
Vector Space Models
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Latent Semantic Analysis
• Problem with words

• Even a small vocabulary as in wine example is challenging 

• LSA
• Reduce number of columns of DTM by principal components 
• Enables algorithms that are otherwise impractical (eg, cluster) 
• Offers potential interpretations 

• Embedding
• DTM represents a document as a sparse vector of m counts 
• LSA represents a document as a point of dimension d << m 
• Preserves distances between documents, but in lower dim
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Principal Components Analysis
• Find weighted linear combinations of variables that 

(a) have maximal variation  
(b) are uncorrelated with each other

• Typical role
• Reduce a large collection of features to a smaller number of 
uncorrelated variables, the principal components 

• Preserve most of the variation and correlations 

• Computation
• X = matrix of centered and standardized data (mean 0, sd 1) 
• Sample covariance/correlation matrix of X is SXX 
• Leading eigenvector of SXX is first principal component
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PCA Algebra
• First principal component

• Maximizes the variance of a linear combination of the columns 
of the variables X = X1, X2, …, Xk 
   maxz var(XTz) = zT SXX z 

• Solution is first eigenvector of the covariance matrix of X 
   z = e1,  where   SXX e1 = λ1 e1 

• Second principal component
• Second eigenvector,  SXX e2 = λ2 e2 ,    λ2 < λ1 
• Orthogonal to first,   e1T SXX e2=0 

• Full decomposition
• E = (e1,e2,…,ek)   SXX E = E diag(ej)
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Terminology
• Loadings

• Coefficients that define the weighted sums 
• Eigenvectors of the covariance matrix of X 
• Describe how much of each component of X goes into 
weighted sums 

Xs need to have a common scale 

• Scores
• The weighted combinations defined by the loadings 
• Uncorrelated 
• The variables used in principal components regression
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Dimension Reduction
• Ideal scenario for PCA

• Latent variable
• Observe noisy versions of underlying latent variables 
 
     Xj = Lj + random noise 

• If only one latent variable, could find it by simply averaging the 
X’s, but that seems too easy. 

• Spectrum of matrix     (scree plot)

142svd_examples.R
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Problem for PCA
• Suppose X has a very large number of columns (m>n)

• A document-term matrix has thousands of columns 

• Calculation of correlation matrix is slow
• Size of covariance matrix increases as square of number of variables 
• Number of columns will exceed number of documents in some cases 

• Modern approaches
• Avoid the calculation of covariance matrix 
• Singular value decomposition 
• Random projection
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Singular Value Decomposition
• Decompose any matrix into orthogonal pieces

Avoids explicitly computing the covariance matrix 

• Assume X is an n x m matrix of rank d ≤ min(n,m) 
 

X = U diag(dj) VT = Σ dj uj vjT 
 
where U and V are orthogonal  
 

UTU = Id, VTV = Id

• Rank(X) = Number singular values dj ≠ 0
Collection of singular values known as “spectrum” of X 

• Caution:   Outliers will be important
SVD is a squared-error approximation
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PCA via the SVD
• Recall characterization of PCA

• Need to find matrix E s.t.   
  ET SXX E = diag(λ)   or  SXX = E diag(λ) ET 

• Start with SVD of X
• Assume X has been centered to have mean zero 
• X = U D VT 
• n SXX = XTX = (UDVT)T UDVT = V D2 VT 
• Elements of V are the eigenvectors of SXX (loadings) 
• Square of the singular values are the eigenvalues 
• Columns of U are the principal components (scores)
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PCA in Regression
• Latent variables, again

• Response Y is related to several unobserved latent variable 
    Y = β0 + β1 L1 + β2 L2 + … + noise 

• Observe many noisy versions of the latent variables 
     Xj = Lj + random noise 

• No evident connect between Y and X’s 
• Singular vector (PC) reveals nonlinear dependence
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Latent Semantic Analysis
• LSA ≈ PCA of document-term matrix C

• Conceptual motivation
• Distributional hypothesis: Word types that are used in the same 
way (same context) have similar meaning 

• Each document is a mixture of themes or “topics” that dictate 
word usage (see explicit model tomorrow) 

• Questions
• How to standardize the variables 

PCA is most sensible when variables have been standardized. 
Not sensible to make columns of C have equal SD (remember sparsity) 

• PCA designed for a multivariate normal world. C is sparse
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Conventions for LSA
• Centering

• Not done.  Counts are all positive with mean near zero. 

• Scaling is interesting
• Length normalization 

Reduce the influence of longer documents, replacing  
   Cij –> Cij/ni  or possibly  Cij –> Cij/sqrt(ni) 

• Term frequency - inverse document frequency (tf-idf) 
Give more weight to words that are common in a document (tf), but not so 
common elsewhere (idf). 
Let dj denote the number of documents in which wj appears. 
   Cij –> Cij  x {# docs}/dj 

• Combinations, such as 
   Cij –> log(1+ Cij) x log({# docs}/dj)
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Another Choice: Token Space
• Recall the binary matrices that preserve text information

• W indicates word type 
• D identifies documents
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DTM ≈ Covariance
• Document-type matrix is nxm matrix 

  DTW = C
• Counts of the word types in each document 
     Cij = #{wj in di} 

• View columns of W and D as indicators 
• Because most types are rare, means ≈ 0 and 
     Cij ≈ N cov(di, wj) 

• Standardize binomial variation
• Document counts:  var(Di) = ni/N (1-ni/N) ≈ ni/N 
• Word type counts:  var(Wj) = mj/N (1-mj/N) ≈ mj/N
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Canonical Correlation Analysis
• Extension of regression models to multivariate Y

• Regression  
Find the linear combination of the columns of X that is most 
correlated with Y 

• CCA 
Find the linear combination of the columns of X that is most 
correlated with a linear combination of the columns of Y 

• Role in text
• Binary matrices D and W play roles of Y and X 

• Complication: computation
• CCA requires standardization of X and Y 
• Implies inversion of m x m and n x n matrices (e.g., (XTX)-1)
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CCA Calculation
• Matrices X and Y 

• Centered so that column means are 0  
• Variance/covariances SXX and SYY 
• Covariance matrix SXY = SYXT 

• Classical solution for CCA coefficients 
• Eigenvectors of SYY-1SYXSXX-1SXY 
• Eigenvalues are the squared canonical correlations 

• Modern approach
• Singular value decomposition of standardized covariances
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Calculations
• Can you do an LSA?

• In wine example, the reduced document term matrix after 
collecting OOVs is a 20,508 x 2,645 matrix 

Sparse form saves room, but most SVD code cannot exploit 

• R takes a “long time” to do this calculation 
• Sample 3,000 documents for illustration 

We’ll see how to use the full matrix shortly 

• Spectrum
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Calculations
• Can you do an LSA?

• In wine example, the reduced document term matrix after 
collecting OOVs is a 20,508 x 2,659 matrix 

Sparse save room, but most SVD code cannot take advantage 

• R takes a “long time” to do this calculation 
• Sample 3,000 documents for illustration 

We’ll see how to use the full matrix shortly 

• Spectrum  (log scale)
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Comparison of Spectra
• Three versions of 

frequency weights
• None 

• CCA scaling  
divide by square root of 
product of di times mj 

• tf-idf   (logs) 

• Very similar
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What are the singular vectors?
• First is document length 

Almost perfect for CCA scaling, highly correlated for others 

• Can remove by using probability normalization
• But do you want to give so much weight to small counts?
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Additional Components
• What are the evident clusters?
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Additional Components
• Evidently not red and white wines…
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you can distinguish red 
from white, just not the 
most evident clusters
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Color Recognition
• Percent Red correct 1442/(85+1442) ≈ 94.4%

• Percent White correct   810/(189+810) ≈ 81.1%
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Logistic regr 
did not do 

much better!
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What are the other groups?
• Importance of data familiarity

• Authorship style of the wine ratings changed over time!
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Seldom a bad 
idea to look for 
changes over 

“time”
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And those outliers…
• What happened around position 9400?
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Returning to the original source text reveals 
what’s happening in the underlying text.
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Analysis: Common Style
• Pick subset of reviews that appear in common style

• Use coordinates of leading prior components 
• Reviews typically have food reference 

• Spectra resemble those of prior analysis
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Principal Components
• Again find outlying documents (wine reviews)

164
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One more time!
• Remove the corked wine and redo the SVD

• Spectra is similar, so move on  
to the components

Less clumping of leading component values 

• Another wacko case!
• Description suggests 
no reason to exclude  
other than some novel 
word choices 

• Remove later outlier
• Why some and not others?
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Moving Along…
• Reduced to 2,999 cases

• Spectrum similar to prior, more outliers remain  
• None so dramatic as in prior leading components 

Some are familiar by now!
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Which Words
• What are the loadings of the word types?

• Coefficients of the left singular vectors, V 
• Distribution of loadings tend to have long tails

167



Wharton
  Department of Statistics

Which Words
• Scatterplots of word locations 

• More interesting when not dominated by small subset
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More Loadings
• Concepts are shared over components of SVD

• For example, the unpleasant reaction to the wine 
• Do negative words seem more common?  

negative in the sense of wine, that is
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Random Projection
• Recent development

• Reduce the number of columns of a matrix by multiplication 
by a random matrix (yes, a matrix of random numbers) 

• Preserves much of the “structure” of the matrix, in particular, 
the column span 

• SVD by random projection
• Reduces the number of columns from thousands to 100s 
• Reproduces the SVD in examples when you can do the 
calculations in R 

• Algorithm
• Power iterations improve recovery

170wine_spectral.R
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Comparison to Exact
• Compare SVD from random projection to that 

obtained when R can do the calculation
• R can do the SVD of a 3000 x 2250 matrix
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Subspaces
• What is the relationship between U vectors?

• Column span of the resulting singular vectors (components) 
• Canonical correlations show impact of power iterations
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Principal Components Regression
• Idea

• Use random projection to compute PCs of the complete 
document-term matrix 

• CCA weighting 

• Transductive framework
• Need to compute singular vectors for full data set, both test 
and train 

• “Okay” since no response information used in construction 

• Random projection
• Save 200 columns, with 2 power iterations
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Lasso with PCs
• Use singular vectors in lasso logistic regression

• Only training when fit model 
• Big effects for U4 - U7
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Classification Results
• Calibration and ROC

• Not so well calibrated 
• Very high AUC
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AUC=0.996
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Confusion Matrix
• Very high accuracy, summary measures
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Lasso 40 200 PCR
sens 
ens

0.915 0.982 0.987
spec 0.891 0.987 0.970
prec 0.928 0.991 0.980
miss 0.094 0.016 0.017

Using the raw words worked a little 
better than the PCA/LSA

White is now “1”


