Auctioning Experts in Credit Modeling

Robert Stine
Statistics Department
The Wharton School, Univ of Pennsylvania
May, 2004

www-stat.wharton.upenn.edu/~stine
Opportunities

- Anticipate default
 - Who are most likely to default in the near future?

- Detect fraudulent applications
 - Which loan applications are made up?

- Segment corporate bond market
 - Which companies are most risky?

- Other domains…
 - Employee evaluation: Who should we hire?
 - Disease prognosis: Who are most at risk?
 - Document classification: Can you find one like this?
Similarities

Different contexts, but common characteristics…

- Rare events
 - Few cases dominate costs.
 - Millions of accounts, thousands of defaults.

- Synergies
 - Linear models find little. Interactions work.
 - Many combinations seem plausible.

- Wide data: more features than cases
 - Interactions, transformations, categories, missing data…
 - Too many to find the best at each stage.
Common Objective

- Regardless of the context
 - Credit default
 - Detecting fraudulent loan applications
 - Segmenting corporate bond market

- Pragmatic goal remains prediction.

- Best model generates highest revenue
 - Asymmetry of costs, presence of rare events

- Many schemes for building a predictive model
 - Algorithms, features, criteria…
Which model to use?

Every domain has experts…

But which offer good advice?
Automated Methods

- Expense of custom modeling hard to justify

- Automate process
 - Higher productivity
 - “Objective”
 - “Rigorous”
 - Convenient

- But what about expert know-how?
 - Is the loss of their insight worthwhile?
Comparison

Substantive

- Pick model “by hand”
 - Advantages
 - Leverage domain knowledge
 - Can “interpret” for regulator
 - Disadvantages
 - Did we miss something?
 - Time consuming to
 - Construct
 - Maintain

Automatic

- Computer search
 - Advantages
 - Scans entire data warehouse
 - Hands-off, fast
 - Construction
 - Maintenance
 - Disadvantages
 - Lost domain expertise
 - Hard to explain or interpret
Best of Both Approaches

Substantive
Pick model “by hand”

- Advantages
 - Leverage domain knowledge
 - Can “explain” to regulator

- Disadvantages
 - Did we miss something?
 - Time consuming to
 - Construct
 - Maintain

Automatic
Computer search

- Advantages
 - Scans entire data warehouse
 - Hands-off
 - Construction
 - Maintenance

- Disadvantages
 - Lost domain expertise
 - Hard to explain or interpret
Best of Both
Auction = Experts + Model
Awktion Modeling

- *Experts* recommend features.
 - Bid reflects strength of “conviction” (Bayes prior)

- *Auction* identifies feature with highest bid.

- *Statistical model* tests feature.
 - Bid determines p-value threshold
 - Accepts significant predictors, rejects others

- *Auction* passes results back to experts.
 - Winning bids earn wealth for expert.
 - Losing bids reduce wealth.

- *Information* flows both ways.
Experts

- Experts recommend predictive features

- *Substantive* experts order features
 - Domain knowledge of specific area
 - Prior models in similar problems

- *Automatic* experts
 - Interactions based on other experts
 - Transformations
 - Segments, nearest-neighbor, principal components
 - Nonlinearity
 - Feedback adjustments for calibration
Underlying Theory

- Streaming feature selection
 - Sequential, not all at once
 - “Depth-first” rather than “breadth-first”
 - Overcomes width constraints
 - Ordering captures prior information

- Universal bidding strategies

- Multiple testing without overfitting
 - False discovery rate (FDR) for infinite sequence of tests.

- Calibration
 - Ensures predictions track reality.
 - Adaptive link function
Sequential vs. Batch Selection

Sequential
- Search features in order identified by domain expert
- Allows an infinite stream of features.
- Adapts search to successful domains.
- Reduces calculations to a sequence of simple fits.

Batch
- Search “all possible” features to find the best one.
- Needs all possible features before starts.
- Constrains search to those available at start.
- Requires onerous array manipulations.
Sequential works...
Example

- Predicting default
 - Logistic regression model
 - 15,000 cases, 67,000 possible features (most interactions).

- Standard model finds linear predictor
 - Higher risk with lower line allowance.
 - Statistically significant
Example: Nonlinear pattern

- **Auction model**
 - Experts recommendations based on state of model.
 - Look for combinations of extant predictors.

- **Discovers nonlinear effect**
 - Nonlinear effect for size of credit line
 - Statistically significant “bump” in risk
Example: Synergies

- Feedback expert
 - Builds interactions among predictors in current model.
 - Limited search does not obscure simple predictors.

<table>
<thead>
<tr>
<th>Feature</th>
<th>Found in Model</th>
</tr>
</thead>
<tbody>
<tr>
<td>Behavioral score</td>
<td>Marginally linear</td>
</tr>
<tr>
<td>Missing data</td>
<td>Behavior score affects these differently</td>
</tr>
<tr>
<td>Non-linear</td>
<td>Larger for high scores</td>
</tr>
<tr>
<td>Synergies</td>
<td>Changes with payment</td>
</tr>
</tbody>
</table>
Summary

- Auction modeling combines
 - Domain knowledge
 - Automatic search procedures
- Offers
 - Fast, guided search over complex domains
 - Strategies for constructing features in parallel.
 - Flexible statistical models
- More information…

www-stat.wharton.upenn.edu/~stine