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AbstractWe propose an adaptive shrinkage estimator for use in regression problems chara-

terized by many predictors, such as wavelet estimation. Adaptive estimators perform well over

a variety of circumstances, such as regression models in which few, some or many coefficients

are zero. Our estimator, PolyShrink, adaptively varies the amount of shrinkage to suit the esti-

mation task. Whereas hard thresholding using the risk inflation criterion is optimal for models

with few predictors, PolyShrink obtains a broader competitive optimality vis-a-vis the best

Bayes expert. A Bayes expert is the predictive distribution implied by a prior distribution for

the unknown coefficients. We derive non-asymptotic upper and lower bounds for the expected

log-loss, or divergence, of Bayes experts whose prior is unimodal and symmetric about zero.

Our bounds hold for any sample size and are pointwise in the sense that they hold for any

values of the unknown parameters. These bounds allow us to show that PolyShrink produces a

fitted model whose divergence lies within a constant factor of the divergence obtained by the

best Bayes expert. In a simulation of four frequently considered wavelet estimation problems,

PolyShrink obtains smaller mean squared error than hard thresholding, which is not adaptive,

and several other adaptive estimators.

Keywords and phrases: divergence, empirical Bayes, thresholding, relative entropy, wavelet.

1. Introduction

Consider the familiar problem of choosing the predictors in a regression model that is to be used to

predict future observations. Suppose that the response vector Y holds n independent observations

Y = (Y1, . . . , Yn). To model Y , we have access to a large collection of p ≤ n orthonormal predictors

arranged as the columns of an n × p matrix X = [X1, X2, . . . , Xp] with XtX = Ip. Assume that

these predictors affect the response through the standard linear model,

Yi = xt
iβ + σεi, εi

iid∼ N(0, 1), i = 1, . . . , n, (1)

for arbitrary column vectors β, xi ∈ Rp, where xt
i is the ith row of X. The problem is to predict

accurately independent realizations of Y for known values of the predictors.
∗The authors appreciate the helpful insights provided by the associate editor and referee.
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Table 1
Average mean squared error of reconstructions of four test functions obtained in a simulation of hard thresholding

at
√

2 log p, SureShrink, empirical Bayes thresholding (using exponential and Cauchy priors), and the proposed
adaptive estimator. The standard error of each estimate is about 0.001, and differences within a column are

statistically significant.

Estimator Blocks Bumps HeaviSine Doppler

Hard(
√

2 log p) 0.255 0.286 0.064 0.131
SureShrink 0.219 0.247 0.064 0.127

Empirical Bayes (exp) 0.181 0.208 0.053 0.106
Empirical Bayes (cau) 0.176 0.199 0.053 0.102

PolyShrink 0.172 0.193 0.052 0.100

Our interest focuses on problems in which p is roughly equal to n. This context is the standard

situation in, for example, harmonic analysis using a basis of sines and cosines or wavelets. This

context is also common, albeit with substantial collinearity, in data mining. In many of these

applications, the coefficients are sparse, “nearly black” in the language of Johnstone and Silverman

[15]. In these cases, most of the slopes βj = 0, implying the predictor Xj does not affect the

distribution of Y . Indeed, much of the motivation for wavelets owes to their ability to produce

sparse representations. Though it creates no bias to include predictors for which βj = 0, adding these

increases the variability of the fit. It should be remembered, however, that specification searches,

such as modern versions of stepwise regression, produce selection bias. Miller [16] provides a recent

survey of these results.

If the underlying model has known sparsity, then a variety of arguments motivate the following

thresholding estimator. Assume that σ2 = 1 is given and denote the least-squares estimators as

bj = Xt
jY ∼ N(0, 1). Our normalization of the regressors implies that the bj are standardized. The

hard thresholding estimator β̂H(τ)(b) sets to zero those bj which are smaller in size than a threshold

τ > 0,

β̂
H(τ)
j = bjI{|bj | ≥ τ} ,

where I{S} denotes the indicator function of the set S. Oracle inequalities [9], risk inflation [11],

data compression [12], and the classical Bonferroni rule all lead to the estimator β̂H(
√

2 log p) (or

asymptotically similar soft-thresholding rules). This estimator includes in the model only those

predictors for which b2j > 2 log p, basically those for which the associated p-value is less than 1/p.

The problem with hard thresholding, of course, is that it is “too hard” when the underlying signal

spreads over more than a handful of basis elements.

Suppose, for example, that it is known that the pγ of the βj are zero. Rather than hard thresh-

olding at τ =
√

2 log p, this knowledge might suggest setting the threshold to τγ =
√

2 γ log p.

Abramovich et al. [1] observe that using the incorrect threshold τ1/2 when γ = 1/4 results in a

sixfold increase in the quadratic risk over that obtained by using τ1/4. To accommodate problems in

which β is sparse or dense, one would prefer an estimator that adapts to the problem, for example

by tuning the threshold.
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Figure 1. Adaptive PolyShrink reconstructions capture the signal in the four test functions introduced by Donoho
and Johnstone [9] with small MSE in all cases. Clockwise from the upper left, the test functions are Blocks, Bumps,
Doppler, and Heavisine.
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To illustrate the benefits of adaptive estimation, consider estimating the four familiar test func-

tions introduced in Donoho and Johnstone [9]. These four functions have relatively sparse represen-

tations in a wavelet basis, but are visually distinct. One test function (called blocks) is piecewise

constant whereas another (heavisine) is rather smooth but for two discontinuities. Another has

a varying periodic structure (doppler), and the fourth has sharp spikes (bumps). Figure 1 shows

reconstructions using n = 2048 equally spaced observations of these signals. For each simulated

replication, we added random Gaussian noise with standard deviation σ = 1 to the underlying

signal. We scaled the test functions so that the standard deviation of the underlying signal equals

7, as in Donoho and Johnstone [9]. We obtained the estimates in the figure by using the adaptive

PolyShrink estimator that we define and study in the rest of this paper. The underlying signals

appear in gray, but the fits are so accurate that they obscure the test functions.

The accuracy of the PolyShrink reconstructions shown in Figure 1 is not accidental. PolyShrink

does well in general: it obtains smaller mean squared error than available alternatives for these

four test signals. Table 1 summarizes the simulated MSE over 250 replications obtained by five

estimators. The simplest, oldest and least accurate of these is the non-adaptive hard thresholding

estimator β̂H(
√

2 log n) using the universal threshold
√

2 log n ≈ 3.9. Whereas hard thresholding

uses a fixed threshold, the other four estimators use the least squares estimates to gauge the best

amount of thresholding to employ. In addition to PolyShrink we show results for two other adaptive

estimators:

SureShrink, which uses the soft-threshold that minimizes Stein’s unbiased estimate of risk [SURE,

8];

EbayesThresh, an empirical Bayes estimator that uses either a double exponential or Cauchy prior

[15];

The boxplots in Figure 2 compare the MSE obtained by the five estimators over the 250 simulated

samples. Though the boxplots overlap, the differences between mean values for each test function are

rather significant. For example when estimating blocks, even though the MSE of PolyShrink is only

0.004 less than that obtained by the empirical Bayes estimator using a Cauchy prior, this difference

produces a t-statistic larger than 15 because of the dependence between the estimates. (Each

estimator was applied to the same 250 realizations.) Of the five estimators, only hard thresholding,

the worst performing method, sets a common threshold over all resolutions of the wavelet transform.

The benefits of adaptation are clear. Unless the signal is very sparse, an estimator that adapts its

threshold to the signal at hand has smaller squared error.

Remark. For these computations, we used version 2.2.1 of R running on a macintosh computer. We

used the R packages waveslim to obtain the wavelet decompositions and ebayesthresh to compute

the empirical Bayes estimator. We chose the default values for parameters used by ebayesthresh.
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Figure 2. These boxplots compare the mean squared error of five estimators of the four test functions (clockwise,
from upper left, are results for estimating blocks, bumps, doppler, and heavisine).

●

●

Hard Sure EB.exp EB.cau Poly

0.
15

0.
20

0.
25

0.
30

●

●

●

Hard Sure EB.exp EB.cau Poly

0.
20

0.
25

0.
30

0.
35

●●

●

●
●●●●

●

●●● ●●●
●
●

Hard Sure EB.exp EB.cau Poly

0.
04

0.
06

0.
08

0.
10

0.
12 ●

●●
●

●
●●

●

● ●

●●●

●●
●

●

●

●

●

Hard Sure EB.exp EB.cau Poly

0.
08

0.
12

0.
16

For filtering these wavelet coefficients (and comparison to other published simulations), we applied

thresholding only to the 6 levels of the LA8 wavelet coefficients (2016 coefficients with most localized

support). In practice, it may be quite hard to decide how many levels of the wavelet transform

to filter. The Polyshrink wavelet estimator has no tuning parameters, and we applied it to all

but the two, top-level wavelet coefficients. To avoid issues of various estimates of scale, for every

estimator we made use of the fact that σ = 1. An R package of our software is available at www-

stat.wharton.upenn.edu/∼stine and through the CRAN archive (cran.r-project.org).

The PolyShrink estimator β̃(b) adaptively thresholds its estimate of each coordinate. To con-

vey the nature of the adaption, Figure 3 shows β̃1(b), the estimator of β1, as a function of the

first element in the least squares estimator b. For this figure, we set the dimension p = 65.

The various curves in Figure 3 characterize how β̃1(b) changes with the size of the other coor-

dinates b2, . . . , b65. PolyShrink uses these other coordinates to adjust the amount of shrinkage

when estimating β1 from b1. To suggest the effect of signal in the other coordinates, we set

bj+1 = m + Φ−1(j/65), j = 1, . . . , 64, and varied m = 0, 1, 1.15, 1.25, 1.35, 2.0, as indicated in

the legend of the figure. At one extreme (the solid curve in the figure), there is no signal in the

other coordinates; their values are as though one has observed an idealized sample of pure Gaus-

imsart ver. 2005/05/19 file: bayes-expert.tex date: September 9, 2005



Foster and Stine/Adaptive variable selection 6

Figure 3. The adaptive Polyshrink estimator resembles hard thresholding with a large threshold when there is little
signal and resembles soft thresholding with a small threshold when there is substantial signal. The curves show one
coordinate β̃1(b) for varying levels of signal spread over p = 65 coefficients.
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sian noise. Such sparsity is commonly encountered when estimating the coefficients of wavelet basis

elements having most localized support. Heuristically, the absence of signal in the other coefficients

makes β̃1(b) “suspicious” of any signal found in b1, and so β̃1(b) heavily shrinks b1 toward zero.

Indeed, the plot of β̃1(b) resembles a smoothed version of the hard thresholding estimator with

a threshold slightly more than 2. As m increases, the other coordinates indicate the presence of

signal, and β̃1(b) offers less and less shrinkage. Once m = 2, β̃1(b) resembles a soft thresholding

estimator. Though not apparent in Figure 3, however, β̃1(b) returns to the diagonal as |b| increases.

Asymptotically in b1, the deviation is of order O(1/b1):

b1 − β̃(b1) ≈
2b1

1 + b21
.

The expressions that we use to compute β̃ offer further insight into how the Polyshrink estimator

adapts. Although our theorems do not explicitly provide an estimator, an appendix describes the

conversion from the existential style of the theory to a more standard estimator. Assume as in

the orthogonal regression (1) that we observe observe a p-element vector of estimates b with mean

vector β and variance 1, b ∼ N(β, Ip). For wavelets, b denotes the standardized “raw” wavelet

transform at a given resolution, and β denotes the corresponding wavelet coefficients of the signal.

The PolyShrink estimator uses a collection of mixtures of the form

gεk
(z) = (1− εk)φ(z) + εkψ(z) , εk = 2k−(K+1), k = 1, . . . ,K, (2)

where K = 1 + blog2 pc, φ(z) = exp(−z2/2)/
√

2π is the standard normal density and ψ(z) =

1/(
√

2π(1 + z2/2)) is a Cauchy density with scale
√

2. The notation bxc denotes the greatest

integer less than or equal to x. The mixtures gεk
place larger weight on the Cauchy density as εk

increases. We extend gε to vector arguments by multiplication,

gε(b) = gε(b1)gε(b2) · · · gε(bp) .

With this notation in hand, the PolyShrink estimator is readily defined and computed. (An imple-

mentation in R requires about 20 lines of straightforward code.) Let wk = 2−kgεk
(b) and normalize

these weights

w̃k = wk/
K∑

i=1

wi , w̃ = (w̃1, . . . , w̃K)t .

The normalized weights w̃ allow β̃j to borrow strength from other coordinates when choosing an

appropriate amount of shrinkage. The PolyShrink estimator can then be written in the classical

style of Stein [18],

β̃ = b+ S w̃ , (3)

where the p×K matrix S holds the scores

Sjk =
d

dz
log gεk

(z)|bj
. (4)
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Thus β̃ blends the score functions associated with mixtures gε. When there is little signal (illustrated

by the solid curve in Figure 3), the weights w̃ concentrate in w̃1, placing the most emphasis on

the score function with the largest Gaussian component. In the calculations producing Figure 3,

w̃1 = 0.62 when m = 0. With signal present, the weights shift toward mixtures with a larger Cauchy

component. For example, with m = 1 this weight decreases to w̃1 = 0.46. With m = 2, the estimator

puts virtually all of its weight on the score function of g1/2, setting w̃1 ≈ 0 and w̃7 = 0.999.

The remainder of this paper develops the theoretical properties of the PolyShrink estimator. The

following section presents a more formal introduction that describes the origin of our estimator

and its properties. In particular, we explain our choice of a different type of loss function that

allows us to prove that the associated risk of β̃ lies within a constant factor of the smallest risk

obtained by a class of Bayesian estimators that we call Bayes experts. Following in Section 3, we

offer some additional motivation by pointing out further connections to other estimators. In Section

4, we derive lower bounds for the risk of Bayes experts, and in Section 5, we describe the adaptive

estimator. We prove a key result, Theorem 2, in Section 6, and relegate further details of the proofs

to the second appendix. The first appendix describes the conversion from our theorems to the

PolyShrink estimator (3).

2. Competitive Analysis of Estimators

Consider the problem of predicting the next value of the response, Yn+1. The PolyShrink estimator

described in the introduction arises from the following competitive analysis. The goal is to find an

estimator that predicts as well the best expert who builds a prediction using side information that

would not be known to the statistician. This approach produces an adaptive estimator because

the estimator must do well as well as the best expert, regardless of the unknown parameters.

For example, one might seek a predictor Ŷn+1 = xn+1β̂ whose expected squared prediction error

En+1
1 (Yn+1 − Ŷn+1)2 approaches that obtained by an expert who knows more than the data reveal

about the form of the model. (The expectation En+1
1 is over the joint distribution of the observable

response Y1, . . . , Yn and the future value Yn+1.) The extra information available to the expert might

come from an oracle that identifies the predictors that have non-zero coefficients as in Donoho and

Johnstone [9] or, less informatively, an oracle that reveals the number of non-zero coefficients.

For our analysis, the scope of the extra information lies somewhere between these alternatives:

an oracle provides a prior distribution π(β) for the regression coefficients. Given π, a Bayesian can

express uncertainty about the future value Yn+1 with the predictive distribution that encompasses

the posterior distribution of β. Denote the scalar density of the response associated with predictors

in the row vector x as

Pβ(y) = φ
(
(y − xtβ)/σ

)
.

To simplify the notation, we omit x from the arguments of this function and leave this dependence
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implicit. We denote the predictive distribution of Yn+1 given Y by Pn+1
π (y | Y ). This predictive

distribution is a Bayes expert in our terminology. In general, the predictive distribution for Yi+1

given Y1, . . . , Yi is

P i+1
π (y | Y1, . . . , Yi) =

∫
Pβ(y)π(β|Y1, . . . , Yi) dβ , i = 2, . . . , n, (5)

where

π(β | Y1, . . . , Yi)

denotes the posterior distribution of β given Y1, . . . , Yi. For the initial case that lacks prior data,

we define P 1
π as

P 1
π (y) =

∫
Pβ(y)π(β) dβ .

It may seem that Bayes experts are little more than a collection of prior distributions, and so

one might question the need to introduce this terminology. While our notion of a Bayes expert does

employ a prior, our use of the word “expert” is meant to convey something more. An expert is any

prediction methodology, a map from the data to the space of new observations, that benefits from

information outside the scope of what would typically be available for estimation. We should also

point out that the objectives of our analysis differ from those that one would typically associate with

Bayesian analysis of a collection of priors. When confronted by a collection of priors, a Bayesian

might seek a method to elicit the best prior or to find a robust prior. We have a different objective.

Rather than seek the best Bayes estimator, we use Bayes estimators as a yardstick with which we

can judge the performance of adaptive variable selection.

We structure our competitive analysis around Bayes experts whose prior is unimodal and sym-

metric. We denote the class of priors by M. More precisely, the scalar distribution π ∈ M iff (1)

π is symmetric and (2) π assigns decreasing probability to intervals as the center of the interval

moves away from zero. Thus, if π ∈M and

pw(c) =
∫ c+w

c−w
dπ , w > 0, (6)

then pw(c) = pw(−c) and pw(c) is monotone decreasing on [0,∞]. In essence, the class M consists of

symmetric, unimodal densities that may possess an atom of probability at the origin. The assumed

orthogonality of the estimation problem allows us to extend π to vectors by multiplication, π(β) =

π(β1) · · ·π(βp). Thus π(0) reveals the expected number of elements of β that are zero. The rest of π

indicates how the signal distributes over the other coordinates. The choice of experts with π ∈ M
avoids artificial problems that would be caused by competing against super-efficient estimators. For

example, a realizable estimator cannot compete with an expert using a point-mass prior δ3(x) if in

fact βj = 3. The only point mass prior in M is δ0.

For a Bayes expert, a natural measure of accuracy is the expected log-probability loss or diver-

gence (relative entropy). We use D
(
f
∥∥ g) to denote the divergence between the true density f and
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some other density g,

D
(
f
∥∥ g) = Ef log

f(X)
g(X)

=
∫
f(x) log

f(x)
g(x)

dx . (7)

The divergence is well-defined if the support of g contains the support of f , and the assumed

normality of the errors in our model produces density functions with infinite support. The divergence

of a Bayes expert, the predictive distribution Pn+1
π , from the distribution of Yn+1 is (suppressing

the dependence on xn+1)

L(β, Pn+1
π ) = D

(
Pβ

∥∥ Pn+1
π

)
=

∫
log

Pβ(y)
Pn+1

π (y | Y )
Pβ(y) dy . (8)

Divergence has a long history in model selection. For example, AIC arose as an unbiased estimate

of the divergence [2]. The divergence can also resemble more familiar loss functions. For example, if

the posterior distribution concentrates near a point mass at, say, β̂ then the divergence is roughly

quadratic,

L
(
β, Pn+1

π (y|Y )
)
≈

(
xn+1(β̂(Y )− β)

)2

2σ2
.

We depart from this approach to obtain our results on the competitive accuracy of Bayes ex-

perts. The loss function defined by (8) is a marginal loss in the sense that it describes the error

when predicting Yn+1 given xn+1 and information in the prior n observations. We obtain a more

analytically tractable quantity by replacing the marginal loss with the accumulated loss. Rather

than judge the expert by how well Pn+1
π matches Pβ, we instead sum the deviations of P i

π from Pβ

for i = 1, . . . , n. Although one prefers an estimator that predicts well in the future over one that fits

well in the past (“Prediction is difficult, particularly about the future.”), we have found it easier

to prove theorems about the accumulated loss than the marginal loss. This change also removes

the dependence on the unknown xn+1, replacing it with the observed values of the predictors. The

product of these predictive distributions defines the prequential likelihood [5, 6]

Pπ(Y1, . . . , Yn) = P 1
π (Y1)

n∏
i=2

P i
π(Yi | Y1, . . . , Yi−1) .

The cumulative log-loss of a Bayes expert with prior π is then

Ln (β, Pπ) =
n∑

i=1

log
Pβ(Yi)

P i
π(y | Y1, . . . , Yi−1)

. (9)

The expected value of Ln is the divergence of the prequential likelihood for Y . Thus, we define the

divergence risk obtained over the sequence of n predictions as

Rn (β, Pπ) ≡ En
1 (Ln(β, Pπ))

= D
(
Pβ(Y )

∥∥ Pπ(Y )
)
. (10)
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The success of the PolyShrink estimator summarized in the introduction suggests that the shift

from marginal to accumulated loss nonetheless produces a useful estimator.

We can now summarize our results for the PolyShrink estimator. Our first theorem provides non-

asymptotic lower bounds for divergence risk of Bayes experts whose prior distribution π ∈M, the

class of symmetric, unimodal priors. Theorem 1 also shows that, given a tuning constant ε(π) that

depends on the prior, there exists an an estimator gε(π)(π) whose divergence is within a constant

factor of that obtained by the best Bayes expert.

Theorem 1. For ε > 0, define the bounding function

B(β, ε) =
p∑

j=1

min

(
β2

j + ε,
1
β2

j

+ log
βj

ε

)
. (11)

There exists a real-valued functional ε(π) such that, under the model (1) with p ≤ n orthonormal

predictors, the divergence risk (10) of any Bayes expert in the class M (see equation (6)) is bounded

below as follows:

(∀n,∀β, ∀π ∈M) Rn(β, Pπ) ≥ c B(β, ε(π)) , (12)

for some positive constant c < 1. Further, there exists an estimator gε(π) such that

(∀n,∀β,∀π ∈M) Rn(β, gε(π)) ≤ 2 B(β, ε(π)) (13)

We have numerically estimated the constant c ≈ 1/10, but it may be possible to close the gap

between (12) and (13) by using methods developed in Foster et al. [13].

The bounds in Theorem 1 reduce the problem of choosing a prior π ∈ M to the choice of a

number, ε. In fact, even the problem of picking ε can be eliminated as the following theorem shows.

Our second theorem describes an estimator g̃ which in turn defines the PolyShrink estimator β̃

defined in (3) and described in the introduction. This estimator avoids the need for the functional

ε(π) in Theorem 1 by mixing gε over several values of ε. The weights in this mixture do not depend

on the prior π.

Theorem 2. There exists a distribution g̃ (namely that implying the Polyshrink estimator) whose

divergence risk is a linear function of the best obtained by any Bayes expert whose prior π ∈ M
(see equation (6)). In particular,

(∀n,∀β) Rn(β, g̃) ≤ ω0 + ω1 inf
π∈M

Rn(β, Pπ) . (14)

3. Connections

Thresholding estimators possess a form of competitive optimality in the style of our theorems.

Let Qn(β, β̂) = En
1

∑
j(βj − β̂j(Y ))2 denote the quadratic risk of an estimator β̂. Donoho and

Johnstone [9] and Foster and George [11] show that the quadratic risk of the hard thresholding
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estimator β̂H(τ) using the universal threshold τ2 = 2 log p is bounded by a logarithmic factor of the

best possible. Abbreviating β̂H = β̂H(
√

2 log p) then

Qn(β, β̂H) ≤ (2 log p+ 1) inf
β̂∈S

Qn(β, β̂) , (15)

where S denotes the class of least-squares estimators based on selecting a subset of the predictors.

Donoho and Johnstone [9] introduce the notion of an oracle to describe the optimality of β̂H . Sup-

pose that a statistician can consult an oracle that indicates which elements of β to estimate. Then

the bound (15) shows that the quadratic risk of β̂H lies within a factor of 2 log p of that obtained

by consulting the best of all such coordinate oracles. Furthermore, this competitive performance

is the best possible vis-a-vis coordinate oracles. If we label the class of estimators based on these

oracles C, the class of coordinate experts, then we can state this result as:

(∀n,∀β) Qn(β, β̂H) ≤ ω
Q(C)
0 + ω

Q(C)
1 inf

β̂∈C
Qn(β, β̂) .

where ωQ(C)
1 = (1+2 log p). No variable selection procedure can do better than come within a factor

of log p of the quadratic risk attainable by coordinate experts.

We can contrast this with our result using the divergence risk and Bayes experts. A coordinate

expert knows which predictors to use in the regression and does not have to rely on data to decide

which coordinates to estimate. In contrast, Bayes experts are not so well-informed; each has only a

prior distribution for β from the class M. While useful, the prior is not so informative as knowing

which βj to estimate. In a sense, competing with Bayes experts resembles the comparison of two

estimators rather than the comparison of an estimator to the truth. Consequently, we can find a

data-driven procedure which is more competitive with Bayes experts than with coordinate experts:

(∀n,∀β) Rn(β, g̃) ≤ ω0 + ω1 inf
π∈M

Rn(β, Pπ) ,

where we obtain an O(1) for ω1 bound instead of the O(log p) bound for ωQ(C)
1 .

This comparison suggests the use of a different “ruler” to judge and compare estimators. No

data-driven estimator can come close to the performance of coordinate experts, so the alternatives

look equally good. Because we can come within a constant factor of the predictive risk of the Bayes

experts, however, we can hopefully use these as a more finely graduated ruler to separate better

estimators from others. Since Bayes estimators are admissible, a trivial lower bound for ratio of

risks is 1, and so our estimator lies within a constant of being optimal. Without the log p factor

inherent in the coordinate-based approach, we can begin the process of finding estimators that

reduce this constant.

An alternative approach to finding adaptive estimators considers their minimax properties. Our

theorems are point-wise in the sense we bound the divergence for each β with the divergence of

the best expert for that β. One obtains a uniform bound for every β by finding the minimax risk
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over some class of estimators and parameter spaces. Rather than do well for every β, a minimax

estimator need only be competitive for the hardest problems. Because the unconstrained minimax

quadratic risk for the regression model (1) is p, obtained by fitting every predictor, a non-trivial

minimax analysis must constrain the parameter space. Abramovich et al. [1] argue that a natural

constraint is to consider sparse problems in which few βj 6= 0 and restrict β to an `d ball for d

near zero. They show that this constraint leads to penalized estimators that do well over a range

of sparse problems. For example, let

Θ0
n = {β : ‖β‖0 = n−δ}, where ‖β‖0 =

∑
j

I{βj 6= 0}, δ > 0,

denote a nearly black parameter space in which β has few non-zero elements. The `0 norm ‖x‖0

counts the number of non-zero values in x. Let

R(Θ0
n) = inf

β̂
sup

β∈Θ0
n

E‖β − β̂‖0

denote the corresponding minimax risk over all estimators β̂. Abramovich et al. [1] show that an

estimator β̂F derived from the false discovery rate of Benjamini and Hochberg [3] is asymptotically

minimax:

sup
β∈Θ0

n

E‖β − β̂F ‖0 ≤ R(Θ0
n)(1 + o(1)),

as n → ∞ for a suitable choice of the tuning parameter that controls the estimator. Whereas

Theorem 2 shows that the divergence risk of β̃ is competitive for every β for all n, these results

show that the `0 risk of β̂F is asymptotically minimax.

Johnstone and Silverman [15] also consider the estimation problem in nearly black parameter

spaces. They show that an empirical Bayes estimator does well in both sparse problems as well as

when β is more dense. To this end, they consider empirical Bayes estimators with mixture priors

of the form h(x) = (1 − w)δ0(x) + w γ(x) where δ0(x) denotes a point mass at zero and γ(x) is a

symmetric, unimodal distribution, implying that the prior h(x) ∈M. [14, consider empirical Bayes

model selection in a more parametric setting.] As an estimator, they use the median of the posterior

distribution rather than a predictive distribution. The resulting estimator is thus very similar to

the PolyShrink estimator. For example, plots of their estimator [see Figure 5 of 15] resemble those

of the PolyShrink estimator in Figure 3. Also, the mean squared errors in the simulation reported

in the introduction are very similar. In the style of Abramovich et al. [1], they show that their

estimator has uniformly bounded risk over a wide range of parameter spaces and asymptotically

obtains the minimax risk. With an emphasis on the problem of estimating wavelets, Zhang [19]

extends and refines these results to a wider class of prior distributions and obtains a more precise,

though complex, collection of asymptotic properties.
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4. Lower Bounds for the Bayes Divergence

The results in this section and those that follow hold for the normal location model. These apply to

variable selection in regression since we can use an orthogonal rotation to convert the the slopes of

the orthonormal regression (1) into a vector of means. Let X = [X1, X2, . . . , Xp] denote the n× p

design matrix of the predictors. If we pre-multiply both sides of (1) by the transpose Xt, we obtain

Ỹ = XtY ∼ N(β, σ2 In) . (16)

The question of which predictors to include then becomes one of deciding how to estimate the mean

vector β. Since σ2 is assumed known, we abuse our notation and further reduce the problem to the

following canonical form:

Yj ∼ N(µj , 1) , j = 1, . . . , p , independently. (17)

This reduction of a regression to a location problem is common in the analysis of variable selection

methods [e.g. 10]. The independence among the Yj allows us to work in the scalar setting.

We adopt the following notation. Write the normal density with mean µ by φµ(y) =

e−(y−µ)2/2/
√

2π and abbreviate the standard normal density as φ0 = φ. The cumulative normal is

denoted Φ(x) =
∫ x
−∞ φ(t)dt. With these conventions, the distribution of Yi is

φµi(y) = φ(y − µi) .

Let H(φ) denote the entropy of the standard normal density,

H(φ) = −
∫
φ(y) log φ(y)dy = 1

2(1 + log 2π) . (18)

The marginal distribution for Yi implied by the prior π(µ) is

φπ(y) =
∫
φ(y − µ)π(µ)dµ . (19)

The one-dimensional divergence, viewed as a function of a scalar parameter µ, is

dπ(µ) ≡ D
(
φµ

∥∥ φπ
)

=
∫
φµ(x) log

φµ(x)
φπ(x)

dx . (20)

If we associate βj = µj and note that the prior factors as π(β) = π(β1) · · ·π(βp), then the divergence

risk defined in (10) may be written as

Rn(β, Pπ) =
p∑

j=1

dπ(µj) . (21)

The following related examples suggest the properties of the divergence attainable by Bayes

experts. For µ ≈ 0, an expert with prior π(x) = δ0(x) (the indicator function at 0) performs well.

Its divergence is quadratic in µ,

dδ0(µ) = D
(
φµ

∥∥ φ0
)
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Figure 4. Divergence of five spike-and-slab priors (23) with slab widths m that minimize the divergence dπ at µ =
1, 2, 3, 4, 5 for fixed slab probability p = 0.05.
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=
∫
φ(y − µ) log

φ(y − µ)
φ(y)

dy

= E Y 2/2 + 1
2 log 2π −H(φ)

= µ2/2 .

For a coordinate with non-zero parameter, the expert will achieve a lower divergence by placing

more probability away from zero. Let

Um(x) = 1[−m,m]/2m (22)

denote the uniform density on [−m,m]. The divergence for the expert that uses a uniform prior

out to |µ|+ 1 is

dU|µ|+1
(µ) = D

(
φµ

∥∥ φU|µ|+1

)
≥ log 2(µ+ 1)−H(φ) .

Thus, the divergence for these experts is logarithmic. As a compromise, a spike-and-slab expert

(prior) combines these two extremes,

πp,m(µ) = (1− p)δ0(µ) + p Um(µ) . (23)

Figure 4 shows the divergence obtained with a sequence of five spike-and-slab priors whose slab

widths m minimize the divergence at µ = 1, 2, 3, 4, 5 for fixed slab probability p = 0.05. The lower

bounds for the divergence near zero grow quadratically, and then flatten to grow logarithmically

as µ increases.

Our lower bounds for dπ(µ) require a single functional of the prior. This functional measures the

ratio of how much probability φπ puts into a tail relative to the standard normal. To define this

functional, let rπ(τ) denote the ratio of tail integrals

rπ(τ) =
∫∞
τ φπ(y)dy∫∞
τ φ0(y)dy

. (24)
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rπ(τ) is monotone increasing for τ > 0 because of the monotonicity of the likelihood ratio shown

in Lemma 5. Hence, for an arbitrary constant κ > 1, we can define the threshold

τκ(π) = inf
τ
{τ : rπ(τ) > κ} . (25)

Given τκ(π), we define the needed functional to be the associated tail probability of φπ:

εκ(π) =
∫ ∞

τκ

φπ(y)dy . (26)

Where it does not lead to ambiguity (since there is typically only one prior π under consideration),

we abbreviate εκ(π) as εκ. We shall also need the related tail integral of φ0:

δκ(π) =
∫ ∞

τκ

φ0(y)dy = εκ(π)/κ . (27)

The threshold τκ(π) and tail area εκ(π) are equivalent in the sense that we can find one from the

other, without further knowledge of π, through the relationship

τκ(π) = −Φ−1
(
εκ(π)
κ

)
≈
√

2 log
κ

εκ(π)
. (28)

This approximation follows from the crude asymptotic equivalence Φ(−x) ≈ e−x2/2. Lemma 6

provides bounds on the approximation in (28) that are accurate to within 1 of the actual value.

Since rπ(0) = 1, we require κ > 1 so that τκ > 0 and εκ < 1/2.

Results in the Appendix show that the divergence of any Bayes model with prior π ∈ M grows

quadratically near the origin and eventually grows at a logarithmic rate. From the previous exam-

ples, we see that the divergence cannot be better than quadratic (as with a point mass at zero) or

logarithmic (obtained by the slab). Figure 5 shows the lower bounds for dπ(µ) from Lemma 15 with

the tuning parameter κ = e2 and εκ = 0.001. For reference, the figure denotes the location of the

threshold τκ with a short vertical line near µ = 3.6. The bounds shown in Figure 5 are, however,

rather hard to work with, and so we use a simpler set of bounds for our proofs. In Lemma 16, we

show that

∃λ > 0 s.t. ∀π ∈M : λ dπ(µ) ≥ min
(
µ2 + εκ(π),

1
µ2

+ log
µ

εκ(π)

)
(29)

Though easier to work with, these simpler bounds retain the shape of the tighter bounds shown in

Figure 5. Namely, the bounds are quadratic for µ near 0 and grow logarithmically as µ moves away

from 0. Equation (29) implies the first statement of Theorem 1.

5. The Mixture Marginal

One estimator that achieves the upper bound given in Theorem 1 is a mixture of a normal density

with a Cauchy density. Let

ψ(y) =
1√

2π(1 + y2/2)
(30)
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Figure 5. Lower bounds from Lemma 15 are approximately quadratic in µ near the origin and grow logarithmically
in µ for larger values of the parameter. The figure includes (in gray) the segments from the components of the lower
bound, with κ = e2 and εκ = 0.001. The vertical line near µ = 3.6 locates the position of τκ.
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Figure 6. Divergence of the Cauchy mixture g0.001 and the lower bound for the divergence dπ(µ) attainable by a
Bayes prior with εκ(π) = 0.001.
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denote the Cauchy density with scale
√

2. This choice of scaling implies that the equivalent estimator

β̂(b) shown in Figure 3 is monotone increasing. Define a marginal distribution as a one-parameter

mixture of φ and ψ,

gε(y) = (1− ε)φ(y) + ε ψ(y) , 0 ≤ ε ≤ 1. (31)

For ε < 1
2 , Lemma 17 shows that the divergence of gε is bounded:

D
(
φµ

∥∥ gε
)
≤ 2 min{µ2 + ε, 1/µ2 + logµ/ε} . (32)

Equation (32) implies statement 2 of Theorem 1.

Figure 6 shows the upper bound for the divergence of gε with ε = 0.001. This plot includes

the lower bound for the divergence attainable by a Bayes expert with prior π ∈ M as shown in

Figure 5. The visual impression from the figure is that both bounds increase at comparable rates,

as demonstrated in the proof of Theorem 2 that follows in the next section.
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6. Proof of Theorem 2

This section provides a proof of Theorem 2, which we state here with more details than when it

was originally stated:

Theorem 2. Let K = 1 + blog2 pc. The sub-density

g(~y) = 1
2g(2−K)(~y) + 1

4g(2−K+1)(~y) + · · ·+ 2−K+1g(1/4)(~y) + 2−Kg(1/2)(~y)

=
K∑

k=1

2−kg(2−(K+1−k))(~y) ,

where gε(~y) =
∏
gε(yj), and gε(yj) = (1− ε)φ(yj) + ε ψ(yj) has a risk function that is linear in the

best risk obtained by any unimodal prior. In particular,

(∀n,∀~µ)
p∑

j=1

D
(
φµj

∥∥ g) ≤ ω0 + ω1 inf
π∈M

p∑
j=1

dπ(µj) .

Where equation (6) and (20) define M and dπ(·) respectively.

We set the constant κ defined in (25) to κ = e2 in the following derivations. This choice allows

us to absorb several constants into a multiple of dπ itself.

Lemma 1. Let gδ(y) = (1− δ)φ(y) + δ ψ(y). For any π ∈ M, if εκ(π) < δ ≤ 1/2, where εκ(π) is

defined in (26) then

D
(
φµ

∥∥ gδ

)
≤ 2λ dπ(µ) + 2δ ,

Proof. From equation (32) we see that for δ > εκ(π),

D
(
φµ

∥∥ gδ

)
≤ 2 min{µ2 + δ, 1/µ2 + logµ/δ}

≤ 2δ + 2 min{µ2, 1/µ2 + logµ/δ}

≤ 2δ + 2 min{µ2 + εκ(π), 1/µ2 + logµ/εκ(π)}

≤ 2δ + 2λdπ(µ) ,

where the last inequality comes from equation (29).

To clarify the arguments of our proofs, we have shown analytically that the bound obtains for

2λ = 10000. Numerical calculations suggest that the best coefficient is less than 6. To support this

claim, Figure 7 shows the ratio of the upper bound for D
(
φµ

∥∥ gεκ

)
from Lemma 17 to the lower

bound for dπ(µ) from Lemma 15 for two choices of εκ, (a) εκ = 0.01 and (b) εκ = 0.00001, both over

the range −1 ≤ µ ≤ 10. In all cases shown (and others not pictured here) the ratio of divergences

D
(
φµ

∥∥ gεκ

)
/dπ(µ) < 6.

To obtain practical results that apply in the multivariate problem, we have to remove δ from the

bound. The competitive bound continues to hold so long as the parameter δ indexing the marginal

distribution gδ is suitably close to εκ. At the same time, we can remove 2δ from the bound for
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Figure 7. This plot shows our bounding function for the risk of Bayes experts for (a) εκ = 0.01 and (b) εκ = 0.00001
In these examples the ratio D

(
φµ

∥∥ gεκ

)
/dπ(µ) is bounded by 6.
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D
(
φµ

∥∥ gδ

)
provided in Lemma 1 by increasing the size of the multiplier. For δ/2 ≤ εκ ≤ δ and

κ = e2, 1+log κ
κ ≤ 1

2 . Thus, the bound L0(µ, ε) of Lemma 15 becomes (see Lemma 11)

dπ(µ) ≥ εκ(1− 1 + log κ
κ

) ≥ εκ/2 .

Consequently, we have

D
(
φµ

∥∥ gδ

)
≤ 2δ + 2λdπ(µ) ≤ 4εκ + 2λdπ(µ)

≤ (2λ+ 8)dπ(µ) . (33)

We handle separately the special case for εκ near zero where the previous bound no longer usefully

applies. Here, p is a positive integer that corresponds to the number of parameters in the regression

model. From Lemma 1, we obtain for εκ < δ < 1/(2p) that

D
(
φµ

∥∥ gδ

)
≤ 2λ dπ(µ) + 1/p , (34)

where λ is the universal constant from Lemma 1.

From these results, we can extend the bounds on the ratio to problems in which Yi ∼ N(µi, 1),

i = 1, . . . , p. There is some δ such that 1/2p < δ = 2−k ≤ .5, and

D
(
φµi

∥∥ gδ

)
≤ max[(2λ+ 8) dπ(µi), 2λdπ(µi) + 2/p]

≤ (2λ+ 8) dπ(µi) + 1/p , (35)

where we bound each such term for i = 1, . . . , p by either (33) or (34). Summing the individual

terms gives
p∑

j=1

D
(
φµj

∥∥ gδ

)
≤ 1 + (2λ+ 8)

∑
j

dπ(µj) . (36)

The final step is to remove δ and obtain a universal model. We obtain a bound for the the divergence

of such a model in the following.

Lemma 2. Let Yi ∼ N(µi, 1), i = 1, . . . , p. There exists a density g such that

(∀π)
p∑

i=1

D
(
φµi

∥∥ g) ≤ 2 + (2λ+ 12)
p∑

i=1

dπ(µi) ,

where λ is the universal constant from Lemma 1.

Proof: Let k = dlog2 2pe. Let

g(y) =
k∑

j=1

2−jg(2−(k+1−j))(y) .

Suppose εκ(π) < 1/(2p). First note that 2−k ≤ 1/(2p). Clearly

g(y) ≥ 1
2g(2−k)(y) . (37)
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Hence ∑
i

D
(
φµi

∥∥ g) ≤ log 2 +
∑

D
(
φµi

∥∥ g(2−k)

)
≤ log 2 + 1 + 2λ

∑
i

dπ(µi) ,

from equation (34), and our desired bound follows.

Now suppose εκ(π) ≥ 1/(2p). Let j be such that εκ(π) ≤ 2−(k+1−j) < 2εκ(π). We can bound the

divergence by ∑
D
(
φµi

∥∥ g) ≤ j log 2 +
∑

i

D
(
φµi

∥∥ g(2−(k+1−j))

)
≤ j log 2 + (2λ+ 8)

∑
dπ(µi) ,

where the second inequality follows from (36). Recalling that dπ(µ) ≥ εκ/2 we see that j log 2 <

2j ≤ 2p εκ < 4
∑
dπ(µi), and again we get the desired bound.

When we translate these divergences into risk notation (21), this Lemma implies Theorem 2.

Appendix: Calculating the estimator

The adaptive PolyShrink estimator β̃(b) shown in Figure 3 and used in the simulations approximates

the expectation of the model parameters. Because our model for the data summarized by the

function g̃ in Theorem 2 does not use a typical parameterization, we obtain an equivalent estimator

by using a conditional expectation – a predictor. This predictor is constructed so that its expectation

is one of the model parameters.

We begin with a simple scalar problem, and then generalize the approach. Consider the scalar

estimation problem in which Y1, . . . , Yn
iid∼ N(µ, 1). Although our procedure does not produce an

estimator of µ per se, we obtain an approximate estimator as the conditional expectation

µ̂ = Ef̂ (Y1 | Y2, . . . , Yn) . (38)

The expectation that defines µ̂ is with respect to the estimated joint density f̂(y1, . . . , yn) for the

data implied by our model.

To compute this estimator, we make use of a convenient orthogonal rotation that concentrates

µ into one coordinate. Let W denote an n× n orthogonal matrix that has the form

W =



1√
n

√
n−1

n 0 · · · 0
1√
n

−
√

1
n(n−1) w23 · · · w2n

1√
n

−
√

1
n(n−1) w33 · · · w3n

...
...

...
. . .

...
1√
n

−
√

1
n(n−1) wn3 · · · wnn
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Let Z1, Z2, . . . , Zn denote the coordinates of Z = W tY , and observe that Z1 =
√
nY and that

Y1 appears only in Z1 and Z2. Concentrating Y1 into two of the rotated coordinates simplifies

the integration that defines µ̂. The remaining elements of W are arbitrary up the constraint that

W tW = I and the zeros in the first row. For use below, write the leading terms of the rotation as

Z1 =
1√
n
Y1 +

√
n− 1
n

S

Z2 =
√
n− 1
n

Y1 −
√

1
n
S , (39)

where

S =
n∑
2

Yi/
√
n− 1 ∼ N(

√
n− 1µ, 1) (40)

denotes the normalized sufficient statistic for µ given Y2, . . . , Yn.

With g̃ as defined in Theorem 2, our estimator of the joint distribution of Y1, . . . , Yn is

f̂(y1, . . . , yn) = g̃(z1)
n∏

i=2

φ(zi) .

The density g only applies to z1. Because we know that the data have a fixed mean in this scalar

context, this model implies that the remaining coordinates z2, . . . , zp are Gaussian noise and free

of µ. The estimator of µ can thus be written as

µ̃ =
∫
y1f̂(y1, . . . , yn)dy1∫
f̂(y1, . . . , yn)dy1

=
∫
y1g̃(z1)φ(z2)dy1∫
g̃(z1)φ(z2)dy1

. (41)

The term
∏n

i=3 φ(zi) cancels in this calculation because these coordinates are free of y1 because

of the zeros forced into the first row of W . Although the integrals in the ratio (41) lack a closed

form, numerical integration works well because of the smoothness and thin tails of the Gaussian

components. The dashed curve in Figure 3 shows
√
n µ̃ as a function of S, the standardized sufficient

statistic for µ given Y2, Y3, . . . , Yn. The figure shows both the estimator and its argument on a

standard error scale.

While numerical integration is fine for showing plots of µ̃, it is far too slow for routine calculation

and simulation. Fortunately, it is easy to find a rather accurate approximation to µ̃. This approxi-

mation also reveals µ̃ has a rather familiar form. We obtain this approximation by expanding g̃ in

the integrals in the ratio (41) and removing terms of order 1/n. Using the definitions in (39),
√
n

times the numerator of µ̃ is approximately

√
n

∫
y1g̃(z1)φ(z2)dy1 =

√
n

∫
y1

(
g̃(s) + g̃′(s)

y1√
n

)
φ(y1 − s/

√
n) dy1 +O(1/

√
n)

= s g̃(s) + g̃′(s) +O(1/
√
n) .

The same approach handles the denominator and we arrive at

√
n µ̃ ≈ S +

g̃′(S)
g̃(S)

,
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with the partial sum S defined in (40). The remainder in the approximation is quite small. Once

n > 10 or so, plots of the approximate estimator are indistinguishable from those obtained by

numerical integration.

The case in which the regression parameter β is vector-valued provides an important insight into

the adaptive character of our estimator. To obtain a characterization similar to that provided for

the scalar estimator, we require some rather special assumptions on the basis. These conditions are

only needed to provide this characterization and do not affect, nor limit, the use of the estimator.

They simply allow us to isolate a single element of β. Assume now as in (1) that Yi ∼ N(xt
iβ, I),

where β denotes an unknown p-element vector and the n row vectors xt
i combine to form an n× p

orthogonal matrix X. The p columns of are the first p columns of the n × n orthogonal matrix

W . Assume also that the first column of X is constant, so that the scalar example is a special

case. Let µ = β1. Assume further for convenience that x1,2 = · · · = x1,p = 0. For example, one

might have a sinusoidal basis in which the columns of X are given by the discrete Fourier basis,

xi,j = sin 2π(i − 1)(j − 1)/n for j = 2, . . . , p. As in the scalar case, assume that the remaining

noise coordinates confine the impact of Y1 by setting w1,p+2 = · · · = w1,n = 0, with w1,1 6= 0 and

w1,p+1 6= 0.

The equivalent adaptive estimator of µ is again a conditional expectation, only one with a more

complex model for the distribution of Y ,

µ̃p = Ef̃p
[Y1|Y2, . . . , Yn] . (42)

To define f̃p, again let Z = W tY . Then

f̃p(y1, . . . , yn) = g̃(z1, . . . , zp)
n∏

i=p+1

φ(zi) .

Because of the convenient choice of the basis, the expectation simplifies to a ratio of one-dimensional

integrals,

µ̃p =
∫
y1g̃(z1, . . . , zp)φ(zp+1)dy1∫
g̃(z1, . . . , zp)φ(zp+1)dy1

. (43)

Noting that g̃ is a weighted sum of mixtures, set εj = 2−j and write

g̃(z1, . . . , zp) =
k∑

j=1

εj g̃εk+1−j

(√
n− 1
n

s+ y1/
√
n, z2, . . . , zp)

)

=
k∑

j=1

εj g̃εk+1−j

(√
n− 1
n

s+ y1/
√
n

) p∏
i=2

g̃εk+1−j
(zi)

Because of the position of zeros in the first row of W , the integration simplifies. Using the previous

expression for g̃(z1, . . . , zp) and the arguments that provide the scalar estimator, we obtain (with

k = dlog ne)
√
n

∫
y1g̃(z1, . . . , zp)φ(zp+1)dy1
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=
√
n

k∑
j=1

εj g̃εk+1−j
(z2, . . . , zp)

∫
y1g̃εk+1−j

(z1)φ(zp+1)dy1

=
√
n

k∑
j=1

εj g̃εk+1−j
(z2, . . . , zp)

∫
y1g̃εk+1−j

(s+ y1/
√
n)φ(y1 − S/

√
n)dy1 +O(1/

√
n)

=
k∑

j=1

εj g̃εk+1−j
(z2, . . . , zp)

(
s g̃εk+1−j

(s) + g̃′εk+1−j
(s)
)

+O(1/
√
n)

=
k∑

j=1

εj g̃εk+1−j
(s, z2, . . . , zp)

(
s+ g̃′εk+1−j

(s)/g̃εk+1−j
(s)
)

+O(1/
√
n) .

Similarly, the denominator of µ̃p reduces to∫
g̃(z1, . . . , zp)φ(zp+1)dy1 =

k∑
j=1

εj g̃εk+1−j
(s, z2, . . . , zp) +O(1/n).

Thus we obtain the approximation

µ̃p ≈ S +
k∑

j=1

ωj

g̃′εk+1−j
(S)

g̃εk+1−j
(S)

/
∑
j

ωj , (44)

where the weights are ωj = εj g̃εk+1−j
(S, z2, . . . , zp).

This approximation shows how the estimator adapts to the presence of more signal in other

components of the least-squares fit. If z2, . . . , zp are near zero, then the weights ωj put most of the

mass at j = k. That is, most of the weight is assigned to mixture components that downweight the

Cauchy density. As the other coordinates move away from zero – suggesting a problem in which

there is substantial signal – the ωj shift to put more mass on components with larger weights on

the Cauchy density. These weights then resemble an empirical Bayes procedure that chooses a prior

that conforms to the estimated signal.

Appendix: Proofs

There are three subsections to this appendix. The first proves some Lemmas of general utility. The

second section proves the lower bound statement of Theorem 1. The third section proves the upper

bound of Theorem 1.

6.1. Preliminaries

We begin by deriving an obvious property of the Bayes estimator: for a prior π ∈ M, the Bayes

estimator of µ lies between 0 and the observed value. The case of y < 0 is analogous.

Lemma 3. Suppose y ≥ 0. Then

0 ≤ E(µ|Y = y) ≤ y ,

where Y ∼ φ(µ, 1), with a prior µ ∼ π such that π ∈M, and M is defined in (6).
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Proof:

Write φ = φ0. The lower bound is obvious by partitioning the expectation as

φπ(y)E(µ|y) =
∫
µφ(y − µ)π(µ) dµ

=
∫ 0

−∞
µφ(y − µ)π(µ) dµ+

∫ ∞

0
µφ(y − µ)π(µ) dµ

=
∫ ∞

0
−µφ(y + µ)π(µ) dµ+

∫ ∞

0
µφ(y − µ)π(µ) dµ

=
∫ ∞

0
µ (φ(y − µ)− φ(y + µ))π(µ) dµ

≥ 0 .

The upper bound comes from a similar partitioning argument. The idea is to remove most of the

integral by use of the symmetry around 0 of φ and φπ. For this purpose, define

π̃(µ) =

 π(µ) µ > y ,

π(2y − µ) µ ≤ y ,

which is symmetric around y. Thus,
∫
(y − µ)φ(y − µ)π̃(µ) dµ = 0. With this definition, we have

φπ(y)E(y − µ|Y = y) =
∫

(y − µ)φ(y − µ)π(µ) dµ

=
∫

(y − µ)φ(y − µ) (π(µ)− π̃(µ)) dµ

=
∫ y

−∞
(y − µ)φ(y − µ) (π(µ)− π̃(µ)) dµ

≥ 0

since all of the terms in the integral are positive for µ < y.

The second preliminary result that we show establishes the monotonicity of the divergence of

the Bayes mixture.

Lemma 4. The divergence dπ(µ) (defined in equation (20)) is monotone increasing as µ moves

away from 0. That is, for |µ0| < |µ1|,

dπ(|µ0|) < dπ(|µ1|) .

where dπ(·) is

Proof:

Since dπ(µ) = dπ(−µ), we need only consider the case 0 < µ0 < µ1. Define the midpoint ζ =

(µ0 + µ1)/2. Then

dπ(µ1)− dπ(µ0) =
∫
φ(y − µ0) log φπ(y) dy −

∫
φ(y − µ1) log φπ(y) dy

=
∫
φ(u) log φπ(u+ µ0) du−

∫
φ(u) log φπ(u+ µ1) du

=
∫ ∞

ζ
φ(u) log

φπ(u+ µ0)
φπ(u+ µ1)

du−
∫ ζ

−∞
φ(u) log

φπ(u+ µ1)
φπ(u+ µ0)

du

imsart ver. 2005/05/19 file: bayes-expert.tex date: September 9, 2005



Foster and Stine/Adaptive variable selection 26

=
∫ ∞

0
φ(u− ζ) log

φπ(u+ µ0 − ζ)
φπ(u+ µ1 − ζ)

du−
∫ ∞

0
φ(−u− ζ) log

φπ(µ1 − ζ − u)
φπ(µ0 − ζ − u)

du

=
∫ ∞

0
(φ(ζ − u)− φ(ζ + u)) log

φπ(u+ (µ0 − µ1)/2)
φπ(u+ (µ1 − µ0)/2)

du

> 0 ,

since both factors in the final integral are positive over the range of integration.

We will also need the following property of the likelihood ratio.

Lemma 5. The likelihood ratio of φπ(y)/φ0(y) is monotone increasing for y > 0:

d

dy

φπ(y)
φ0(y)

> 0 . (45)

Proof. Assume y > 0. Differentiating under the integral, we have

d

dy

φπ(y)
φ0(y)

=
φ0(y)φ′π(y)− φπ(y)φ′0(y)

φ2
0(y)

=
φ0(y) (

∫
µφ(y − µ)π(µ)dµ− yφπ(y)) + yφ0(y)φπ(y)

φ2
0(y)

=
∫
µφ(y − µ)π(µ)dµ

φ0(y)
> 0 ,

because of the monotonicity of the Bayes estimator shown in Lemma 3.

The following Lemma offers a more precise version of the approximation given in (28). We do

not exploit the accuracy of this approximation and include it here for completeness.

Lemma 6. √
−2 log εκ + log(2/π)− 2 log κ− 1 ≤ τκ ≤

√
−2 log εκ + log(2/π)− 2 log κ

and:
2κe−(τκ+1)2/2

√
2π

≤ εκ ≤
2κe−τ2

κ/2

τ
√

2π
Proof:

εκ = 2κΦ(−τ) ≤ 2κφ0(τ)/τ ≤
2κe−τ2/2

τ
√

2π
.

The other direction is

εκ = 2κΦ0(−τ) ≥ 2κφ0(τ + 1) ≥ 2κe−(τ+1)2/2

√
2π

.

For τκ > 1, these show that

log εκ ≤ 1
2 log(2/π) + log κ− τ2/2

log ε− 1
2 log(2/π)− log κ ≤ −τ2/2

−2 log ε+ log(2/π) + 2 log κ ≥ τ2√
−2 log ε+ log(2/π) + 2 log κ ≥ τ
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For the other bound, we have:

log ε ≥ 1
2 log(2/π) + log κ− (τ + 1)2/2

2 log ε ≥ log(2/π) + 2 log κ− (τ + 1)2

2 log ε− log(2/π)− 2 log κ ≥ −(τ + 1)2√
−2 log ε+ log(2/π)− 2 log κ− 1 ≤ τ

6.2. Lower Bounds

This section proves equation (12) which is the lower bound statement of Theorem 1.

Our first Lemma is a direct consequence of the monotonicity of dπ and the well-known relationship

between the L1 norm and the divergence. This Lemma shows that dπ (defined in equation (20)) lies

above a simple function of the cumulative normal distribution Φ. This bound is useful for dπ(µ) for

values of µ ≈ 1. Since the bound provided by this Lemma goes to 0 as µ→ 0 and is itself bounded

by 1/(2 log 2), we need to improve it for both small and large values of the parameter.

Lemma 7.

dπ(µ) ≥ (2Φ(µ)− 1)2

2 log 2
.

Proof. It is well known that the divergence is bounded below by a multiple of the L1 norm [for

example, see 4]

D
(
f
∥∥ g) ≥ 1

2 log 2
‖f − g‖2

1 . (46)

The monotonicity of dπ established in Lemma 4 shows that

dπ(µ) ≥ max(dπ(µ), dπ(0))

= max(D
(
φµ

∥∥ φπ
)
, D
(
φ0

∥∥ φπ
)
) .

Now using the L1 bound from (46), we obtain

dπ(µ) ≥ 1
2 log 2

max
(
‖φµ − φπ‖2

1, ‖φ0 − φπ‖2
1

)
≥ 1

8 log 2
‖φµ − φ0‖2

1 ,

where the last step uses the triangle inequality for the L1 norm,

‖a− c‖1 = ‖a− b+ b− c‖1 ≤ ‖a− b‖1 + ‖b− c‖1 ≤ 2 max(‖a− b‖1, ‖b− c‖1) .

The expression in the statement of the Lemma comes from noting that the L1 distance between

two normal densities is

‖φµ − φθ‖ = 2
(

2Φ
( |µ− θ|

2

)
− 1

)
.
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Our next step in providing lower bounds for φπ is to find a lower bound for dπ(0). Our basis for

this bound is the following Lemma. This Lemma bounds for the divergence based on the difference

in probabilities assigned to a set. It is similar in result and proof to the well-known L1 lower bound

for the divergence provided, for example, in [4]. This version is specialized to our setting.

Lemma 8. Let f and g denote two scalar probability measures, with the support of f contained in

the support of g. Let A denote a measurable set with f measure ε = f(A) such that

δ = g(A) < f(A) = ε .

Then

D
(
g
∥∥ f) > h(δ, ε) = δ log

δ

ε
+ (1− δ) log

1− δ

1− ε
. (47)

Proof. To make the notation more descriptive, define the divergence between two random variables

as the divergence of their distributions. Using this notation, if X and Y denote random variables

with distributions defined by f and g, respectively, then D
(
g
∥∥ f) = D

(
Y
∥∥ X). Now let 1A(x)

denote the indicator function for the set A. Conditioning allows us to write the divergence in two

ways by making use of the chain rule for divergence (e.g., [4]),

D
(
(Y1, Y2)

∥∥ (X1, X2)
)

= D
(
Y1

∥∥ X1
)
+D

(
Y2|Y1

∥∥ X2|X1
)

= D
(
Y2

∥∥ X2
)
+D

(
Y1|Y2

∥∥ X1|X2
)

(48)

Since 1A(X) is constant given X (and similarly for 1A(Y ) given Y ), D
(
1A(Y )|Y

∥∥ 1A(X)|X
)

= 0,

and (48) implies

D
(
Y
∥∥ X) = D

(
1A(Y )

∥∥ 1A(X)
)
+D

(
Y |1A(Y )

∥∥ X|1A(X)
)

≥ D
(
1A(Y )

∥∥ 1A(X)
)

= δ log
δ

ε
+ (1− δ) log

1− δ

1− ε
,

where the inequality obtains because the divergence is non-negative.

This Lemma trivially leads to a global lower bound for dπ(µ). In particular, if in equation (47)

we set ε = εκ(π) (from equation (26)) and δ = δκ(π) = εκ/κ from (27), then we obtain following

lower bound.

Lemma 9.

dπ(µ) ≥ (εκ/κ) log
1
κ

+ (1− εκ/κ) log
1− εκ/κ

1− εκ
.

We have two useful approximations of the lower bound provided in Lemma 9. The first is better

for small εκ.

Lemma 10. For all µ and κ > 1,

dπ(µ) ≥ εκ

(
1− 1 + log κ

κ

)
.
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Proof. Using δκ(π) from (27) in h(δ, ε) defined in (47), we have

dπ(µ) ≥ h(δκ(π), εκ) = (1− εκ
κ

) log(
1

1− εκ(1−1/κ)
1− εκ

κ

) + εκ/κ log(1/κ)

≥ (1− εκ
κ

)
εκ(1− 1/κ)

1− εκ
κ

− εκ/κ log(κ)

= εκ(1− 1/κ)− εκ/κ log(κ)

= εκ(1− 1 + log κ
κ

) .

The second bound relies on the property of the Bayes estimator from Lemma 3 along with

Jensen’s inequality.

Lemma 11. For all µ and κ > 1,

dπ(µ) ≥ εκ(1− 1/κ)2

2(1− εκ)
.

Proof. We again use h(δ, ε) from (47) and define

q(δ, ε) =
1
2

(δ − ε)2

ε(1− ε)
.

Write the difference as r(δ, ε) = h(δ, ε) − q(δ, ε). Now observe that r(ε, ε) = 0 and that the partial

derivative (∂/∂δ)r(δ, ε) = 0 if δ = ε. The second partial derivative of r is positive for δ < ε,

∂2

∂ δ2
r(δ, ε) =

1
δ(1− δ)

− 1
ε(1− ε)

> 0 ,

since the maximum value of the denominator occurs at 1/2. It follows that r(δ, ε) is convex for

0 < δ < ε < 1/2 and lies above the tangent x-axis, and so r(δ, ε) > 0 under these conditions. The

bound obtains for dπ since εκ < 1/2 by definition.

Now define the set A of Lemma 8 as A = {y : |y| > τκ}. From (27), εκ = κ δκ(π). Plugging these

into the bound on the divergence given by Lemma 8, we obtain

dπ(0) ≥ ε2κ(1− 1/κ)2

2εκ(1− εκ)

=
εκ(1− 1/κ)2

2(1− εκ)

The bound holds everywhere because of the monotonicity of dπ established in Lemma 4.

For larger values of |µ|, we have the following two Lemmas. The first provides a useful lower

bound for dπ(µ) for µ ≈ τκ.

Lemma 12. Let Y ∼ φµ. Then

dπ(µ) ≥ µ2/2 + 1
2

(
(τ2

κ − 1− µ2)P (|Y | ≥ τκ) + φµ(τκ)(|µ| − τ − e2|µ|τκ(|µ|+ τ))
)
− log κ
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Proof. As in the prior proof, let A = {y : |y| < τκ} and let Ac denote its complement. The proof

of this Lemma is a direct evaluation of the divergence, with the inequality obtained by exploiting

the monotonicity of φπ(|y|) and the definition of τκ in (25). This definition implies φπ(y) < κφ0(y)

for |y| < τκ.

dπ(µ) =
∫

log
1

φπ(y)
φµ(y)dy −H(φ)

≥
∫

A
log

1
κφ0(y)

φµ(y)dy +
∫

Ac
log

1
κφ0(τκ)

φµ(y)dy −H(φ) ,

since φπ(τκ) = κφ0(τκ). Collecting terms, we have

dπ(µ) ≥ 1
2

∫
min(y2, τ2

κ)φµ(y)dy + 1
2 log 2π −H(φ)− log κ

= 1
2

(∫
A
y2φµ(y)dy + τ2

κP (|Y | ≥ τκ)
)
− 1

2 − log κ ,

since H(φ)− 1
2 log 2π = 1/2. Solving the integral in somewhat closed form and collecting constants

give the lower bound for dπ(µ) as claimed in the Lemma.

We use a separate result to bound dπ(µ) for larger |µ|. The proof of this Lemma is an application

of the so-called data-processing inequality to the random variable Y ∨ µ− δ where Y ∼ φπ.

Lemma 13. For arbitrary δ, set α = Φ(−δ). Then for |µ| ≥ δ,

dπ(µ) ≥ (1− α) log
1

φπ(|µ| − δ)
+ α logα−H(φ) . (49)

Proof. Assume µ > δ and split the divergence dπ(µ) into two parts,

dπ(µ) =
∫
φµ(y) log

φµ(y)
φπ(y)

dy

=
∫

y≤µ−δ
φµ(y) log

φµ(y)
φπ(y)

dy +
∫

y>µ−δ
φµ(y) log

φµ(y)
φπ(y)

dy .

Let A denote the event {Y ≤ µ− δ}. Let φµ(y|A) and φπ(y|A) denote the conditional probability

measures, and define φπ(A) =
∫
A φπ(x)dx. The first term of the divergence can be analyzed using

a conditioning argument.∫
y≤µ−δ

φµ(y) log
φµ(y)
φπ(y)

dy =
∫

y≤µ−δ
αφµ(y|A) log

αφµ(y|A)
φπ(y|A)φπ(A)

dy

= α log
α

φπ(A)
+ α

∫
y≤µ−δ

φµ(y|A) log
φµ(y|A)
φπ(y|A)

dy

≥ α log
α

φπ(A)
≥ α logα . (50)

The second term can be analyzed more directly using the monotonicity of φπ:∫
y>µ−δ

φµ(y) log
φµ(y)
φπ(y)

dy ≥ −H(φ) +
∫

y>µ−δ
φµ(y) log

1
φπ(y)

dy
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≥ −H(φ) +
∫

y>µ−δ
φµ(y) log

1
φπ(µ− δ)

dy

= −H(φ)− (1− α) log φπ(µ− δ) . (51)

With the bounds (50) and (51) combined, we arrive at the lower bound as stated.

To make use of this Lemma, we remove the Bayes mixture φπ from (49) and replace it with a

simple function of εκ defined in (26). Assume µ > τκ + δ. Then we can bound φπ(µ− δ) from above

by

φπ(µ− δ) <
εκ

µ− δ − τκ
. (52)

because the tail area εκ is greater than the area of a rectangle of height φπ(µ − δ) and width

2(µ− δ − τκ). Putting the bound for φπ from (52) into (49) gives the following Lemma:

Lemma 14. For |µ| > τκ + δ, define α = Φ(−δ). Then

dπ(µ) ≥ (1− α) log
|µ| − δ − τκ

εκ
+ α logα−H(φ) . (53)

The choice of δ remains. Clearly one would like to choose δ so as to maximize the bound in (53).

Although we can numerically find a value of δ that maximizes this bound, the expression as offered

is too complex to allow an explicit solution. However, if we assume δ is of moderate size, we can

approximate the bound in (53) as

h(δ) = Φ(δ) log(µ− δ − τκ) . (54)

If we then set (∂/∂δ)h(δ) = 0 and drop constants and terms of smaller size, we arrive at an

approximately optimal choice of δ. If we write the solution as a function of µ and the threshold,

then the approximate optimal choice is δ̂(µ, τκ) where

δ̂(µ, τ) =
√

2 log(µ− τ) for µ > τ + 1 , (55)

and zero otherwise. The following Lemma collects several bounds for dπ(µ) from Lemma 7, Lemma

9 and Lemma 14.

Lemma 15.

dπ(µ) ≥ L(µ, εκ)

where

L(µ, ε) = max{L0(µ, ε), L1(µ), L2(µ, ε), L3(µ, ε)} , (56)

where the bounding functions are

L0(µ, ε) = (εκ/κ) log
1
κ

+ (1− εκ/κ) log
1− εκ/κ

1− εκ
,

L1(µ) =
(2Φ(µ)− 1)2

2 log 2
,
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L2(µ, ε) = 1
2

(∫
A
y2φµ(y)dy + τ2

κP (|Y | ≥ τκ)− 1
)
− log κ

and

L3(µ, ε) = (1− α) log
|µ| − δ − τκ

εκ
+ α logα−H(φ),

where in L3 we assume |µ| > δ + τκ and set α = Φ(−δ).

A simpler form of these bounds facilitates our comparison of the expert divergence dπ to that

obtained by the predictive model g. Though the bounds are not so tight as those just laid out, they

are adequate to show the existence of finite ratios.

Lemma 16. For κ = e2:

∃λ > 0 s.t. ∀π ∈M : λ dπ(µ) ≥ min

(
µ2

i + εκ(π),
1
µ2

i

+ log
µi

εκ(π)

)

Proof. We proceed by simplifying the bounds for various ranges of µ, starting with those near 0.

Case A: (µ2 ≤ εκ) For κ = e2, 1+log κ
κ ≤ 1

2 . Thus, Lemma 11 gives

dπ(µ) ≥ εκ(1− 1 + log κ
κ

) ≥ εκ/2 ≥ µ2/4 + εκ/4

= (µ2 + εκ)/4 . (57)

So any λ > 4 will work.

Case B: (εκ ≤ µ2 ≤ 9) For µ in this range, (2Φ(µ) − 1)2 ≥ µ2/10. Thus, the L1 bound from

Lemma 7 gives

dπ(µ) ≥ (2Φ(µ)− 1)2

2 log 2
≥ µ2

20 log 2
≥ µ2/2 + εκ/2

20 log 2
≥ (µ2 + εκ)/(40 log 2) (58)

So any λ > 40 log 2 will work.

Case C: (9 ≤ µ2 ≤ τ2
κ/2) We simplify the L2(µ, ε) bound by replacing the expectation Eµ(Y 2∧τ2

κ)

by something more manageable, here a truncated linear function that is tangent to the quadratic.

Recalling log κ = 2, we obtain

L2(µ, ε) = 1
2

(∫
A
y2φµ(y)dy + τ2

κP (|Y | ≥ τκ) + log 2π
)
−H(φ)− log κ

≥ 1
2

∫
(y ∧ µ)2φµ(y)dy − 5/2

≥ 1
2

∫
max[0,min(τ2

κ , µ(2y − µ))]φµ(y)dy − 5/2

≥ µ
2

∫
max[−τ2

κ/µ,min(τ2
κ/µ, (2y − µ))]φµ(y)dy − 5/2

= µ2/2− 5/2
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≥ µ2/2− 5/2 ,

since max(−τ2
κ/µ,min(τ2

κ/µ, (2y − µ))) is an odd function centered at µ.

For µ > 3 we see that

(µ2 − 5)/2 > µ2/10 + 1 > µ2/10 + ε/10

so our bounds apply with λ = 10.

Case D: (τ2
κ/2 ≤ µ2 ≤ 72τ2

κ) By monotonicity of dπ (see Lemma 4), we know that for µ in this

range dπ(µ) > dπ(τκ/
√

2) = (τ2
κ + ε)/20. At the upper limit for this range, we must have

72τ2
κ + ε ≤ λ(τ2

κ + ε)/20 ,

so λ ≥ 1440 will work.

Notice that if τκ is less than 3 (and hence the previous case holds vacuously) we still achieve this

bound by appealing to the case before that. This means λ ≥ 72 ∗ 40 log 2 = 5760 log 2 will suffice.

Case E: (72τ2
κ ≤ µ2) First note that τκ >

√
2 for κ = e2. If we set δ = Φ−1(.9) ≈ 1.28 in the

bound L3(µ, ε) given in Lemma 15, then for this range of µ:

dπ(µ) ≥ 0.9 log
µ− τκ − δ

εκ
+ 0.1 log 0.1−H(φ)

≥ 0.1 log
µ− τκ − δ

εκ
+ 0.8 log[2(6

√
2− 1)

√
2− δ] + 0.1 log 0.1−H(φ)

≥ 0.1 log
µ− τκ − δ

εκ
+ 0.8 log 18 + 0.1 log 0.1−H(φ)

≥ 0.1 log 1/εκ + 0.1 log(µ− τκ − δ) + 0.66

≥ 0.1 log 1/εκ + 0.1 log µ+ 0.1 log
µ− τκ − δ

µ
+ 0.66

≥ 0.1 log 1/εκ + 0.1 log µ+ 0.1 log
(6
√

2− 1)τκ − δ

6
√

2τκ
+ 0.66

≥ 0.1 log 1/εκ + 0.1 log µ+ 0.6 (59)

Since for µ ≥ 1 we have that .6 ≥ .1/µ2, we can write the lower bound as dπ(µ) ≥ 0.1 log µ/εκ +

0.1/µ2 since µ is bigger than 1. Thus, any λ ≥ 10 will work for this case.

In summary, any λ ≥ 5760 log 2 will prove our desired result.

6.3. Upper Bounds

Lemma 17. For gε(y) = (1− ε)φ(y) + εψ(y)

D
(
φµ

∥∥ gε
)
≤ min{µ2/2− log(1− ε), logµ2π + 3/µ2 − log(ε)−H(φ)} .

Proof. Begin by bounding the divergence as the minimum of the divergence of either density used

to define gε:

D
(
φµ

∥∥ gε
)

= D
(
φµ

∥∥ (1− ε)φ0 + εψ
)
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≤ min(D
(
φµ

∥∥ (1− ε)φ0
)
, D
(
φµ

∥∥ ε ψ)) .
The first term is easy:

D
(
φµ

∥∥ (1− ε)φ0
)

= D
(
φµ

∥∥ φ0
)
− log(1− ε) = µ2/2− log(1− ε) .

The second piece is less straightforward. First write

D
(
φµ

∥∥ ε ψ) = D
(
φµ

∥∥ ψ)− log(ε) .

We can bound the divergence between the Gaussian and the scaled Cauchy, ψ(z) = 1/(
√

2π(1 +

z2/2)), as follows,

D
(
φµ

∥∥ ψ) =
∫
φµ(y) log

φµ(y)
ψ(y)

dy

=
∫
φµ(y) log(π

√
1/2(2 + y2))dy −H(φ)

= log(µ2 + a)π/
√

2 +
∫
φ(z) log

(
1 +

2µz + z2 + 2− a

µ2 + a

)
dy −H(φ)

Using the bound log(1 + x) ≤ x and a = 3 we get a bound on the divergence of D
(
φµ

∥∥ ψ) ≤
log(µ2 + 3)π

√
2−H(φ) ≤ logµ2 + log π

√
2 + 3/µ2 −H(φ).

The following Lemma is weaker than the above bound but simpler to work with theoretically. It

proves the second statement of Theorem 1.

Lemma 18. If ε < .5, then for gε(y) = (1− ε)φ(y) + εψ(y)

D
(
φµ

∥∥ gε
)
≤ 2 min{µ2 + ε, 1/µ2 + logµ/ε} .

Proof. We show this by bounding each term in Lemma 17 separately. The first term is bounded

above by

µ2/2− log(1− ε) ≤ µ2/2 + (3/2)ε

≤ 2µ2 + 2ε ,

where the first inequality follows from the restriction that ε ≤ .5. The second term is bounded as:

logµ2π + 3/µ2 − log(ε)−H(φ) = 2 logµ+ log π + 3/µ2 − log(ε)− (log 2πe)/2

= 2
(

log
µ

ε
+ 1/µ2

)
+
(

1/µ2 + log ε+
(log π/2e)

2

)
≤ 2

(
log

µ

ε
+ 1/µ2

)
+
(
1/µ2 + log ε

)
If µ ≥

√
log 2 andε ≤ 1/2 then 1/µ2 + log ε is less than zero and the bound follows. If µ ≤ 1, then

µ2 + ε is the binding term and we have our desired result. Further, if ε < e−4, and 1 ≤ µ ≤ 2 the

µ2 + ε is again binding. For the region e−4 ≤ ε ≤ 1/2 and 1 ≤ µ ≤ 2 a look at a graph generated

by numerical calculation is sufficient to see that the bound holds over that region.
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