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Comments from First Lecture
• Preparing text

• Depends on nature of the analysis 
For example, to remove or keep stop words or capitalization 

• Bag-of-words representation 
Document-term matrix sacrifices the order of text 

• NLP: deeper linguistic analysis  
Identify named entity, parts of speech, grammatical structure 
Language specific, unlike DTM approach with symbol counts 

• Tidy R 
It’s different, so check out R for Data Science by 
Wickham and Grolemund 

• Slides and Rmd file
• Edits often happen after the lecture! 

Files stay on website so no need to grab right away
2
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Sentiment Analysis
• Typical approach

• Start with dictionary of words associated with concepts 
  Positive - Negative 
  Cruel - Kind 
  Red - White wine 

• Over a corpus of documents, count the prevalence of the 
different types of words 

• Use prevalence of these counts to measure of the “sentiment” 
of the document 

• Application
• Words used by judge hearing a case, speeches, social media
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Dictionaries
• Dictionary also called a lexicon

• Four examples
• Included in the R package tidytext 

Text Mining with R, a Tidy Approach  (2017) Silge and Robinson 

• Bing 
The classic: positive and negative words, binary categorical coded 

• NRC 
More “emotions” beyond just positive or negative 
Anger, anticipation, disgust, fear, joy, sadness, surprise, and trust 

• AFINN 
Numerical scores for positive/negative from -5 to +5; others are categorical 

• Loughran 
Special purpose for financial terms
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Examples
• Bing AFINN

• NRC Loughran

6Reactions to these dictionaries?
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Formation of Dictionary
• Generic

• One size fits all: dictionary may become “dated” or unsuited to 
your data, such as language used in social media, emoticons 

• Dictionaries tend to be dominated by negative words 

• Bag of words
• Counts “beautiful” same as “not beautiful”.   
• Sarcasm is hard to measure. 

• Grow your own
• Expand using WordNet to find synonyms, antonyms 
• Supervised data needed, but hard to come by
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Example with Wines
• Relate counts of words to points assigned to wines

• Is “lemon” a negative word when describing wine? 
• Use counts or proportions 

• Net sentiment weakly related to points

8

est points ≈ 86 + 0.2 sentiment

RMSE ≈ 3 
R2 ≈ 2%

Weaker than using similar word lists.

What’s a big 
assumption?
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Combination
• Multiple regression

• Allows different effects for positive and negative words  
• Include nonlinear terms add a bit more 
• Requires a response to judge the effects of sentiment words
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Discussion
• Sentiment analysis requires a dictionary

• Assigns a fixed set of weights to words 
• Unsupervised 

Not what you would find from a dummy variable regression, but regression 
would require you to have a response variable 
The R notes contain an very quick look at how you can use a response (the 
rating points in this case) to set weights. 

• Dictionaries are dated and often context dependent 
“lemon” is not a bad word in one’s sentiment toward wine 

• Experiment with other dictionaries
• Only shown results from the oldest, simplest dictionary 
• Accompanying R shows“how its done”
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Latent Semantic 
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Document Term Matrix
• Count word types that appear in each document

• One row for every document (an observation) 
• One column for every word type (a variable)
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Popular Summary Plots
• Bar charts and word clouds are popular graphs used to 

summarize frequencies of word types
• Column totals from the document-term matrix

13

Nicer without those 
stop words…
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Distribution of Types
• Most word types are rare, most tokens are common

• Total of 607,355 tokens from 5,488 word types  

• Zipf distribution for word types
• Depends on how text was tokenized  
• Power law has ideal form… 

Frequency of second most common 1/2 frequency of most common 
Frequency of third most common 1/3 frequency of most common… 
    fj = (1/j) f1, j = 2,3,4… 

• Highly skewed (plot follows) 
• Most common types include stop words and words related to 
wine:    aromas, body, dry, palate, acidity, fruit, tannins.
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Distribution of Types
• Plot log of frequency on log of rank

• Sum columns of C, ordered by frequency 

• Power law would be a line
• Most data produce this concave shape

15

slope for first 
250 is -0.95
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Discussion of DTM
• Sensitive to subjective choices of analyst

• How was the text tokenized? 

• Bag-of-words 
• bag:  A collection of elements that allows copies 

A set is a special case of a bag that limits each count to 1. 

• Each row of C (one document) is a bag. 
• Sequence order is lost: Random permutations of the tokens 
produce the same document-term matrix. 

• Sparse representation is essential
• C is 20,508 x 5,488, with about 112 million elements

16

Common 
vocabulary might 

have 50,000 
word types 
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Handling Rare Types
• What to do about rare word types?

• 1827/5488 ≈ 33% of word types appear just once! 
• Another 660 + 367 = 1027 appear just 2 or 3 times 

• Anticipate complication
• Suppose we use word counts to predict price of wine 
• Split sample analysis: say, half for modeling, half for testing 
• Test sample guaranteed to have words we never saw in building 
our model and possibly omit words in model 

• Recode as out-of-vocabulary (OOV)
• Just one symbol, or distinguish depending on use in context?
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Handling Rare Types
• Possible ways to reduce number of OOVs

• Stem the words: “cigars” found 1 time, “cigar” found 152 
But does “fruit” == “fruity”? 

• Fix spelling errors: “berrry", “ciitrus” 
• Combine numbers as one type of OOV 

• Recoding as OOV
• Can use a special OOV for numbers 
• Part of speech tagging 
Special OOV for nouns vs verbs vs places vs things etc 

• Losing sight of forest for trees?
• 603,107 tokens represent types seen more than 3 times 
• 4,248 seen 3 or less
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Latent Semantic Analysis
• Principal components analysis of the document-term 

matrix (or possibly a bigram matrix)
• Actually closer to canonical correlation analysis 
• Heuristic: Words that appear together are related, the so-
called distributional hypothesis 

• Applications: supervised or unsupervised
• Supervised: Build features for predictive models 
• Unsupervised: embedding 

LSA represents document as point in Rd, dimension d << m 
Preserves distances between documents, but in lower dim 
Coordinates taken from PCA of standardized DTM
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Process Overview
• Start from a matrix of counts 

• Document term matrix: count types that occur in same document 
• Bigram matrix: count types that appear adjacent to each other 

• Compute principal components from matrix
• Requires standardization 
• DTM, bigram matrices interpretable as covariance matrices 

• Principal components define “word embedding”
• Coordinates of similar words appear near each other 

• Variables may then be used in other models
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Examples of Embeddings
• Plot two dimensions from the word “embedding”

• Based on data from Google bigrams
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Examples of Embeddings
• Zoomed in view of same singular vectors
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Examples of Embedding
• Numbers as words and digits
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Closer Look at LSA
• LSA ≈ PCA of document-term matrix C (or bigram)

• Conceptual motivation
• Distributional hypothesis: Word types that are used in the same 
way (same context) have similar meaning 

• Each document is a mixture of themes or “topics” that dictate 
word usage (see explicit model tomorrow) 

• Concerns
• How to standardize the variables 

PCA is most sensible when variables have been standardized. 
Not sensible to make columns of C have equal SD (remember sparsity)? 

• PCA designed for a multivariate normal world. C is sparse

24
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Conventions for LSA
• Centering columns of C

• Not done.  Counts are all positive with mean near zero. 

• Scaling columns of C is interesting
• Length normalization 

Reduce the influence of longer documents, replacing  
   Cij –> Cij/ni  or possibly  Cij –> Cij/sqrt(ni) 

• Term frequency - inverse document frequency (tf-idf) 
Give more weight to words that are common in a document (tf), but not so 
common elsewhere (idf). 
Let dj denote the number of documents in which wj appears. 
   Cij –> Cij  x {# docs}/{# mj ≠ 0} 

• Combinations, such as 
   Cij –> log(1+ Cij) x log({# docs}/{# mj ≠ 0})
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Token Space
• Novel perspective on the document-term matrix

• Consider two matrices with elements 0 and 1 
• Total number of rows = total number of word tokens
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N = total # tokens 
n = # documents 
m = # word types

Stochastic 
process

preserves all 
information in 
source text
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DTM ≈ Covariance
• Document-type matrix is nxm matrix 

  STW = C
• Counts of the word types in each document 
     Cij = #{wj in di} 

• View columns of S and W as indicator variables
• Because most types are rare, means ≈ 0 and 
     Cij ≈ N cov(di, wj) 

• Standardize binomial variation
• Document counts:  var(Di) = (ni/N) (1-ni/N) ≈ ni/N 
• Word type counts:  var(Wj) = (mj/N) (1-mj/N) ≈ mj/N

27

Cij –>Cij/sqrt(nimj) 
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Canonical Correlation Analysis
• Extension of regression to multivariate Y

• Regression  
Find the linear combination of the columns of X that is most 
correlated with Y 

• CCA 
Find the linear combination of the columns of X that is most 
correlated with a linear combination of the columns of Y 

• Role in text
• Binary matrices S and W play roles of Y and X 

• Complication: computation
• CCA requires standardization of X and Y 
• Implies inversion of m x m and n x n matrices (e.g., (XTX)-1)
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Singular Value Decomposition
• Decompose any matrix into orthogonal pieces

• Assume X is an n x m matrix of rank d ≤ min(n,m) 
 

X = U diag(dj) VT = Σ dj uj vjT 
 
where U and V are orthogonal  
 

UTU = Id, VTV = Id

• Rank(X) = Number singular values dj ≠ 0
Collection of singular values known as “spectrum” of X 

• Caution:   Outliers will be important
SVD is a squared-error approximation

29

n x m n x d d x m

spectrum

U = “components” 
V = “loadings”
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Interpreting the Components
• General approach

• Plot components versus each other: often see clusters 
• Plot components versus other known variables 
• Plot loadings with labels of important word types 

• Rotation
• Can be used as in principal components to obtain a simpler 
structure to the coefficients (e.g., Varimax rotation) 

• Less commonly see in text, though found in JMP
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Example from Wines
• First component

• The first component when using CCA normalization of the 
wines measure the number of tokens in the document.
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Example from Wines
• Principal components reveal clusters unrelated to wine 

color or variety…
• Just the same, easy to use U4 to predict the wine color.
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Example from Wines
• But a sequence plot shows a clear pattern…

33We will see what happened in the R session.
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What are those components?
• Key words that comprise two components that 

separate the wine colors.

34

also known  
as loadings
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Random Projection
• Recent development

• Reduce the number of columns of a matrix by multiplication by 
a random matrix (yes, a matrix of random numbers) 

• Preserves much of the “structure” of the matrix, in particular, the 
column span, distance matrix, and bigger principal components 

• SVD by random projection
• Reduces the number of columns from thousands to 100s 
• Reproduces the SVD in examples when you can do the 
calculations in R 

• Algorithm
• Power iterations improve recovery
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Demostration with Wines
• Random projection  

captures spectrum
• Compare singular values and  
and coefficients U and V 

• Use “small” problem in which R  
can do the exact decomposition 

• And coordinates of components
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Discussion
• Learning more

• LSA is just a button click away, but there’s much to learn about what’s 
happening under the hood. 

• Don’t need to be an expert mechanic to drive a car, but helps to have 
an idea of what’s going on. 

• Some papers
• Deerwester, et al (1990). Indexing by latent semantic analysis. JAsIs, 
41, 391-407 

• Landauer, Foltz, and Laham (1998).  An introduction to latent 
semantic analysis. Discourse Processes, 25, 259-284 

• Schwarz, Turney and Pantel (2010). From frequency to meaning: 
vector space models of semantics.  J. of Artificial Intelligence 
Research, 37, 141-188
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