problems, particularly those where you have
a standard error formula.
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Review Questions
If your data consist of short time series, how should
you resample?

Bootstrap resampling should parallel the original
data generating process. You should sample the
short series!  The paper of Freedman and Peters
takes this approach.

What feature of generalized least squares does the
bootstrap capture, but most procedures ignore?

The BS recognizes the variation in our estimate of
the covariance among the observations, and gives
estimates that reflect this uncertainty.

Why does the bootstrap fail to correct for
dependence without taking special steps?

Sampling with replacement generates a collection of
independent observations, regardless of the true
structure.  For example, residuals in regression are
correlated.  However, when we sample them as in
fixed X resampling, the resulting errors are
“conditionally” independent.

What happens when you bootstrap, but the model
does not have a constant term?

For residual resampling, the average residual is not
forced to be zero and so the average bootstrap error
term does not have mean zero, leading to problems.
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What important assumptions underlie bootstrap
percentile intervals?

These assumptions embody the basic bootstrap
analogy:  the sampling distribution of the bootstrap
statistic has to resemble, up to a transformation, the
distribution of the actual statistic.

How do the bias-corrected and accelerated intervals
weaken these assumptions? At what cost?

At the cost of more calculation, these allow for bias
as well as skewness.

How do BS t-intervals differ from percentile intervals?
BS t-intervals resemble the usual type of interval,
with an estimate divided by its standard error.

When is it easy (or hard) to compute the BS t-
intervals?

BS t-intervals require a standard error estimate.  If
you’ve got one, they work well.  If not, you’ve got a
more complex computing problem.

What’s the point in iterating a bootstrap procedure?
What’s a double bootstrap?

The bootstrap is a procedure one can use to estimate
a standard error.  So, you can use it to check itself.
It takes quite a bit more calculation, but is a
powerful idea.
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How can you use the bootstrap to check for the
presence of bias?

Compare the mean of the bootstrap replications (or
maybe better, the median) to the orginal statistic .  If
the two differ by much (relative to the SE of the
statistic), then there’s evidence of bias.

What feature of GLS does the BS capture that is
missed by standard methods?

The formula for the variance of the GLS estimator of
the regression slopes assumes that the error
covariance matrix is known.  That’s pretty rare;
usually, it’s estimated.  The usual formula ignores
this estimation.  The BS does not.

How do structural equation models differ from
standard OLS models?

These models have a collection related equations,
often joined to form a “causal model”.

What is a direct effect (indirect effect) in a structural
model?

A direct effect is typically like a regression
coefficient.  An indirect effect is usually like the sum
of products of regression coefs.
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What goes wrong if you BS equations separately in
structural equation models?

That would be like estimating the different
equations using different samples.  That’s not what
is done when you fit these models.

What important assumptions underlie the basic
bootstrap percentile intervals?

That the BS estimator and the original estimator
have analogous distributions (do not have to be
normal, and can have a transformation).

Why do the percentile intervals require so many
more bootstrap samples than the SE* estimate?

To accurately estimate the “tail percentiles”
requires a very large sample.  Variances are easier
to estimate.


