Overview

- Applications
 - Marketing: Direct mail advertising (Zahavi example)
 - Biomedical: finding predictive risk factors
 - Financial: predicting returns and bankruptcy

- Role of management
 - Setting goals
 - Coordinating players

- Critical stages of modeling process
 - Picking the model \(\leftarrow\) My research interest
 - Validation

Predicting Health Risk

- Who is at risk for a disease?
 - Costs
 - False positive: treat a healthy person
 - False negative: miss a person with the disease
 - Example: detect osteoporosis without need for x-ray

- What sort of predictors, at what cost?
 - Very expensive: Laboratory measurements, "genetic"
 - Expensive: Doctor reported clinical observations
 - Cheap: Self-reported behavior

- Missing data
 - Always present
 - Are records with missing data like those that are not missing?

Predicting Stock Market Returns

- Predicting returns on the S&P 500 index
 - Extrapolate recent history
 - Exogenous factors

- What would distinguish a good model?
 - Highly statistically significant predictors
 - Reproduces pattern in observed history
 - Extrapolate better than guessing, hunches

- Validation
 - Test of the model yields sobering insight
Predicting the Market

- Build a regression model
 - Response is return on the value-weighted S&P
 - Use standard forward/backward stepwise
 - Battery of 12 predictors
- Train the model during 1992-1996
 - Model captures most of variation in 5 years of returns
 - Retain only the most significant features (Bonferroni)
- Predict what happens in 1997
- Another version in Foster, Stine & Waterman

Historical patterns?

Fitted model predicts...

What happened?
Over-confidence?

- Over-fitting
 - DM model fits the training data too well – better than it can predict when extrapolated to future.
 - Greedy model-fitting procedure
 “Optimization capitalizes on chance”
- Some intuition for the phenomenon
 - Coincidences
 • Cancer clusters, the “birthday problem”
 - Illustration with an auction
 • What is the value of the coins in this jar?

Auctions and Over-fitting

- Auction jar of coins to a class of students
- Histogram shows the bids of 30 students
- Some were suspicious, but a few were not!
- Actual value is $3.85
- Known as “Winner’s Curse”
- Similar to over-fitting: best model like high bidder

Roles of Management

Management determines whether a project succeeds…

- Whose data is it?
 - Ownership and shared obligations/rewards
- Irrational expectations
 - Budgeting credit: “How could you miss?”
- Moving targets
 - Energy policy: “You’ve got the old model.”
- Lack of honest verification
 - Stock example… Given time, can always find a good fit.
 - Rx marketing: “They did well on this question.”
What are the costs?

- Symmetry of mistakes?
 - Is over-predicting as costly as under-predicting?
 - Managing inventories and sales
 - Visible costs versus hidden costs
- Does a false positive = a false negative?
 - Classification
 - Credit modeling, flagging “risky” customers
 - Differential costs for different types of errors
 - False positive: call a good customer “bad”
 - False negative: fail to identify a “bad”

Back to a real application…

How can we avoid some of these problems?

I’ll focus on

* statistical modeling aspects (my research interest),
and also
* reinforce the business environment.

Predicting Bankruptcy

- “Needle in a haystack”
 - 3,000,000 months of credit-card activity
 - 2244 bankruptcies
 - Best customers resemble worst customers
- What factors anticipate bankruptcy?
 - Spending patterns? Payment history?
 - Demographics? Missing data?
 - Combinations of factors?
 - Cash Advance + Las Vegas = Problem
- We consider more than 100,000 predictors!

Stages in Modeling

- Having framed the problem, gotten relevant data...
- Build the model
 Identify patterns that predict future observations.
- Evaluate the model
 When can you tell if its going to succeed…
 - During the model construction phase
 - Only incorporate meaningful features
 - After the model is built
 - Validate by predicting new observations
Building a Predictive Model

So many choices…

- **Structure**: What type of model?
 - Neural net (projection pursuit)
 - CART, classification tree
 - Additive model or regression spline (MARS)

- **Identification**: Which features to use?
 - Time lags, “natural” transformations
 - Combinations of other features

- **Search**: How does one find these features?
 - Brute force has become cheap.

My Choices

- Simple structure
 - Linear regression with nonlinear via interactions
 - All 2-way and many 3-way, 4-way interactions

- Rigorous identification
 - Conservative standard error
 - Comparison of conservative t-ratio to adaptive threshold

- Greedy search
 - Forward stepwise regression
 - Coming: Dynamically changing list of features
 - Good choice affects where you search next.

Bankruptcy Model: Construction

- **Context**
 - Identify current customers who might declare bankruptcy

- Split data to allow validation, comparison
 - Training data
 - 600,000 months with 450 bankruptcies
 - Validation data
 - 2,400,000 months with 1786 bankruptcies

- Selection via **adaptive thresholding**
 - Analogy: Compare sequence of t-stats to Sqrt(2 log p/q)
 - Dynamic expansion of feature space

Bankruptcy Model: Fitting

- Where should the fitting process be stopped?

[Residual Sum of Squares graph]
Bankruptcy Model: Fitting

- Our adaptive selection procedure stops at a model with 39 predictors.

Bankruptcy Model: Validation

- The validation indicates that the fit gets better while the model expands. Avoids over-fitting.

Lift Chart

- Measures how well model classifies sought-for group

\[
Lift = \frac{\% \text{ bankrupt in DM selection}}{\% \text{ bankrupt in all data}}
\]

- Depends on rule used to label customers
 - Very high probability of bankruptcy
 - Lots of lift, but few bankrupt customers are found.
 - Lower rule
 - Lift drops, but finds more bankrupt customers.
- Tie to the economics of the problem
 - Slope gives you the trade-off point

Example: Lift Chart

- Model vs. Random
Bankruptcy Model: Lift

- Much better than diagonal!

![Lift Diagram]

Calibration

- Classifier assigns \(\text{Prob}(\text{"BR"}) \) rating to a customer.
- Weather forecast
- Among those classified as 2/10 chance of "BR", how many are BR?
- Closer to diagonal is better.

![Calibration Chart]

Bankruptcy Model: Calibration

- Over-predicts risk near claimed probability 0.3.

![Calibration Chart]

Modeling Bankruptcy

- Automatic, adaptive selection
 - Finds patterns that predict new observations
 - Predictive, but not easy to explain
- Dynamic feature set
 - Current research
 - Information theory allows changing search space
 - Finds more structure than direct search could find
- Validation
 - Remains essential only for judging fit, reserve more for modeling
 - Comparison to rival technology (we compared to C4.5)
Wrap-Up Data Mining

- Data, data, data
 - Often most time consuming steps
 - Cleaning and merging data
 - Without relevant, timely data, no chance for success.

- Clear objective
 - Identified in advance
 - Checked along the way, with “honest” methods

- Rewards
 - Who benefits from success?
 - Who suffers if it fails?