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ExamplesExamples

w Predicting the onset of bankruptcy  (Credit VII)
- 3,000,000 record database

- ≥ 100,000 potential predictors of many types

w Estimating risk of default on underwritten loans
- 300,000 outstanding loans

- Many types of predictors

• Industry characteristics, macroeconomic factors

• Historical record, properties of a specific loan

w Predicting efficacy of new medication
- Lab tests, doctor opinion, patient self-reported data
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Predictive modelingPredictive modeling

w Predict characteristic
- Personal bankruptcy, business loan default, reaction to drug

w Predict using features selected from LARGE database
of possible features
- Many types of features
- Some substantively motivated, others just “available”
- Some expensive to gather, some much cheaper
- Some you have now, some you collect later

wHard part
- Once you have the data, which predictors to use?
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Which features to use?Which features to use?

w Substantive
- Pick predictors “by hand”

w  Advantages
- Leverage expertise, domain

knowledge
- Easy to “explain” to customer

or regulator

w Disadvantages
- Time consuming to construct
- Did we miss something?
- Time consuming to maintain
- Has the world changed?

w Automatic
- Algorithmic feature selection

w Advantages
- Scans large database quickly

- Automatic rebuilding

- Exploits automated data streams

w Disadvantages
- Does not exploit domain

expertise.

- Often hard to explain or
interpret.

- Overfitting
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OverfittingOverfitting

20

40

60

80

100

120

0 10 20 30 40 50 60 70 80 90 100

Complexity of Model

Actual

Claimed

Squared
Prediction

Error



Wharton
Department of Statistics

6

Best of both worlds?Best of both worlds?

w Substantive
- Pick predictors “by hand”

w  Advantages
- Leverage expertise, domain

knowledge
- Easy to “explain” to customer

or regulator

w Disadvantages
- Time consuming to construct
- Time consuming to maintain
- Did we miss something?
- Has the world changed?

w Automatic
- Algorithmic feature selection

w Advantages
- Scans large database quickly

- Automatic rebuilding

- Exploits automated data streams

w Disadvantages
- Does not exploit domain expertise.

- May still be hard to explain or
interpret?

- Overfitting
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Auction processAuction process

w Predictor streams offer predictors to consider.

w Bidders rate possible choices (assign a probability).

w Auctioneer selects predictor with highest rating.

w Bidders place bids on this predictor.

w Auctioneer tests whether predictor adds value.
- Statistical test to see if predictor improves underlying model

wWinning bidders collect if predictor chosen for model.
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Predictor streamsPredictor streams

wDifferentiate domains
- Different streams for different domains, e.g.

• One stream for macro features
• A second stream for individual features

wExperts order predictors
-Expert determines the order in which stream offers its
predictors to the auction

wBidders
-Learn which streams offer predictors that join model
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Auction processAuction process

w Predictor streams offer predictors to consider.

w Bidders rate possible choices (assign a probability).
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Picking predictor for auctionPicking predictor for auction

wMultiple predictor streams, but only one is
tested in each round of the auction.

wBidders assign probabilities to streams
-Internal features, “preferences” of bidder
-Experience with this stream of predictors

wAuctioneer sums probabilities and picks the
predictor that attracts the most bidder interest.
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Auction processAuction process

w Predictor streams offer predictors to consider.

w Bidders rate possible choices (assign a probability).

w Auctioneer selects predictor with highest rating.

w Bidders place bids on this predictor.
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BiddingBidding

w Each bidder has “wealth”
- Wealth = cumulative rate of picking predictors that fail,

i.e. each bidder has its own a rate.

- Wealth initially allocated to bidders by the auctioneer.

w Bidders bid on the offered predictor
- Share of current wealth

• Probability that this predictor will join model

• Bayesian schemes, exploiting risk aversion

- Successful bidders have more to bid

wAuctioneer collects bid from each bidder
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Auction processAuction process

w Predictor streams offer predictors to consider.

w Bidders rate possible choices (assign a probability).

w Auctioneer selects predictor with highest rating.

w Bidders place bids on this predictor.

w Auctioneer tests whether predictor adds value.
- Statistical test to see if predictor improves underlying model
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Evaluating a predictorEvaluating a predictor

w Thresholding
- Compare p-value of predictor to threshold

- Bankruptcy analysis discusses optimal thresholding

- Variety of schemes for setting threshold (AIC, BIC,…)

w For the auction, cumulative bid sets threshold
- Bidders spend a for error as they bid on predictors.

w Related ideas in multiple testing
-a-spending rules in sequential clinical trials

- Family-wide error rates

- Step-up/step-down testing
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Auction processAuction process

w Predictor streams offer predictors to consider.

w Bidders rate possible choices (assign a probability).

w Auctioneer selects predictor with highest rating.

w Bidders place bids on this predictor.

w Auctioneer sees whether predictor adds value.
- Statistical test to see if predictor improves underlying model

w Bidders collect if predictor chosen for model.
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Paying off the biddersPaying off the bidders

wAuction begins with an allowed probability for error
- Total a for the auction controls the rate of false positives.
- Tuning parameter, typically set total a to 0.05.

w Each predictor added to model earns the auction more
chance for error in considering rest of predictors
- Finding good predictor increases the total a for the auction

by 0.05.
- Auctioneer distributes this added “wealth” to the bidders

proportional to bid.
- Bidders who bid more on good predictors accumulate

“wealth” and have more to bet in future rounds.
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Auction processAuction process

w Predictor streams offer predictors to consider.

w Bidders rate possible choices (assign a probability).

w Auctioneer selects predictor with highest rating.

w Bidders place bids on this predictor.

w Auctioneer sees whether predictor adds value.
- Statistical test to see if predictor improves underlying model

w Bidders collect if predictor chosen for model.

wAuction continues to the next round.
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Predictor auction schematicPredictor auction schematic

Model

Expert 1 Auto Sequence

Expert 2 Random Seq

Multiple Streams
of Predictors

Greedy Conservative

Several Bidders

Auctioneer
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Sequential feature selectionSequential feature selection

wAuction considers predictors offered by streams
sequentially, rather than “all at once” (batch).

w Can you really find features one-at-a-time?

wGood substantive knowledge, domain expertise
- Predictor stream offers best conjectures first

- Order of predictors is key to optimal predictor selection

wWeak (or no) substantive knowledge
- Traditional automatic feature selection is batch

• E.g., stepwise regression

- Sequential selection works just as well and can be faster!
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Sequential vs. Batch SelectionSequential vs. Batch Selection

w Try the predictors in the
order offered.

w Allows an infinite stream of
possible predictors.

w Can direct search in reaction
to successful domains.

w Calculations are just a
sequence of simple fits.

w Search through “all possible”
predictors to find the best
predictor out there.

w Must have all of the
predictors there for search.

w Need to identify all possible
predictors from the start.

w Array manipulations can be
onerous in large problems.

BatchSequential
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Does it work with collinear data?Does it work with collinear data?

wYes!

wNext slide shows results of small simulation.
- Plot shows out-of-sample error on number of n-fold dot-

products required to achieve the fit.

wModel distributes fit over many coefficients, so large
unexplained variation obscures useful predictors.

w Sequential searches predictors in random order
- i.e., no useful domain knowledge is being used.

w Batch search is usual greedy stepwise solution
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Sequential worksSequential works……
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Test problem for auctionTest problem for auction

wDataset of 2000 persons
- All had been accepted.
- Roughly half turn out “good” and half “bad”.

wWant to predict outcome status.
- Have ~ 100 application characteristics

w Prior models
- Search of linear effects: lots of features in model
- Allowing interactions: so many possible, they control the fit.

wMixture
- Want to have a model that gives linear terms more weight,

while still reserving chance for interactions.
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Auction analysisAuction analysis

w Three streams of predictors
- One linear, one quadratic

• Use ordering of predictors from data file

- One model based

• Forms interactions from terms picked in model

w Four bidders
- Two want linear; another wants anything

- One looks for terms that expand current model

- Mix of constant rate and “conservative optimist”

wAuction begins with overall error rate a = 0.05.
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Auction analysisAuction analysis

w Prior fits
- Linear experts: fit accuracy 26%

- Quadratic (pure interaction): fit accuracy 23%

wAuction model
- Linear bidders win heavily initially, increasing their wealth

w Final auction fit
- Add interaction of terms in model quadratic

- Improves fit accuracy to 29%

wNext slide shows components of auction error rate.
- Division between linear and quadratic bidders.
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Auction progress: alpha & RAuction progress: alpha & R22
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Summary and discussionSummary and discussion

wAuction modeling exploits both

-Domain knowledge

-Automatic search procedures

wAuctions possess well-developed foundations

-Family wide error rate and step-up/step-down test
• Powerful heuristic motivates use

-Optimality of thresholding methods
• Automatically generated threshold

-Analogies to economic modeling, game theory
- Machine learning theory


