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Topics

• Foundations and heuristics

• Applications in “regression” problems

• Confidence intervals

• Caveats to casual application
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Illustrative Question

Health Status

• What is the average level of osteoporosis in
postmenopausal women in the US?

Small Sample

• 20 postmenopausal women
- sample of “typical” patients
- collection of clinics

• Osteoporosis measured by hip x-ray
- converted to a “t-score”
- “young normal” has mean 0 and SD 1.

Data Analysis

• Initial summary statistics
Mean t-score is –1.58 with SD 1.36

• Data “roughly” normally distributed

What can one infer from this data?
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Bootstrap Approach

Observed histogram

-4 .16 1.82-2 .67 -1 .17 0.325

Density of HIP_T_SCORE 

Treat this sample as population

• Samples with replacement from this collectio
of 20 values, as though it were a population.

• Calculate the average from each sample.

-2 .64 -0 .652-2 .14 -1 .64 -1 .15

Density of MEAN_B 

• Estimate SE of mean as 0.286
95% CI as [–2.2, –1.03]
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Classical Approach

Standard Error and Normality

• Estimate standard error using formula as
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• Requires
- Knowledge of t-distribution
- Normality of sample
- Expression for standard error

• From data
SE = 1.58/√20 = 0.30

and the associated 95% (two-sided) interval is
[–2.22 , –.945]

Why are these so similar to bootstrapping results?

Are they always so similar?

What do standard error and CI mean?
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Intervals for the Variance

Simple bootstrap approach

• Treat observed data as population.

• Compute s2 for each of many samples of size
20 from this “bootstrap population”, sampling
with replacement to get different samples.

0.114 4.011.09 2.06 3.03

Density of VARIANCE_B 

• Obtain estimated SE(sample var)=0.56
and a 95% interval of [0.8, 3].

• Bonus: Plot resampled variance on mean

- 2 . 5 -0 .5- 2 -1 .5 - 1
MEAN_B 
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Classical Approach for Variance

Assuming Normality

If the data are normal, then
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Results for this Sample

The observed s2 =1.362 =1.85 so that

SE(s2) ≈ √2(1.85)/√19 =0.60   (vs 0.56)

and the 95% CI is

[19(1.85)/32.8, 
19(1.85)/8.9] =[1.07, 3.95]

(vs  [0.8, 3] for BS)

SE’s again close, but not the interval?
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Frequentist Confidence Intervals

Models and Assumptions

• Standard methodology (e.g.,t-test) assumes
- independent observations
- constant precision (equal variance)
- normal population

• Idealized sampling picture

Population

Sample 1
Sample 2

Sample 3 Sample B...

Compute SD of each
sample average

• Existential experiment + math implies

Y N Y N ni ~ ( , ) ~ ( , / )µ σ µ σ2 2⇒

• Mathematical model of sampling variation
- Describes sample-to-sample variation
- Derivation of t-quantile tα/2
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Alternatives to Classical Methods

Simulation

• Make the existential sampling real.
• Pretend the population is, e.g., normal with
some mean and variance.

Ranks and permutations

• Exact inference
• Analysis based on order statistics
• Hard to extend to some multivariate methods

Jackknife

• Tukey’s 1958 abstract
• Re-compute statistic leaving out one
• Does not generalize well

- Jackknife samples are too close
- Fails for the median

• Closely related to bootstrap
- Type of approximation

Bootstrap

• Simulation with original data as population.
• Compute observable sampling distribution.
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Bootstrap Resampling

Key idea

• Sample represents all you know about the
population, so use it as the “population”.
• Assumptions remain

- independence
- sampling one population

• “Shape” of the population not assumed.

Key Condition for Statistic

• Depends “smoothly” on underlying populatio
• Mean-like statistics fare well.
• Role of theory is to establish this equivalence

Computing Bootstrap Samples

• Sample with replacement

• Number of replications depends on problem.

• Empirical distribution of sample treated as
population with probability 1/n at each obs.

• nn samples are possible

• Elaborate methods available, but not general.
- Estimate P(N(0,1)>5) by simulation?
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Bootstrap Notation (see references)

Original process

Population  →  (y1, y2, ..., yn) →   Y

Resampling process

BS Sample 1:  (y3, y7, ..., y2) →  Y1
*

BS Sample 2:  (y8, y1, ..., y1) →  Y2
*

. . . .

BS Sample B:  (y4, y9, ..., y11) →  YB
*

Resampling analogy re-expressed

T F T F T F T F( ˆ ) ( ) ( ˆ ) ( ˆ )− ⇔ −∗

where

F = population

F̂  is the empirical distribution and

F̂∗
 is EDF of a bootstrap sample.
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Just a Computational Method?

Computer is not really needed

• Bootstrapping is a perspective, not computing
• Computing becoming easier and easier!
• Key analogy is fundamental

Resampling from the sample resembles
the process that generated the original data

Bootstrap algebra

• Don’t need a computer to find the bootstrap
estimate of the standard error of a mean
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• v2 is the biased ML estimate of the variance,
v Y Y ni

2 2= −∑( ) /

• The SE for any linear statistic (i.e., a fixed
weighted average of the response) can be
obtained without computing.
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Bootstrapping a Correlation

Classic bootstrap example

• LSAT and GPA values for 15 law schools

500 700550 600 650
lsat

• What can one infer about the “population”
correlation?  The sample correlation is

r = 0.776

• PS. What is the population anyhow?

Properties of the correlation

• What are the SE/CI for correlation?
- Both depend on the population ρ.

• Fisher’s z transformation
- Makes SE almost invariant of ρ
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Sample results

• Would not make much sense to use an interva
of the classic form estimate ± 2 SE(estimate).

• Fisher’s transformation gives the 90%
confidence interval

[ 0.507 , 0.907 ] = [.776-.269, .776+.131]

• This interval is not of the form
[estimate ± 2 SE of estimate]

but rather is very asymmetric.

How to bootstrap?

• Keep the data paired – resample observations
- What happens if sample separately
- Idea of bootstrap testing

• Same basic iteration
- Draw sample of pairs with replacement

from the observed sample.
- Calculate the correlation for

each such bootstrap samples

• Summarizing
- Use SD of r* as estimate of SE(r)
- Use percentiles of collection of r* to

form a confidence interval
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Bootstrap results

• Bootstrap distribution is skewed and clearly 
not a normal distribution.

• Values accumulate at the upper limit of 1.

0 10.2 0.4 0.6 0.8

• With 3000 replications, the 90% bootstrap
interval for the correlation is

[0.520, 0.943] = [.776 -  .220, .776+.167]
whereas the Fisher interval is

[0.507 , 0.907] = [.776 - .269, .776+.131]

• Both are skewed and within the range [0,1].

• The bootstrap works without knowing or
requiring Fisher’s transformation – or the
normality it presumes.

• It would not make sense to use the ±2 SE
approach since the distribution is not normal
and you might easily get a value > 1.
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Resampling in Regression

Two Approaches to Resampling

• Random X:
Resample     observations    as with correlation
example or in one case of t-test.

• Fixed X:
Resample    residuals    as follows
  - Fit a model and compute residuals
  - Generate BS data by

Y*  = (Fit) + (BS sample resids)

Comparison

    Observations                Residuals   

Model-dependent No Yes

Preserves X values No Yes

Maintains (X,Y) assoc Yes No

Conditional inference No Yes

Agrees with usual SE Maybe Yes

Computing speed Fast Faster

Differences are most apparent with outliers.
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Model Dependence

Suppose that original data are heteroscedastic…

Appearance of bootstrap samples



Bootstrap Methods 17

Example: Observation vs Residual BS

 Abortion Rates

• DC is leveraged, but not very influential

• Slope standard error
b = 0.978 SE(b) = 0.0251    (t ≈ 40)

0 2005 0 100 150
ABORT80 

0 10.2 0.4 0.6 0.8
Leverage

DC

0 6 02 0 4 0
Case Number

DC
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Observation resampling

• Sample “states” as pairs.

• SE*(b)  = 0.036 ... bigger than OLS claims

Residual resampling

• Sample residuals of fitted model.

• Can compute BS std error without computer.

• SE*(b)  = 0.026 ... about same as OLS claim.

Observation SE* > Residual SE*

• Is X random or is X fixed?

• Residual resampling estimates Var(b|X)

• Observation resampling estimates Var(b)

• Var(b|X) ≤ Var(b)
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Comparison of bootstrap distributions

• Observation resampling binds residual to X
location, leading to bimodal distributions.

0.754 1.140.851 0.949 1.05

Density of COEF-ABORT80_B 

• Residual resampling “smears” the residual of
the outlier, giving a “normal” distribution.

0.736 0.8990.776 0.817 0.858

Density of COEF-ABORT80_B 
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Which Method is Right?

Asymptotically

• Methods converge for large n

Observation Resampling Tradeoffs

+ Does not assume so much of fitted model
Example with unequal variance.
Example with curvature.

± Estimates unconditional variation of the slop
rather than the conditional variation.

± Does not always agree with classical SE

– Not appropriate in Anova designs, patterned
X’s such as time trends

(at least not without special care!)

– Slower to compute (less important these days

What would happen for “another sample”?

• Would you get another outlier for this X?

• Would it again have a negative residual?

• Might expect DC to be an outlier, but not so
clear that its error would be negative again.



Bootstrap Methods 21

Locating a Maximum

Do you need bootstrapping in regression?

• After all, if fix X, it’s a linear estimator…

Where’s the maximum

• For what amount of preparation time in hours
does maximum test score occur?

Results of fitting a quadratic

0 2 05 1 0 1 5
HOURS 

• Fitting the model
fit = a + b x + c x2 

via least squares estimates gives
a = 136 b=  89.2 c = –4.60
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So, where’s the maximum and what’s a CI?

• Write the fit as
f(x) = a + b x + c x2 

and then take the derivative,
f’(x) = b + 2cx

The peak occurs where the derivative is zero.

• Solving f’(x*) = 0 for x* gives

 x* = – 
b
2c  ≈ –89.2/(2)(–4.6)= 9.7

• Questions
- What is the precision (standard error) of x*?
- Can you find a confidence interval?
- Is there any bias in the estimate?

Classical alternative

• “Delta method” computes an approximate
standard error by treating this ratio as a linear
function of the slope estimates.
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Bootstrap results

• Manipulate bootstrap results in “natural way”
simply dividing bootstrap estimates of the
linear term by minus twice the quadratic

max* = b* / -2 c*

• Bootstrap (B=2000) gives usual smaller
standard error with fixed resampling…

Observation resampling SE* = 0.185
Fixed resampling SE* = 0.174

• Both give a 95% interval of about  [9.37, 10]

• The smoothed distribution for the location of
the maximum looks pretty normal.

• A quantile plot “heavy tails” as might be
expected from a ratio of normals.

8.9 10.59.3 9.69 10.1

Density of max 
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Longitudinal Models

Freedman and Peters (1984)

• Regional industrial energy demand
- 10 DOE regions of the US

• For each region, you observe a short time
series, over the 18 years 1961-1978 .

Model

Qrt = ar + b Crt + c Hrt + d Prt + e Qr,t-1 + fVrt

+ εrt

where
Qrt = log energy demand in region r, time t
Crt, Hrt = log cooling, heating degree days
Prt = log of energy price
Vrt = log value added in manufacturing

• Model includes a lagged value of the response
as a predictor (“lagged endogenous”).

Error assumptions Block diagonal

• No remaining autocorrelation
• Arbitrary “geographical” correlation
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Generalized Least Squares

Estimators

• Need to know covariance structure in order to
get efficient parameter estimates

Var(ε) = V  180x180 block matrix

• Textbook expression

 β̂  = (X’V-1 X)-1  X’V -1 Y

• SE for β̂  comes from

VAR β̂   =  (X’V-1 X)-1 

• Problem:  Don’t know V or its inverse, so you
typically estimate it in some fashion from the
data itself.  However, everyone continues to
use the formulas that presume you know the
right V.

Results of Simulations

• GLS standard errors that ignore that one has to
estimate V are way too small

• BS SE’s are larger, but not large enough
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Estimation Results

From the paper…

Est  SE SE* SE**

a1 -0.95 0.31 0.54 0.43

a2 -1.00 0.31 0.55 0.43

CDD 0.022 0.013 0.025 0.020

HDD 0.10 0.031 0.052 0.043

Price -0.056 0.019 0.028 0.022

Lag 0.684 0.025 0.042 0.034

Value 0.281 0.021 0.039 0.029

Method of Bootstrap Resampling

• Sample years, since assumed independent
over time.

• Use bootstrap to check bootstrap, a so-called
bootstrap calibration procedure.

• Values labeled SE** ought to equal SE*
(which serve role of true value), but they’re
less.

• BS is better than nominal, but not enough.
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Bootstrap Confidence Intervals

Two basic types

• Percentile intervals that use ordered values of
the bootstrapped statistic.

• BS-t intervals have the form of
estimate ± t-value (SE of estimate)

Use the bootstrap to find the right multiplier,
rather than look up a value in a table.

• I have focused on the percentile intervals
- I like the pictures of the BS distribution

Alternatives

• Percentile intervals
- bias-corrected
- accelerated

• BS-t intervals
- best if have a SE formula
- can be very fast to compute

• Double bootstrap methods
- use the BS to adjust percentiles.
- another calibration method

• Alternative computing methods
- importance sampling, “tilting”
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Closer Look at Percentile Intervals

Percentile intervals
If gα denotes the α percentile of the bootstrap
distribution of the statistic,

P*(T(X*) ≤ gα = α,
then the  1-α  percentile interval is simply

    [gα/2 , g1-α/2]

They seem backwards!

Usual confidence interval formed by inverting

P z
Y

n
zα α

µ
σ

α/ //2 1 2 1≤ − ≤







= −−

with zα/2 = –1.96 when α=0.05 to

P Y z
n

Y z
n

− ≤ ≤ −{ } = −−1 2 2 1α α
σ µ σ α/ /

So, why do they work at all?
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Percentile Intervals – Basic Conditions

Utopian conditions

Population parameter θ
Statistic T = T(Y) ~ N(θ,ν2)
Bootstrap T* = T(Y*) ~ N(T,ν2)

Ideal 95% confidence interval

[T – 1.96 ν, T + 1.96 ν]
Percentile interval

Upper endpoint is that value U such that

0.975 = P*(T* ≤ U)

In other “words”, U satisfies

 0.975 = P*((T*–T)/ ν ≤ (U–T)/ ν)
= P*( N(0,1) ≤ (U–T)/ ν)

so that
   (U–T)/ ν = 1.96

and
U = T + 1.96 ν

Just what we wanted, but those conditions …
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Percentile Intervals and Transformation

Unknown transformation
Population parameter θ
Statistic h(T) ~ N(h(θ),ν2)
Bootstrap h(T*) ~ N(h(T),ν2)

Ideal 95% confidence interval for θ

h-1[h(T) – 1.96 ν, h(T) + 1.96 ν]
Percentile interval

Upper endpoint is that value U such that

0.975 = P*(T*≤ U) = P*(h(T*)≤ h(U))

or U such that

0.975 = P*((h(T*)–h(T))/ ν ≤ (h(U)–h(T))/ ν)
= P*( N(0,1) ≤ (h(U)–h(T))/ ν)

so that
  (h(U)–h(T))/ ν = 1.96

and
h(U) = h(T) + 1.96 ν

But not all estimators meet these conditions…
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Going Further

Generalize further?

• Does not require normality as the common
distribution, but this is most likely.

• Can be adjusted to accommodate bias.
Bias corrected percentile intervals

• Can be further adjusted to accommodate the
variance changing with the location

Accelerated, bias corrected (ABC)

Consequences of generality

• Adjusting for bias, “acceleration” lead to
more variation in procedure.

• On average it’s right, but with high variance.
- Think of trivial 95% interval

• Adjustments can be difficult to accomplish
with complex estimators.

Alternative methods

• Bootstrap t intervals
Make your own t-table, if you can find
a standard error to use.

• Double bootstrap methods.
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Bootstrapping Variances

Variance for normal sample

s2 ~ σ2 χ2
n-1/(n-1)

• Both the mean and variance of s2 depend upon
the value of σ2, unlike a “location” problem.

• No transformation (the “h” used previously)
exists for this problem.

• How would you measure the failure of
bootstrapping?

Simulation for bootstrap

• Assume that population is normal(0,1).

• Draw samples of size 20.

• For each sample,
- find the percentile interval
- see if it covers the truth (σ2=1)

Simulation results for nominal 95% interval

• Only 409 out of 500 covered, 0.82 (se = .013)
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Double Bootstrap

Check Percentile Intervals

• Know population, for which σ2 = 1.

• Sample population, Y

• Resample Y to obtain the percentile interval

• Compute coverage of nominal 95% interval

Double Bootstrap

• Know the “bootstrap population”,
with variance v2.

• Sample the “population”, Y*

• Resample Y* to obtain the percentile interval

• Compute the coverage of the interval.

Adjust the Percentiles

• If the nominal 95% percentile interval does
not cover, what’s the coverage of the nominal
98% interval?

• Tune the nominal coverage so that you get the
desired level of actual coverage.
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Double BS Plots
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Review for Percentile Intervals

When does it work?

• Suppose BS analogy is perfect.
- percentile intervals work

• Suppose there is a transformation to perfectio
- percentile intervals still work

• Suppose there is also some bias.
- need to re-center
- bias-corrected intervals

• Allow the variance to change as well
- need further adjustments
- accelerated intervals

Example of LSAT data

• Enhanced intervals tend to become more
skewed.

• No need to believe that the Gaussian interval
is correct ... is this small sample really normal
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Second Example for the Correlation

Initial analysis

• State abortion rates, with DC removed (50 ob

- Use filter icon to select those not = DC

• Sample correlation and interval

corr(88, 80) =  0.915

90.0% interval = [  0.866   0.946 ]

• Standard interval relies on a transformation
which makes it asymmetric.

Bootstrap analysis

• Percentile interval [0.861, 0.951 ]

• Bias-corrected percentile [0.854, 0.946 ]

• Accelerated percentile [0.852, 0.946 ]

0.819 0.9780.858 0.898 0.938

Density of CORR_B 
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Back to Basics - Flaws

Behavior at Extremes

•  M = Max(X1, ..., Xn)

•  95% Percentile is roughly (x(4), x(1))

BUT...

•  Expected value of max M is larger than the
observed max about 1/2 of the time,

Pr [ E X(1) ≥ x(1) ] ≥ 0.5 ,

so the bootstrap distribution misses a lot of the
probability.

Why does the bootstrap fail?

The statistic of interest depends on just the
single most extreme observation, regardless of
sample size.  Getting a larger sample does not
improve things.
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Regression without a Constant

Leave Out the Constant

• Force the intercept in the fit to be zero.

• Residual average is no longer zero.

Effect on Residual-Based Bootstrap

• If resample residuals, then distribution from
which you sample has a non-zero mean value

BUT

by assumption the true distribution of the errors
has mean zero.

• The lack of a fixed mean of zero in the
sampled residuals implies that the bootstrap
estimates of variation no longer improve as the
sample size increases.

Whose fault is this?

• You need to pay attention when resampling!
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Bootstrapping Dependent Data

Sample average

• Example:  standard error of mean

• Data:  “equal correlation” model

Corr(Xi, Xj) = 1 i=j Var = σ2

Corr(Xi, Xj) = ρ i≠j

True standard error of average

    Var(X
—

 )= (1/n2) Var (Σ Xi)
= (1/n2) (Σ Var(Xi) + Σ Cov(Xi,Xj))

= 
σ2

n   + 
ρσ2 n(n-1)

n  

=  
σ2

n  (1 + ρ(n-1)) 

• Does not go to zero with larger sample size!

What happens for bootstrap

• Treats data as independent!

• Adjustments based on blocking data.
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Wrapping Up

Bootstrap resampling does

• Produce reliable standard errors and CI’s for
virtually any estimator.

• Presumes that the resampling parallels the
original data generating process.

• Frees time to think about problem, use
methods for which CI is hard to come by.

• Shed insights by inspecting the distribution of
the bootstrap replications:

- close to normal, usual methods work
- far from normal, need to be careful

• Allow one to adaptively select the estimator
for a particular data set.

• Can be enhanced, but at a cost.
Is it worthwhile to make such adjustments?

Bootstrap resampling does not

• Work if resampling done improperly.

• Make good things happen with bad data.

• Fix flaws in your research paradigm.


