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Over view
Some examples of data mining

More detail o n some than o the rs

Metho ds used in data mining
Lots of c hoices!

Challenges f aced in data mining
Common t o all metho ds, old and new

Direct ions
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Examples
Finance
Can I p redict the s t ock market?
Which l oans are most l ikely t o default?

Management
Which applicants t o hire and tr ain? 

Health
Who is at g reater r isk of a disea se?

Images
I s the re a f ace in th is image?
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Lots of Da ta
Once upon a t ime...

A large data set ha d 50 t o 100 r ows and 
perhaps 5 t o 10 columns.

A big mult iple r egression had 4 o r 5 
predict ors

ThatÕs changed...
Modern data sets a re immense, with 
thousands t o mil lions of r ows and hundreds 
t o tho usands of c olumns.

The models have grown as well
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Lots of Da ta
Credit

Mil lions of cr edit c ard users
Hist or y, economics, tr ansact ions 

Hiring
Several tho usand past empl oyees
Numerous applicat ion character ist ics

Health
Thousands of pat ient r ecords at o ne hospital
Genet ic markers, physician reports, t ests

Images
Mil lions of images fr om video sur veillance
All tho se pixel pat t erns
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Similar Goals
Numerous, r epeated decisions with 
asymmetr ic costs a t tached t o mistakes.

Hiring
Firm tr ains 250 new employees monthl y

Which are the be st c andidates
(need t o rate them, then pi ck the be st )

Miss a good candidate: Lose sales f or the 
Þrm (! $100,000/ month )

Train a poor c andidate: Wasted the sea t an d 
the $10,000 tr aining f ee Wharton

 Statistics Department

Similar Goals
Numerous, r epeated decisions with 
asymmetr ic costs a t tached t o mistakes.

Credit
Manage tho usands of accounts in ea ch l ine

Which accounts a re going bad?

Miss a bad account: D efaults typi cally on 
the o rder of $10 ,000 t o $30,000

Annoy a g ood cust omer: Might l ose that 
cust omer an d the 18% interest y ouÕre 
earning.
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Similar Use of M odels
Predict ive models

Bet ter p redict ions mean a compet it ive advantage

ClassiÞcat ion

Predict ion

But y ou sacr iÞce interpretat ion...
Realize tha t the mo del is n ot c ausal.

Collinear ity amo ng f eatu res makes 
interpretat ion of the mo del a r isky ventu re.

Lure of Þn ding cause and ef f ect
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Similar Problems, Too
Rare events
Relat ively f ew ÒvaluableÓ decisions in the m ix, 
bur ied among the mo re common cases.

Numerous explanat ory f eatu res
Often have more ways t o explain the e vent 
than c ases t o check them (ie , more columns 
that r ows in data)

Plus f amiliar c omplicat ions
Missing data, dependence, measurement e r ror, 
changing deÞnit ions, outl iers...
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Wide Data Sets

Applicat ion Rows Columns

Credit 3,000,000 350

Faces 10,000 1,400

Genet ics 1,000 10,000

Cit eSeer 500 "
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Choices in M odeling
Str uctu re of the mo del

Regression          Y = b0 + b 1 X1 + b 2 X2 + . ..
Proje ct ion pursuit  Y = c0 + c 1D(X1, X2,..) + . ..
Trees                 Y = if(X 1 < a) then . ..

Scope of the sea rch
Raw f eatu res, obser ved measurements
Combinat ions of f eatu res, int eract ions
Transfor mat ion of f eatu res

Select ion
Which f eatu res t o use?
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Hands-on Example
Small model f or p r icing st ocks suggests  
most of the k ey issues

Context
Theory in Finance known as the Capital 
Asset P r icing Model says tha t o nly one 
predict or e xplains retu rns on a st ock...

namely r etu rns on the w hole market.

Day tr aders know th is is wr ong!
Devise Òtechnical tr ading r ulesÓ based on 
tu rning points, pat t erns in r ecent h ist or y
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CAPM Relat ionship

- 0.3

- 0.2

- 0.1

0

0.1

0.2

R
et

u
rn

 o
n

 M
cD

o
n

al
d

s

- 0.1 - 0.05 0 .05 .1
Return on SP500

Retu rns on McDonalds 
vs
Retu rns on S&P 500

48 months,2002-2005

Slope is called ÒbetaÓ 
of the s t ock

R2 = 46.5% 

t -stat f or sl ope is 6.3

Fit = 0 .006 + 1.4 S&P
We can do 

bet t er than 
that!
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A Bet t er M odel
Add 16 f eatu res tha t 
implement v ar iety of 
t echnical tr ading 
rules.

Doubled R2 t o 91%

Overall F = 17.8

ÒBetaÓ about ha lf 
pr ior siz e

t -stat ist ic f or sl ope 
st il l impressively l arge 
(t = 4. 9)

Seven othe r 
predict ors have p-
values less than 
0.0001.
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Fit = 0 .017 + 0.7 S&P +...
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Other Featu res

Seven addit ional 
predict ors add 
signiÞcant v ar iat ion t o 
the model

Many have larger t -
stat ist ics than the 
SP500 index

Model l ooks great 
fr om var iety of 
perspect ives.

Stat ist ician says 
Ògreat mo delÓ

Ter m Est |t| p

SP500 0.7 4.9 0

X22 0.2 3.7 .0009

X34 0.4 5.8 0

X36 0.3 5.0 0

X37 -.4 7.8 0

X39 0.3 6.3 0

X44 0.3 4.2 .0003

X46 -.4 6.5 0
What a re the se 
othe r p redict ors?
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Bet ter M ousetr ap?
Added predict ors are random noise!
So why do the y l ook so good?

Select ion bias
Pick var iables t o add fr om suit e of 50 
columns of r andom noise.

Forward stepwise regression
Greedy search adds most sig niÞcant n ext 
predict or t o the cu r rent mo del
# ÒOpt imizat ion capitalizes on chanceÓ

Result
Biased est imate of n oise var iance 
inßates t -stat an d produces ÒcascadeÓ 
of f eatu res Wharton
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Consequences
Expanding the mo del

Claims bet t er str uctu re, higher a ccuracy

Replaces !  > 1 to !  < 1.

But in r eality the e xpanded model is 
ju nk...

Adding random predict ors r uins predict ions

Conveys wr ong impression of the r ole of the 
market o n the r etu rns of th is st ock

Stepwise regression... Evil?
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Featu re Select ion
DonÕt bl ame stepwise f or the se problems

Failure: uncontr olled modeling process
The Þnal model l ooks great o n paper, if y ou 
donÕt kn ow how the p redict ors were chosen.

Cannot wai t Òunt il the en dÓ and use classical 
metho ds t o evaluate a model

Flaws in th is example happen elsewhere
 Aut omat ic metho ds expand the s cope of the 
search f or str uctu re t o wider spaces
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Easy t o Fix
Once you r ecognize the p roblem, it is 
relat ively easy t o contr ol the mo deling

Must k eep random f eatu res out of mo del

Cross-validat ion
Use a Òhold-backÓ or ÒtestÓ sample t o 
evaluate the mo del.

Painfu l t o give up data when you donÕt ha ve 
many cases (n = 48 he re, or in g enet ics)

Bonfer roni metho ds
Use all  data t o Þt an d evaluate model
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Second Example
ClassiÞcat ion problem
I dent ify o nset of p ersonal b ankrupt cy

Il lustr ate
Scope of da ta and size of mo dels

Contr ol greedy modeling process without 
using cr oss validat ion

Save validat ion data t o show tha t Òit w orksÓ 
rathe r than t o pick the mo del itself

Make a c laim about r egression
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Building a Predict ive Model
Claim
Regression is compet it ive with o the r 
typ es of p redict ive models

 Keys
Expand the s cope of f eatu res

Interact ions: subsets, nonlinear ity

Missing data tr eated as interact ion

Caut ious contr ol of sel ect ion of f eatu res
Avoid bias in noise var iance

DonÕt tr ust CLT t o produce accurate p- value
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Goals f or M odel
Goal
Reduce loss fr om bankrupt a ccounts 
without ir r itat ing proÞtable cust omers

I deal cu st omer
Bor row l ots of mo ney, pay back slowly

Business str ategy: tr iage
Contact cu st omers who are Òat r iskÓ 
and keep them pa ying

Wharton
 Statistics Department

Data
Rows

3,000,000 months of a ct ivity

2200 bankrupt cies

Columns
350 basic f eatu res

Credit a pplicat ion
Locat ion demographics
Past u se of cr edit

Missing data indicat ors

Add all  int eract ions... 66,430 more predict ors
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Results
Use cross-validat ion 
t o evaluate the mo del

Fit o n 600,000, and 
then c lassify the 
othe r 2 .4 mil lion

Lif t c har t displ ays 
order ing of c ases 
compared t o random 
select ion

If c all 1,000, Þnd 400 
bankrupt c ases.

Tr iage becomes 
economically viable

Every a dded var iable improved the r esults!
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Residual Sum of Squares
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Claimed Error

Contr olling Select ion
Where t o st op the 
addit ion of v ar iables?

Over -Þt t ing occurs 
when the model 
begins t o add random 
featu res tha t a re 
predict ive in-sample

Our metho d st opped 
af t er a dding 39 
predict ors

Avoids over -Þt t ing: 
Error incr eases if the  
model is expanded 
fu r the r.
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Compar ison t o Tree
Always good t o have 
a benchmark

C4.5 is a commercial 
classiÞer tha t b uilds 
tr ees

Cost r at io is the r at io 
of the c ost of m issing 
a bankrupt cu st omer 
t o the c ost of 
annoying a g ood 
cust omer.

Regardless of the 
rat io of c osts, 
regression achieves 
lower c osts
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How does it w ork?
Basically st epwise regression

Caut ion: DontÕ tr y th is with s tandard SAS/ R

Three ingredients
1.Rear range order of c omput ing
2.Hard thr esholding r ule

Compare p- value t o ! 1/67000
AIC would l et in a bout 16% of a ll f eatu res!

3.Caut ious standard er ror
Use residuals fr om Þt w ithout p redict or
Allow f or Poisson-l ike var iat ion (Bennet t )even 
though n is l arge  ( recall spare natu re of da ta)
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Conclude fr om Example
Regression is compet it ive with o the r 
metho dologies f or data mining... i f y ou 
adapt i t t o the c ontext

Ability t o stu dy r esiduals and othe r 
diagnost ics f acilitat ed improvements

Details
Other a djust ments inc lude calibrat ion

Foster an d St ine, 2004, JASA

Port ions of data are available fr om DeanÕs 
web page Wharton
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Challenges

Lots of r oom for improvement!
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Challenges
ÒThatÕs the wa y we u sed t o workÓ

Populat ion dr if t, moving t arget

Model in b usiness changes the p opulat ion
Credit: e f f ect ive screening r emoves f eatu res

Hiring: model changed data collect ion

Cross-validat ion is opt imist ic!
In CV, you tr uly predict n ew obser vat ions fr om 
the same populat ion

How t o Þx th is one?
Can you detect th is problem?
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Challenges
ÒSimple models are bet t erÓ

Often Þnd tha t c omplex models of f er l it tl e 
that n ot f ound with simpler model 
(Hand, 2006, f or thcoming Stat Science)

Not o ur e xper ience: Linear models do not 
Þnd predict ive str uctu re in BR applicat ion, 
fare poor ly compared t o tr ees

St il l suggests r oom t o improve...
Yuk: All b ut o ne predict or is an in teract ion

A dif f erent typ e of sea rch Þnds linear t er ms
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Challenges
ÒYou missed some th ingsÓ

Knowledgeable modelers with y ears of 
exper ience can suggest f eatu res tha t 
improve the mo del

Simple f eatu re space omits special f eatu res 
that u se domain-speciÞc tr ansfor mat ions

Can do bet t er...
Alt ernat ive metho ds allow addit ional expert 
input an d do Þnd r icher str uctu re
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Challenges
ThereÕs a l ot more data!

Transact ion inf or mat ion in the cr edit mo del
We only used t otal spending and payments, not 
the natu re of w hat wa s being bought

Semi-super vised modeling
Billions of ÒunmarkedÓ cases: images, t ext

Too expensive t o mark them a ll

Room t o improve...
How t o use the v ast n umber of u nmarked 
cases t o improve the mo deling of tho se that 
have been classiÞed or scored?
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Overcoming Challenges
Stil l b uilding r egression models

Problems
Populat ion dr if t

Bet t er m ix of simpl e f eatu res

Incorporate expert gui dance

Explore r icher spaces of p redict ors

Run f aster

Come back t omor row!


