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Challenges in Data Analysis
• Election survey (ANES)

• Predict voting behavior
• Open ended responses to questions 

• Medical outcomes
• Predict health outcome based on
	

 Biometric data (weight, height, age, BP)
	

 Physician descriptions

• Biometrics are ‘easy’ to use, but text?

• Real estate listings
• Predict price from text in 7,400 listings
• Suggest over-priced listings, identify comps
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Methodology
• Regression analysis

• Flexible, familiar, well-understood

• Text is not well matched to regression
• Regression designed for an ‘Excel table’
• Columns of numbers

• Featurizing
• Create the numerical Excel table
• Emphasize ease-of-use rather than finding the best 

possible, domain-specific strategy
• Three related methods that can be combined

3



Wharton
  Department of Statistics

Plan
• Regression models

• Featurizing for regression
• New spin on existing methods
• Novel aspects of empirical results

• Real estate example in detail
• Cross validation

• Probability models
• Topic models as explanation for success

• Discussion and plans
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Interpretation?
• Personal interest in prediction

• Can use statistical tests to measure how well a 
model predicts, and to determine whether 
‘improvements’ produce a better model.

• What would it mean to find the right 
interpretation?

• By-and-large leave interpretation to others

5
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Regression Analysis
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Regression Model
• Typical data

• Start with representative sample
• Numerical data (category encoded as number)

• Build equation
• Relate response to regressors, (yi, Xi)

regressor = predictor, explanatory variable, independent variable

• Use differences in regressors to ‘explain’ 
simultaneous differences in response

• Find weighted sum of regressors that is most 
correlated with response

• Prediction
• Weighted average of regressors for new case

7
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Issues in Regression
• Which characteristics to use?

• Substantive insight
• Automated search
• Everything

• How to separate wheat from chaff?
• Statistical significance

Everything passes this test with large samples

• Goodness of fit
• R2 is the percentage of ‘explained’ variation

Adjusted R2 compensates for size of model

• Not appropriate for automated searches
Over-fitting inflates R2

• Cross-validation:  predict data you have not used
8
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Evaluating Coefficients
• Classical models

• Handful of estimated coefficients
• t-statistic compares observed statistic to 

‘null model’ in which regressor has no effect

• Two issues in large models with big samples
• t-statistic proportional to √sample size

Regressors with tiny impact on predictions 
(small effect size) are ‘statistically significant’

• Multiplicity produces many apparently significant 
effects (statistics rewards persistence)
Bonferroni threshold at ≈√2 log (#regressors)

9
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Plots for Random Gaussian Noise (null model)

Summarizing Model Estimates
• Models have 100s of regressors, 1000s cases

• Graphical summary of coefficients
• Absolute size of t-statistic
• Half-normal plot of t-statistics

10

Bonferroni 
threshold
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Featurizing Text
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Methods
• All convert text into numerical variables

• Text must be tokenized first

• Three direct, unsupervised approaches
• Counts of words in documents
• Apply principal components analysis to the 

counts of the different words
• Form eigenwords from the sequence of words 

and build numerical variables from these

• Terminology
• Principal components = latent semantic analysis
• So called spectral methods

12

Less 
and 
less 

obvious
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Tokenization
• What’s a word?

• Word versus word type

• Simple
• White-space delimited sequence of characters
• Alphabetic characters in lower case
• Distinguish punctuation.  

Yes,  .   is a word type. 

• Nothing fancy, such as
• Stemming
• Tagging with part of speech (parsing)
• Correcting spelling errors
• Encoding phone numbers, e-mail addresses
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Sample after Tokenizing

14

Not exactly proper English grammar!

Data from trulia.com for Chicago in June 2013.

Each listing defines a document.
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Parsing Is Hard
• Create regressors by matching text to 

regular expressions

• Example: square footage
• Most listings do not show this:  94% missing
• Weak correlation with log prices in the 

observed cases

15

regex 
error
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Featurizing Method 1

Word Counts

16
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Document/Word Matrix
• Sparse matrix W counts how many times each 

word type appears within each document
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Document/Word Matrix
• Combine rare words

• Most words types have small counts (Zipf dist.)
• Combine those seen only once or twice 

throughout the corpus into type ‘OOV’
Reduces vocabulary from 15,000 to 6,000 for real estate

• Columns of W define regressors
• Regressor = count of specific words
• Fit a regression with several thousand columns
• No variable selection – just use them all

• Benchmark
• Can one predict as well (better?) with fewer

18

Shown on 
next slide
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Zipf Distribution
• Counts of word types in real estate listings

19

After 
merging 
OOV
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Results for Real Estate
• W generates surprisingly good fit…

• Regress log price on counts of 2,000 most 
common word types

• Performance
• Adjusted R2 = 68%
• Diffuse statistically significant coefficients

20
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Why Logs?
• Prices for real estate in Chicago follow 

roughly log normal distribution

21
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Featurizing Method 2

Principal Components

22
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Concentrate Signal
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• Regression on words
• Explains substantial of variation among prices
• Cannot limit attention to the big ones

If retain only those coefficients that pass the 
Bonferroni threshold, then adj R2 drops to 19%.

• Heuristic model
• Response lives in low-dimension + noise
	

 	

 y = g(µ) + random noise

• Each regressor is µ plus random noise
	

 	

 xj = µ + more random error

• Get a better regressor by averaging the xjs
	

 	

 x̄ = (x1 + x2 + ... + xp)/p
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Better Averaging
• How would you know that you should just 

average the xjs to recover µ?

• Search for interesting directions
• Find weighted sums of the xjs.  y is not used.
• Rely on enough variation among elements of µ 

• Generalization: Principal components analysis

24

Association with observed

g(µ) = (µ-10)2

Association with PC

simulated 
example

unsupervised
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Latent Semantic Analysis
• Idea

• Replace columns of W by matrix M with fewer 
columns 

• New columns (principal components) are 
weighed sums of the original columns

Chosen to have maximal variance and be uncorrelated

• Fewer dimensions while preserving document 
separation

• Classical eigenvalue problem
• Albeit applied to much larger matrix than usual
• W in real estate has 
	

 7,400 rows and 5,700 columns

25

Embarrassed 
to admit 
how long 
before I 

realized this!
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Clustering
• LSA also used for clustering documents (LSI)

• W with 1,000s of columns replaced by PC 
matrix M with fewer columns

• New coordinates
• W

Each document represented by long, sparse 
vector of word counts.

• M
Each document represented by point in lower 
dimensional space

• Cluster the documents in this new space
• Early approach to document retrieval

26
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Computation?
• W is a very big matrix, but...

• W is sparse
• Most elements of W are zero so don’t have to 

reserve space or manipulate 
	

 	

 7,400 x 5,700 ≈ 42,000,000
elements

• Random algorithms
• Computers are pretty fast, and 
• Modern algorithms based on random projection 

make this a fast calculation.

27
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Results for Real Estate
• Retaining 500 PCs produces nearly as good 

a fit as words, but more concentrated
• Adjusted R2 = 61%
• High variance components also more predictive

28

2000 words 
has adj R2 68%
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Cross Validation
• Model predicts as well as it claims

• Validate using out-of-sample test cases
• Transductive case

Regressors for test cases are available when 
building model (ie, used in PCA)

• Model prediction
• 10-fold cross-validation, repeated 20 times

29
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Featurizing Method 3

Bigram Components

30
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Bigram Analysis
• W = bag-of-words

• W defines word space based on co-occurrence 
within a document

• Treats document as a multiset, losing 
information related to order

• Bigram matrix counts adjacent word pairs

31

B = 

0 0 2 0 1
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1 0 0 0 0

0 1 0 0 0
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Singular Value Decomposition
• Represent a matrix as a weighted sum of 

simpler matrices
	

 	

 B = d1 u1 v1t + d2 u2 v2t + …
• d1 ≥ d2 ≥ … are constants (singular values)
• uj and vj are vectors (left and right singular vec)

• Truncated sum = ‘low rank’ approximation
• Heuristic: remaining terms random noise

• Alternative expression, as a product
	

 	

 	

 B = U D Vt

• D is diagonal with elements dj
• uj and vj are columns of U and V

32

Truncation retains 
only leading 

columns of U, V
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Building Regressors
• Singular vectors identify new coordinates 

for words based on adjacency
• Such coordinates called ‘eigenwords’ by 

Ungar and colleagues
• Can be constructed from counts of other n-

grams (three, four, or more consecutive words)

• Examples from Google n-grams provide 
some sense of what these measure
• Vocabulary of 50,000 words with Internet as 

source text
• A word is a point in a space of lower dimension
• Labelling selected words provides intuition 

33
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Example of Eigenwords

34
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Getting Regressors
• Eigenwords define locations of words in a 

lower-dimension space, say C

• To represent documents in this new space, 
compute the average position of its words
• Each word in a document is point in C
• Represent document as the average position of 

its words (centroid)

• ‘Equivalent’ to correlation between word 
mix of document (row of W) and singular 
vectors

35
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Results for Real Estate
• Leading 500 left singular vectors explain 

similar variation to LSA (61%), but

• Lose the concentration of signal

36
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Results for Real Estate
• Adding the right singular vectors lifts 

adjusted R2 to 66%, 
but without concentrating signal
• Collinearity between left/right singular vectors

37Better than raw words, but we can do better...
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Nicer Regressors
• Left and right singular vectors of B are

• Correlated
• Defined by adjacent co-occurrence

• Use common information to form better 
regressors
• More power in fewer coordinates

• Technique: canonical correlation analysis
• Find weighted sum of one collection of variables 

that is most related to a weighted sum of a 
second collection

• Weighted sums are known as canonical variables

38
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Results for Real Estate
• Canonical variables formed from the CCA 

of the bigram singular vectors again 
concentrate signal
• Same fit, just rearranged into fewer components

39
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Adding more?
• Combine regressors

• For instance
	

 Regress on LSA variables	

	

 61%
	

 Add bigram l.h.s. variables	

 68%

• Substantive parsing
• Tried originally to use regular expressions
• Parse for #bathrooms, bedrooms and sq. ft.
• Adds 0.3% to R2…  

Statistically significant but not noticeable.

40
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Interpretation

41
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Predictive but Unattractive
• Offer some interpretable variables

• Lighthouse variables
• Create substantively oriented variable, perhaps 

from partial information
• Use substantive variable to form interpretable 

combinations of PCA or singular vectors

• Example: number bathrooms
• Partially observed

3/4 missing
• Correlation r = 0.4  when

limited to observed cases

42
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Guided PCA
• Form combination of PCA variables that is 

most correlated available parsed count

• Use this new variable as regressor in place 
of bathrooms

43
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Topic Models

44
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Topic Model

45

• Data generating process, a probability model
• Cluster documents based on common ‘topics’
• Bag-of-words model

• Typical analysis
• Unsupervised (no response to predict)
• Specify priors for Bayesian model
• Given model, use Markov Chain Monte Carlo 

(MCMC) to find distribution of latent topics

• Example
• Cluster articles that appear in Science magazine
• Explore how topics evolve

You get to play   ‘name that topic’   as in factor analysis.
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Basic Model
• Each document mixes words from 

collection of topics
• topic = probability distribution over words
• Details: Blei, Ng, and Jordan 2003

46
Figure from Blei, Intro to Topic Models
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Probability Model
• Latent Dirichlet allocation (LDA)

• Define K topics
• Discrete distributions over vocabulary 
	

 Pk ~ Dirichlet, k = 1,…, K

• Each document covers a mixture of topics
• Random distribution 
	

 Zi ~ Dirichlet, i = 1,…, n

• Topic mixture
• Determines words that appear

	

 P(word w in doc i) = Pkw             k ~ Multi(Zi)

• Defines the response 
	

 	

 	

 yi = Zi’β + noise

47

Beta:Binomial
as

Dirichlet:Multinomial
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Simulate Topic Data
• Suppose data were generated in this fashion

• Simulation
• 10 topics (K=10, hidden in analysis)
• 2000 word types
• 4000 documents

• Nature of the topics
• Disjoint… few words in common
• Overlapping… many words in common

• Response
• Weighted sum of topic shares, R2=0.92

48
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Results for Topics
• Modeling

• 100 PCs of W, 100 left and 100 right from B
• Predicts well

• Impact of topic overlap
• Better fitting model with distinct topics

• CCA reveals K if disjoint

49

disjoint overlap
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Comments on LDA
• Nice to have probability model that 

‘explains’ why 
• direct methods work
• results from W and B are similar

• Not perfect
• Need to enrich with some sequential 

dependence to mimic text
• Insert Markov chain into sequence of topics that 

generate words within document

50
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Wrap-Up

51
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Take-Aways

52

• Direct conversions of text to numerical 
variables allow one to easily exploit 
unstructured text in regression models
• Exploit conventional statistical routines in a 

different context
• The analysis is fast to run

• Related to probability models for 
documents (LDA, topic models)

• The results illustrated for real estate seem 
representative rather than exceptional
• It works in other problems too...
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Wine Ratings
• Data

• 22,000 wine tasting notes (Thank you, Mark)
• Response is rating of wine

• Results
• 250 PCs of W: adj R2 = 67%
• 500 SVs of  B : adj R2 = 68%

• Similar qualitative concentration of signal

53
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Next Steps
• Transfer learning

• Chicago real estate next year
• Miami real estate

• More elaborate tokenization
• Stemming, parsing/tagging

• Exploiting other word counts and sources
• Trigrams
• Merging with other quantitative data

• Statistics: variable selection
• Outside the ‘nearly black’ context of theory
• Capturing nonlinearities, word synergies
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Thanks for coming!


